1
|
Ford LC, Lin HC, Zhou YH, Wright FA, Gombar VK, Sedykh A, Shah RR, Chiu WA, Rusyn I. Characterizing PFAS hazards and risks: a human population-based in vitro cardiotoxicity assessment strategy. Hum Genomics 2024; 18:92. [PMID: 39218963 PMCID: PMC11368000 DOI: 10.1186/s40246-024-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, and cell-based assays are the most sensible approach for screening and prioritization of PFAS. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a widely used method to test for cardiotoxicity, and recent studies showed that many PFAS affect these cells. Because iPSC-derived cardiomyocytes are available from different donors, they also can be used to quantify human variability in responses to PFAS. The primary objective of this study was to characterize potential human cardiotoxic hazard, risk, and inter-individual variability in responses to PFAS. A total of 56 PFAS from different subclasses were tested in concentration-response using human iPSC-derived cardiomyocytes from 16 donors without known heart disease. Kinetic calcium flux and high-content imaging were used to evaluate biologically-relevant phenotypes such as beat frequency, repolarization, and cytotoxicity. Of the tested PFAS, 46 showed concentration-response effects in at least one phenotype and donor; however, a wide range of sensitivities were observed across donors. Inter-individual variability in the effects could be quantified for 19 PFAS, and risk characterization could be performed for 20 PFAS based on available exposure information. For most tested PFAS, toxicodynamic variability was within a factor of 10 and the margins of exposure were above 100. This study identified PFAS that may pose cardiotoxicity risk and have high inter-individual variability. It also demonstrated the feasibility of using a population-based human in vitro method to quantify population variability and identify cardiotoxicity risks of emerging contaminants.
Collapse
Affiliation(s)
- Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred A Wright
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | | | | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA.
| |
Collapse
|
2
|
Lampi MA, Therkorn JH, Kung MH, Isola AL, Barter RA. Current frameworks for environmental and health assessment of hydrocarbon streams and products are flexible and ready for alternative non crude oil-based feeds. Toxicol Res (Camb) 2024; 13:tfae114. [PMID: 39086642 PMCID: PMC11289309 DOI: 10.1093/toxres/tfae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Hazard and risk assessment of complex petroleum-derived substances has been in a state of continuous improvement since the 1970s, with the development of approaches that continue to be applied and refined. Alternative feeds are defined here as those coming into a refinery or chemical plant that are not hydrocarbons from oil and gas extraction such as biologically derived oils, pyrolysis oil from biomass or other, and recycled materials. These feeds are increasingly being used for production of liquid hydrocarbon streams, and hence, there is a need to assess these alternatives, subsequent manufacturing and refining processes and end products for potential risk to humans and the environment. Here we propose a tiered, problem formulation-driven framework for assessing the safety of hydrocarbon streams and products derived from alternative feedstocks in use. The scope of this work is only focused on petrochemical safety assessment, though the principles may be applicable to other chemistries. The framework integrates combinations of analytical chemistry, in silico and in vitro tools, and targeted testing together with conservative assumptions/approaches to leverage existing health, environmental, and exposure data, where applicable. The framework enables the identification of scenarios where de novo hazard and/or exposure assessments may be needed and incorporates tiered approaches to do so. It can be applied to enable decisions efficiently and transparently and can encompass a wide range of compositional space in both feedstocks and finished products, with the objective of ensuring safety in manufacturing and use.
Collapse
Affiliation(s)
- Mark A Lampi
- ExxonMobil Technology and Engineering Company, ExxonMobil Biomedical Sciences, Inc., 1545 US 22 East, Annandale, NJ 08801, United States
| | - Jennifer H Therkorn
- ExxonMobil Technology and Engineering Company, ExxonMobil Biomedical Sciences, Inc., 1545 US 22 East, Annandale, NJ 08801, United States
| | - Ming H Kung
- ExxonMobil Technology and Engineering Company, ExxonMobil Biomedical Sciences, Inc., 1545 US 22 East, Annandale, NJ 08801, United States
| | - Allison L Isola
- ExxonMobil Product Solutions Company, Product Stewardship & Regulatory Affairs, 22777 Springwoods Village Parkway, Spring, TX 77389, United States
| | - Robert A Barter
- ExxonMobil Technology and Engineering Company, Research Organization, 1545 US 22 East, Annandale, NJ 08801, United States
| |
Collapse
|
3
|
Aguilar-Alarcón P, Gonzalez SV, Mikkelsen Ø, Asimakopoulos AG. Molecular formula assignment of dissolved organic matter by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry using two non-targeted data processing approaches: A case study from recirculating aquaculture systems. Anal Chim Acta 2024; 1288:342128. [PMID: 38220272 DOI: 10.1016/j.aca.2023.342128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The accumulation of dissolved organic matter (DOM) poses an issue in the management of the water quality from recirculating aquaculture systems (RAS), but its characterization is often not detailed enough to understand the DOM transformations in RAS. In this study, we investigated the application of two distinct non-targeted data processing approaches using ultra-performance liquid chromatography (UPLC) with quadrupole time-of-flight mass spectrometry (QTOF-MS) and two software with different algorithmic designs: PetroOrg and Progenesis QI to accurately characterize the molecular composition of DOM in RAS by UPLC-QTOF-MS. RESULTS The UPLC-QTOF-MS resolution in combination with PetroOrg and Progenesis QI software successfully assigned 912 and 106 unique elemental compositions, respectively, including compounds containing carbon, hydrogen, and oxygen (CHO) and nitrogen-containing CHO compounds (CHON), in the DOM samples from RAS. The results of these two distinct data processing approaches were consistent with the list of DOM formulas from RAS identified by higher resolution mass spectrometry techniques confirming their reliability. PetroOrg approach revealed only compositional information in the DOM samples from RAS, while Progenesis QI in addition to identifying new elemental compositions, increased their chemical space by giving information about their polarity and their possible key structures. DOM samples from RAS were found to be rich in unsaturated CHO compounds, with tentatively key structures of terpenoids with medium polarity indicating natural origins in their composition. The analysis also revealed probable structures of sucrose fatty acid esters and polyethylene glycol, indicating anthropogenic sources. SIGNIFICANCE AND NOVELTY The combination of these two non-targeted data processing approaches significantly improves the characterization of the complex mixture of DOM from RAS by UPLC-QTOF-MS reporting for the first time accurate DOM results in terms of its composition, while proposing its key structures. The presented methods can also be used to analyze different DOM samples with other HRMS techniques and software.
Collapse
Affiliation(s)
- Patricia Aguilar-Alarcón
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491, Trondheim, Norway; Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Spain; University of Girona, 17071, Girona, Spain.
| | - Susana V Gonzalez
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491, Trondheim, Norway
| | - Øyvind Mikkelsen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491, Trondheim, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491, Trondheim, Norway
| |
Collapse
|
4
|
Cordova AC, Dodds JN, Tsai HHD, Lloyd DT, Roman-Hubers AT, Wright FA, Chiu WA, McDonald TJ, Zhu R, Newman G, Rusyn I. Application of Ion Mobility Spectrometry-Mass Spectrometry for Compositional Characterization and Fingerprinting of a Library of Diverse Crude Oil Samples. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2336-2349. [PMID: 37530422 PMCID: PMC10592202 DOI: 10.1002/etc.5727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Exposure characterization of crude oils, especially in time-sensitive circumstances such as spills and disasters, is a well-known analytical chemistry challenge. Gas chromatography-mass spectrometry is commonly used for "fingerprinting" and origin tracing in oil spills; however, this method is both time-consuming and lacks the resolving power to separate co-eluting compounds. Recent advances in methodologies to analyze petroleum substances using high-resolution analytical techniques have demonstrated both improved resolving power and higher throughput. One such method, ion mobility spectrometry-mass spectrometry (IMS-MS), is especially promising because it is both rapid and high-throughput, with the ability to discern among highly homologous hydrocarbon molecules. Previous applications of IMS-MS to crude oil analyses included a limited number of samples and did not provide detailed characterization of chemical constituents. We analyzed a diverse library of 195 crude oil samples using IMS-MS and applied a computational workflow to assign molecular formulas to individual features. The oils were from 12 groups based on geographical and geological origins: non-US (1 group), US onshore (3), and US Gulf of Mexico offshore (8). We hypothesized that information acquired through IMS-MS data would provide a more confident grouping and yield additional fingerprint information. Chemical composition data from IMS-MS was used for unsupervised hierarchical clustering, as well as machine learning-based supervised analysis to predict geographic and source rock categories for each sample; the latter also yielded several novel prospective biomarkers for fingerprinting of crude oils. We found that IMS-MS data have complementary advantages for fingerprinting and characterization of diverse crude oils and that proposed polycyclic aromatic hydrocarbon biomarkers can be used for rapid exposure characterization. Environ Toxicol Chem 2023;42:2336-2349. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexandra C. Cordova
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - James N. Dodds
- Department of Chemistry, UNC Chapel Hill, Chapel Hill, NC 27514, United States
| | - Han-Hsuan D. Tsai
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Dillon T. Lloyd
- Departments of Statistics, Biological Sciences, and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
| | - Alina T. Roman-Hubers
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Fred A. Wright
- Departments of Statistics, Biological Sciences, and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Thomas J. McDonald
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, United States
| | - Rui Zhu
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station TX 77843, United States
| | - Galen Newman
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station TX 77843, United States
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
5
|
Cordova AC, Klaren WD, Ford LC, Grimm FA, Baker ES, Zhou YH, Wright FA, Rusyn I. Integrative Chemical-Biological Grouping of Complex High Production Volume Substances from Lower Olefin Manufacturing Streams. TOXICS 2023; 11:586. [PMID: 37505552 PMCID: PMC10385386 DOI: 10.3390/toxics11070586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Human cell-based test methods can be used to evaluate potential hazards of mixtures and products of petroleum refining ("unknown or variable composition, complex reaction products, or biological materials" substances, UVCBs). Analyses of bioactivity and detailed chemical characterization of petroleum UVCBs were used separately for grouping these substances; a combination of the approaches has not been undertaken. Therefore, we used a case example of representative high production volume categories of petroleum UVCBs, 25 lower olefin substances from low benzene naphtha and resin oils categories, to determine whether existing manufacturing-based category grouping can be supported. We collected two types of data: nontarget ion mobility spectrometry-mass spectrometry of both neat substances and their organic extracts and in vitro bioactivity of the organic extracts in five human cell types: umbilical vein endothelial cells and induced pluripotent stem cell-derived hepatocytes, endothelial cells, neurons, and cardiomyocytes. We found that while similarity in composition and bioactivity can be observed for some substances, existing categories are largely heterogeneous. Strong relationships between composition and bioactivity were observed, and individual constituents that determine these associations were identified. Overall, this study showed a promising approach that combines chemical composition and bioactivity data to better characterize the variability within manufacturing categories of petroleum UVCBs.
Collapse
Affiliation(s)
- Alexandra C Cordova
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - William D Klaren
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucie C Ford
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Fabian A Grimm
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi-Hui Zhou
- Departments of Statistics and Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Fred A Wright
- Departments of Statistics and Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Roman-Hubers AT, Aeppli C, Dodds JN, Baker ES, McFarlin KM, Letinski DJ, Zhao L, Mitchell DA, Parkerton TF, Prince RC, Nedwed T, Rusyn I. Temporal chemical composition changes in water below a crude oil slick irradiated with natural sunlight. MARINE POLLUTION BULLETIN 2022; 185:114360. [PMID: 36413931 PMCID: PMC9741762 DOI: 10.1016/j.marpolbul.2022.114360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 05/25/2023]
Abstract
Photooxidation can alter the environmental fate and effects of spilled oil. To better understand this process, oil slicks were generated on seawater mesocosms and exposed to sunlight for 8 days. The molecular composition of seawater under irradiated and non-irradiated oil slicks was characterized using ion mobility spectrometry-mass spectrometry and polyaromatic hydrocarbons analyses. Biomimetic extraction was performed to quantify neutral and ionized constituents. Results show that seawater underneath irradiated oil showed significantly higher amounts of hydrocarbons with oxygen- and sulfur-containing by-products peaking by day 4-6; however, concentrations of dissolved organic carbon were similar. Biomimetic extraction indicated toxic units in irradiated mesocosms increased, mainly due to ionized components, but remained <1, suggesting limited potential for ecotoxicity. Because the experimental design mimicked important aspects of natural conditions (freshly collected seawater, natural sunlight, and relevant oil thickness and concentrations), this study improves our understanding of the effects of photooxidation during a marine oil spill.
Collapse
Affiliation(s)
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | - James N Dodds
- North Carolina State University, Raleigh, NC, United States of America
| | - Erin S Baker
- North Carolina State University, Raleigh, NC, United States of America
| | - Kelly M McFarlin
- ExxonMobil Biomedical Sciences, Clinton, NJ, United States of America
| | - Daniel J Letinski
- ExxonMobil Biomedical Sciences, Clinton, NJ, United States of America
| | - Lin Zhao
- ExxonMobil Upstream Research Company, Spring, TX, United States of America
| | | | | | - Roger C Prince
- Stonybrook Apiary, Pittstown, NJ, United States of America
| | - Tim Nedwed
- ExxonMobil Upstream Research Company, Spring, TX, United States of America
| | - Ivan Rusyn
- Texas A&M University, College Station, TX, United States of America.
| |
Collapse
|
7
|
House JS, Grimm FA, Klaren WD, Dalzell A, Kuchi S, Zhang SD, Lenz K, Boogaard PJ, Ketelslegers HB, Gant TW, Rusyn I, Wright FA. Grouping of UVCB substances with dose-response transcriptomics data from human cell-based assays. ALTEX 2022; 39:388–404. [PMID: 35288757 PMCID: PMC9344966 DOI: 10.14573/altex.2107051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB (unknown or variable composition, complex reaction products, and biological materials) substances has recently been demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However, the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored. Using 141 petroleum substance extracts, we performed dose-response transcriptomic profiling in human induced pluripotent stem cell (iPSC)-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as cell lines MCF7 and A375. The goal was to determine whether transcriptomic data can be used to group these UVCBs and to further characterize the molecular basis for in vitro biological responses. We found distinct transcriptional responses for petroleum substances by manufacturing class. Pathway enrichment informed interpretation of effects of substances and UVCB petroleum-class. Transcriptional activity was strongly correlated with concentration of polycyclic aromatic compounds (PAC), especially in iPSC-derived hepatocytes. Supervised analysis using transcriptomics, alone or in combination with bioactivity data collected on these same substances/cells, suggest that transcriptomics data provide useful mechanistic information, but only modest additional value for grouping. Overall, these results further demonstrate the value of NAMs for grouping of UVCBs, identify informative cell lines, and provide data that could be used for justifying selection of substances for further testing that may be required for registration.
Collapse
Affiliation(s)
- John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, RTP, NC, USA
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - William D Klaren
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.,current address: ToxStrategies, Inc., Asheville, NC, USA
| | - Abigail Dalzell
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Science Campus, Oxon, UK
| | - Srikeerthana Kuchi
- Northern Ireland Centre for Stratified Medicine, Ulster University, L/Derry, Northern Ireland, UK.,current address: MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Ulster University, L/Derry, Northern Ireland, UK
| | - Klaus Lenz
- SYNCOM Forschungs und Entwicklungsberatung GmbH, Ganderkesee, Germany
| | | | | | - Timothy W Gant
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Science Campus, Oxon, UK
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Lai A, Clark AM, Escher BI, Fernandez M, McEwen LR, Tian Z, Wang Z, Schymanski EL. The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7448-7466. [PMID: 35533312 PMCID: PMC9228065 DOI: 10.1021/acs.est.2c00321] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) are over 70 000 "complex" chemical mixtures produced and used at significant levels worldwide. Due to their unknown or variable composition, applying chemical assessments originally developed for individual compounds to UVCBs is challenging, which impedes sound management of these substances. Across the analytical sciences, toxicology, cheminformatics, and regulatory practice, new approaches addressing specific aspects of UVCB assessment are being developed, albeit in a fragmented manner. This review attempts to convey the "big picture" of the state of the art in dealing with UVCBs by holistically examining UVCB characterization and chemical identity representation, as well as hazard, exposure, and risk assessment. Overall, information gaps on chemical identities underpin the fundamental challenges concerning UVCBs, and better reporting and substance characterization efforts are needed to support subsequent chemical assessments. To this end, an information level scheme for improved UVCB data collection and management within databases is proposed. The development of UVCB testing shows early progress, in line with three main methods: whole substance, known constituents, and fraction profiling. For toxicity assessment, one option is a whole-mixture testing approach. If the identities of (many) constituents are known, grouping, read across, and mixture toxicity modeling represent complementary approaches to overcome data gaps in toxicity assessment. This review highlights continued needs for concerted efforts from all stakeholders to ensure proper assessment and sound management of UVCBs.
Collapse
Affiliation(s)
- Adelene Lai
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Institute
for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany
| | - Alex M. Clark
- Collaborative
Drug Discovery Inc., 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Beate I. Escher
- Helmholtz
Centre for Environmental Research GmbH—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Marc Fernandez
- Environment
and Climate Change Canada, 401 Burrard Street, Vancouver, British Columbia V6C 3R2, Canada
| | - Leah R. McEwen
- Cornell
University, Ithaca, New York 14850, United States
- International
Union of Pure and Applied Chemistry, Research Triangle Park, North Carolina 27709, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Department of Marine and Environmental
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhanyun Wang
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Technology
and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
9
|
Luo YS, Chen Z, Hsieh NH, Lin TE. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128658. [PMID: 35290896 DOI: 10.1016/j.jhazmat.2022.128658] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Considering the chemical complexity and toxicity data gaps of environmental mixtures, most studies evaluate the chemical risk individually. However, humans are usually exposed to a cocktail of chemicals in real life. Mixture health assessment remains to be a research area having significant knowledge gaps. Characterization of chemical composition and bioactivity/toxicity are the two critical aspects of mixture health assessments. This review seeks to introduce the recent progress and tools for the chemical and biological characterization of environmental mixtures. The state-of-the-art techniques include the sampling, extraction, rapid detection methods, and the in vitro, in vivo, and in silico approaches to generate the toxicity data of an environmental mixture. Application of these novel methods, or new approach methodologies (NAMs), has increased the throughput of generating chemical and toxicity data for mixtures and thus refined the mixture health assessment. Combined with computational methods, the chemical and biological information would shed light on identifying the bioactive/toxic components in an environmental mixture.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Roman-Hubers AT, Cordova AC, Rohde AM, Chiu WA, McDonald TJ, Wright FA, Dodds JN, Baker ES, Rusyn I. Characterization of Compositional Variability in Petroleum Substances. FUEL (LONDON, ENGLAND) 2022; 317:123547. [PMID: 35250041 PMCID: PMC8896784 DOI: 10.1016/j.fuel.2022.123547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the process of registration of substances of Unknown or Variable Composition, Complex Reaction Products or Biological Materials (UVCBs), information sufficient to enable substance identification must be provided. Substance identification for UVCBs formed through petroleum refining is particularly challenging due to their chemical complexity, as well as variability in refining process conditions and composition of the feedstocks. This study aimed to characterize compositional variability of petroleum UVCBs both within and across product categories. We utilized ion mobility spectrometry (IMS)-MS as a technique to evaluate detailed chemical composition of independent production cycle-derived samples of 6 petroleum products from 3 manufacturing categories (heavy aromatic, hydrotreated light paraffinic, and hydrotreated heavy paraffinic). Atmospheric pressure photoionization and drift tube IMS-MS were used to identify structurally related compounds and quantified between- and within-product variability. In addition, we determined both individual molecules and hydrocarbon blocks that were most variable in samples from different production cycles. We found that detailed chemical compositional data on petroleum UVCBs obtained from IMS-MS can provide the information necessary for hazard and risk characterization in terms of quantifying the variability of the products in a manufacturing category, as well as in subsequent production cycles of the same product.
Collapse
Affiliation(s)
- Alina T. Roman-Hubers
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Alexandra C. Cordova
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Arlean M. Rohde
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas J. McDonald
- Departments of Environmental and Occupational Health, Texas A&M University, College Station, Texas 77843, United States
| | - Fred A. Wright
- Departments of Statistics and Biological Sciences, Raleigh, North Carolina 27695, United States
| | - James N. Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S. Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Pohl H, Mumtaz M. Evaluation of interactions in chemical mixtures containing cyanides. Regul Toxicol Pharmacol 2022; 132:105187. [DOI: 10.1016/j.yrtph.2022.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
12
|
Mathew KA, Ardelan MV, Villa Gonzalez S, Vadstein O, Vezhapparambu VS, Leiknes Ø, Mankettikkara R, Olsen Y. Temporal dynamics of carbon sequestration in coastal North Atlantic fjord system as seen through dissolved organic matter characterisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146402. [PMID: 33839660 DOI: 10.1016/j.scitotenv.2021.146402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Fjord systems in higher latitudes are unique coastal water ecosystems that facilitate the study of dissolved organic matter (DOM) dynamics from surface to deeper waters. The current work was undertaken in the Trondheim fjord characterized by North Atlantic waters, and compared DOM fractions from three depths - surface (3 m), intermediate (225 m) and deep (440 m) in four seasons, from late spring to winter in 2017. The high-resolution mass spectrometry data showed that DOM composition varies significantly in different seasons rather than in different depths in the fjord systems. The bacterial community composition was comparable except at spring surface and summer intermediate depths. Bacterial production was minimal below the euphotic layer, even with sufficient availability of inorganic nutrients. The bacterial production rate in the surface waters was about 7 times and over 50 times higher than that of the aphotic zone in the winter and the summer seasons, respectively. The surface heterotrophic microbial communities might have rapidly consumed the available labile DOM, with the production of more refractory DOM limiting bacterial production in aphotic layers. The greater number of CRAM-like formulas determined in the surface waters compared to other depths supports our hypothesis. The refractory DOM sequestered in the water column may either be exported into sediments attached to particulate matter and marine gels, or may escape into the atmosphere as carbon dioxide/monoxide during the photochemical oxidation pathways, suggesting that it is involved in climate change scenarios.
Collapse
Affiliation(s)
- K Avarachen Mathew
- Department of Biology, NTNU Norwegian University of Science and Technology, Norway.
| | - Murat Van Ardelan
- Department of Chemistry, NTNU Norwegian University of Science and Technology, Norway.
| | - Susana Villa Gonzalez
- Department of Chemistry, NTNU Norwegian University of Science and Technology, Norway.
| | - Olav Vadstein
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Norway.
| | - Veena S Vezhapparambu
- Department of Petroleum Engineering, NTNU Norwegian University of Science and Technology, Norway.
| | - Øystein Leiknes
- Department of Biology, NTNU Norwegian University of Science and Technology, Norway.
| | - Rahman Mankettikkara
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Norway.
| | - Yngvar Olsen
- Department of Biology, NTNU Norwegian University of Science and Technology, Norway.
| |
Collapse
|
13
|
Vichare AS, Kamath SU, Leist M, Hayes AW, Mahadevan B. Application of the 3Rs principles in the development of pharmaceutical generics. Regul Toxicol Pharmacol 2021; 125:105016. [PMID: 34302895 DOI: 10.1016/j.yrtph.2021.105016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Although the 3Rs are broadly applied in nonclinical testing, a better appreciation of the 3Rs is needed in the field of differentiated or value-added pharmaceutical generics because the minor changes in formulation, dosage form, indication, and application route often do not require additional safety testing. The US FDA and the EU EMA have comprehensive regulations for such drugs based on quality, therapeutic equivalence, and safety guidelines. However, no scientific publications on how the concept of replacement and reduction from 3Rs principles can be applied in the safety assessment of differentiated generics were found in the public domain. In this review, we discuss the application of 3Rs in nonclinical testing requirements for differentiated generics. Practical examples are provided in the form of case studies from regulated markets. We highlight the need for utilization of existing data to establish equivalence (differentiated generic vs innovator) in efficacy and safety. The case studies indicate that data requirements from animal experiments have been reduced to a large extent in some major markets without compromising quality and safety. In this context, we also highlight the problem that on a global scale, a true reduction of animal experiments will only be achieved when all countries adopt similar practices.
Collapse
Affiliation(s)
- Abhijit S Vichare
- Global Preclinical & Product Safety, Abbott Healthcare Pvt Ltd., Mumbai, India.
| | - Sushant U Kamath
- Global Preclinical & Product Safety, Abbott Healthcare Pvt Ltd., Mumbai, India
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - A Wallace Hayes
- The University of South Florida, College of Public Health, Tampa, FL, USA
| | | |
Collapse
|
14
|
Roman-Hubers AT, Cordova AC, Aly NA, McDonald TJ, Lloyd DT, Wright FA, Baker ES, Chiu WA, Rusyn I. Data Processing Workflow to Identify Structurally Related Compounds in Petroleum Substances Using Ion Mobility Spectrometry-Mass Spectrometry. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2021; 35:10529-10539. [PMID: 34366560 PMCID: PMC8341389 DOI: 10.1021/acs.energyfuels.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) is a post-ionization separation technique that can be used for rapid multidimensional analyses of complex samples. IMS-MS offers untargeted analysis, including ion-specific conformational data derived as collisional cross section (CCS) values. Here, we combine nitrogen gas drift tube CCS (DTCCSN2) and Kendrick mass defect (KMD) analyses based on CH2 and H functional units to enable compositional analyses of petroleum substances. First, polycyclic aromatic compound standards were analyzed by IMS-MS to demonstrate how CCS assists the identification of isomeric species in homologous series. Next, we used case studies of a gasoline standard previously characterized for paraffin, isoparaffin, aromatic, naphthene, and olefinic (PIANO) compounds, and a crude oil sample to demonstrate the application of the KMD analyses and CCS filtering. Finally, we propose a workflow that enables confident molecular formula assignment to the IMS-MS-derived features in petroleum samples. Collectively, this work demonstrates how rapid untargeted IMS-MS analysis and the proposed data processing workflow can be used to provide confident compositional characterization of hydrocarbon-containing substances.
Collapse
Affiliation(s)
- Alina T. Roman-Hubers
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Alexandra C. Cordova
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Noor A. Aly
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas J. McDonald
- Department of Environmental and Occupational Health, Texas A&M University, College Station, Texas 77843, United States
| | - Dillon T. Lloyd
- Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Fred A. Wright
- Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S. Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
- Corresponding Author Ivan Rusyn, MD, PhD. Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845. ; Phone: +1-979-458-9866
| |
Collapse
|
15
|
Luo YS, Ferguson KC, Rusyn I, Chiu WA. In Vitro Bioavailability of the Hydrocarbon Fractions of Dimethyl Sulfoxide Extracts of Petroleum Substances. Toxicol Sci 2021; 174:168-177. [PMID: 32040194 DOI: 10.1093/toxsci/kfaa007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Determining the in vitro bioavailable concentration is a critical, yet unmet need to refine in vitro-to-in vivo extrapolation for unknown or variable composition, complex reaction product or biological material (UVCB) substances. UVCBs such as petroleum substances are commonly subjected to dimethyl sulfoxide (DMSO) extraction in order to retrieve the bioactive polycyclic aromatic compound (PAC) portion for in vitro testing. In addition to DMSO extraction, protein binding in cell culture media and dilution can all influence in vitro bioavailable concentrations of aliphatic and aromatic compounds in petroleum substances. However, these in vitro factors have not been fully characterized. In this study, we aimed to fill in these data gaps by characterizing the effects of these processes using both a defined mixture of analytical standards containing aliphatic and aromatic hydrocarbons, as well as 4 refined petroleum products as prototypical examples of UVCBs. Each substance was extracted with DMSO, and the protein binding in cell culture media was measured by using solid-phase microextraction. Semiquantitative analysis for aliphatic and aromatic compounds was achieved via gas chromatography-mass spectrometry. Our results showed that DMSO selectively extracted PACs from test substances, and that chemical profiles of PACs across molecular classes remained consistent after extraction. With respect to protein binding, chemical profiles were retained at a lower dilution (higher concentration), but a greater dilution factor (ie, lower concentration) resulted in higher protein binding in cell medium, which in turn altered the ultimate chemical profile of bioavailable PACs. Overall, this case study demonstrates that extraction procedures, protein binding in cell culture media, and dilution factors prior to in vitro testing can all contribute to determining the final bioavailable concentrations of bioactive constituents of UVCBs in vitro. Thus, in vitro-to-in vivo extrapolation for UVCBs may require greater attention to the concentration-dependent and compound-specific differences in recovery and bioavailability.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station
| | - Kyle C Ferguson
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station
| |
Collapse
|
16
|
Roman-Hubers AT, McDonald TJ, Baker ES, Chiu WA, Rusyn I. A Comparative Analysis of Analytical Techniques for Rapid Oil Spill Identification. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1034-1049. [PMID: 33315271 PMCID: PMC8104454 DOI: 10.1002/etc.4961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 05/25/2023]
Abstract
The complex chemical composition of crude oils presents many challenges for rapid chemical characterization in the case of a spill. A number of approaches are currently used to "fingerprint" petroleum-derived samples. Gas chromatography coupled with mass spectrometry (GC-MS) is the most common, albeit not very rapid, technique; however, with GC-MS alone, it is difficult to resolve the complex substances in crude oils. The present study examined the potential application of ion mobility spectrometry-mass spectrometry (IMS-MS) coupled with chem-informatic analyses as an alternative high-throughput method for the chemical characterization of crude oils. We analyzed 19 crude oil samples from on- and offshore locations in the Gulf of Mexico region in the United States using both GC-MS (biomarkers, gasoline range hydrocarbons, and n-alkanes) and IMS-MS (untargeted analysis). Hierarchical clustering, principal component analysis, and nearest neighbor-based classification were used to examine sample similarity and geographical groupings. We found that direct-injection IMS-MS performed either equally or better than GC-MS in the classification of the origins of crude oils. In addition, IMS-MS greatly increased the sample analysis throughput (minutes vs hours per sample). Finally, a tabletop science-to-practice exercise, utilizing both the GC-MS and IMS-MS data, was conducted with emergency response experts from regulatory agencies and the oil industry. This activity showed that the stakeholders found the IMS-MS data to be highly informative for rapid chemical fingerprinting of complex substances in general and specifically advantageous for accurate and confident source-grouping of crude oils. Collectively, the present study shows the utility of IMS-MS as a technique for rapid fingerprinting of complex samples and demonstrates its advantages over traditional GC-MS-based analyses when used for decision-making in emergency situations. Environ Toxicol Chem 2021;40:1034-1049. © 2020 SETAC.
Collapse
Affiliation(s)
- Alina T. Roman-Hubers
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
| | - Thomas J. McDonald
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Environmental & Occupational Health, Texas A&M University, College Station, Texas, USA
| | - Erin S. Baker
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
17
|
Peshdary V, Hobbs CA, Maynor T, Shepard K, Gagné R, Williams A, Kuo B, Chepelev N, Recio L, Yauk C, Atlas E. Transcriptomic pathway and benchmark dose analysis of Bisphenol A, Bisphenol S, Bisphenol F, and 3,3',5,5'-Tetrabromobisphenol A in H9 human embryonic stem cells. Toxicol In Vitro 2021; 72:105097. [PMID: 33476716 DOI: 10.1016/j.tiv.2021.105097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
Bisphenol A (BPA) is a chemical used in the manufacturing of plastics to which human exposure is ubiquitous. Numerous studies have linked BPA exposure to many adverse health outcomes prompting the replacement of BPA with various analogues including bisphenol-F (BPF) and bisphenol S (BPS). Other bisphenols are used in various consumer applications, such as 3,3',5,5'-Tetrabromobisphenol A (TBBPA), which is used as a flame retardant. Few studies to date have examined the effects of BPA and its analogues in stem cells to explore potential developmental impacts. Here we used transcriptomics to investigate similarities and differences of BPA and three of its analogues in the estrogen receptor negative, human embryonic stem cell line H9 (WA09). H9 cells were exposed to increasing concentrations of the bisphenols and analyzed using RNA-sequencing. Our data indicate that BPA, BPF, and BPS have similar potencies in inducing transcriptional changes and perturb many of the same pathways. TBBPA, the least structurally similar bisphenol of the group, exhibited much lower potency. All bisphenols robustly impacted gene expression in these cells, albeit at concentrations well above those observed in estrogen-positive cells. Overall, we provide a foundational data set against which to explore the transcriptional similarities of other bisphenols in embryonic stem cells, which may be used to assess the suitability of chemical grouping for read-across and for preliminary potency evaluation.
Collapse
Affiliation(s)
- Vian Peshdary
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cheryl A Hobbs
- Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, United States
| | - Timothy Maynor
- Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, United States
| | - Kim Shepard
- Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, United States
| | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, United States
| | - Carole Yauk
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada.
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
18
|
Luo YS, Aly NA, McCord J, Strynar MJ, Chiu WA, Dodds JN, Baker ES, Rusyn I. Rapid Characterization of Emerging Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foams Using Ion Mobility Spectrometry-Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15024-15034. [PMID: 33176098 PMCID: PMC7719402 DOI: 10.1021/acs.est.0c04798] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aqueous film-forming foams (AFFF) are mixtures formulated with numerous hydrocarbon- and fluoro-containing surfactants. AFFF use leads to environmental releases of unknown per- and polyfluoroalkyl substances (PFAS). AFFF composition is seldom disclosed, and their use elicits concerns from both regulatory agencies and the public because PFAS are persistent in the environment and potentially associated with adverse health effects. In this study, we demonstrate the use of coupled liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to rapidly characterize both known and unknown PFAS in AFFF. Ten AFFF formulations from seven brands were analyzed using LC-IMS-MS in both negative and positive ion modes. Untargeted analysis of the formulations was followed by feature identification of PFAS-like features utilizing database matching, mass defect and homologous series evaluation, and MS/MS fragmentation experiments. Across the tested AFFF formulations, we identified 33 homologous series; only ten of these homologous series have been previously reported. Among tested AFFF, the FireStopper (n = 85) contained the greatest number of PFAS-like features and Phos-Check contained zero. This work demonstrates that LC-IMS-MS-enabled untargeted analysis of complex formulations, followed by feature identification using data-processing algorithms, can be used for rapid exposure characterization of known and putative PFAS during fire suppression-related contamination events.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77845-3424, United States
| | - Noor A Aly
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77845-3424, United States
| | - James McCord
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mark J Strynar
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77845-3424, United States
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695,United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695,United States
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77845-3424, United States
| |
Collapse
|
19
|
House JS, Grimm FA, Klaren WD, Dalzell A, Kuchi S, Zhang SD, Lenz K, Boogaard PJ, Ketelslegers HB, Gant TW, Wright FA, Rusyn I. Grouping of UVCB substances with new approach methodologies (NAMs) data. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2020; 38:123-137. [PMID: 33086383 PMCID: PMC7900923 DOI: 10.14573/altex.2006262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022]
Abstract
One of the most challenging areas in regulatory science is assessment of the substances known as UVCB (unknown or variable composition, complex reaction products and biological materials). Because the inherent complexity and variability of UVCBs present considerable challenges for establishing sufficient substance similarity based on chemical characteristics or other data, we hypothesized that new approach methodologies (NAMs), including in vitro test-derived biological activity signatures to characterize substance similarity, could be used to support grouping of UVCBs. We tested 141 petroleum substances as representative UVCBs in a compendium of 15 human cell types representing a variety of tissues. Petroleum substances were assayed in dilution series to derive point of departure estimates for each cell type and phenotype. Extensive quality control measures were taken to ensure that only high-confidence in vitro data were used to determine whether current groupings of these petroleum substances, based largely on the manufacturing process and physico-chemical properties, are justifiable. We found that bioactivity data-based groupings of petroleum substances were generally consistent with the manufacturing class-based categories. We also showed that these data, especially bioactivity from human induced pluripotent stem cell (iPSC)-derived and primary cells, can be used to rank substances in a manner highly concordant with their expected in vivo hazard potential based on their chemical compositional profile. Overall, this study demonstrates that NAMs can be used to inform groupings of UVCBs, to assist in identification of representative substances in each group for testing when needed, and to fill data gaps by read-across.
Collapse
Affiliation(s)
- John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,current address: Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, RTP, NC, USA
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.,current address: ExxonMobil Biomedical Sciences Inc., Annandale, NJ, USA
| | - William D Klaren
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.,current address: S.C. Johnson and Son, Inc., Racine, WI, USA
| | - Abigail Dalzell
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Science Campus, Oxon, UK
| | - Srikeerthana Kuchi
- Northern Ireland Centre for Stratified Medicine, Ulster University, L/Derry, Northern Ireland, UK.,current address: MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Ulster University, L/Derry, Northern Ireland, UK
| | - Klaus Lenz
- SYNCOM Forschungs- und Entwicklungsberatung GmbH, Ganderkesee, Germany
| | - Peter J Boogaard
- SHELL International BV, The Hague, Netherlands.,Concawe, Brussels, Belgium
| | | | - Timothy W Gant
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Science Campus, Oxon, UK
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Onel M, Beykal B, Ferguson K, Chiu WA, McDonald TJ, Zhou L, House JS, Wright FA, Sheen DA, Rusyn I, Pistikopoulos EN. Grouping of complex substances using analytical chemistry data: A framework for quantitative evaluation and visualization. PLoS One 2019; 14:e0223517. [PMID: 31600275 PMCID: PMC6786635 DOI: 10.1371/journal.pone.0223517] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/23/2019] [Indexed: 02/01/2023] Open
Abstract
A detailed characterization of the chemical composition of complex substances, such as products of petroleum refining and environmental mixtures, is greatly needed in exposure assessment and manufacturing. The inherent complexity and variability in the composition of complex substances obfuscate the choices for their detailed analytical characterization. Yet, in lieu of exact chemical composition of complex substances, evaluation of the degree of similarity is a sensible path toward decision-making in environmental health regulations. Grouping of similar complex substances is a challenge that can be addressed via advanced analytical methods and streamlined data analysis and visualization techniques. Here, we propose a framework with unsupervised and supervised analyses to optimally group complex substances based on their analytical features. We test two data sets of complex oil-derived substances. The first data set is from gas chromatography-mass spectrometry (GC-MS) analysis of 20 Standard Reference Materials representing crude oils and oil refining products. The second data set consists of 15 samples of various gas oils analyzed using three analytical techniques: GC-MS, GC×GC-flame ionization detection (FID), and ion mobility spectrometry-mass spectrometry (IM-MS). We use hierarchical clustering using Pearson correlation as a similarity metric for the unsupervised analysis and build classification models using the Random Forest algorithm for the supervised analysis. We present a quantitative comparative assessment of clustering results via Fowlkes-Mallows index, and classification results via model accuracies in predicting the group of an unknown complex substance. We demonstrate the effect of (i) different grouping methodologies, (ii) data set size, and (iii) dimensionality reduction on the grouping quality, and (iv) different analytical techniques on the characterization of the complex substances. While the complexity and variability in chemical composition are an inherent feature of complex substances, we demonstrate how the choices of the data analysis and visualization methods can impact the communication of their characteristics to delineate sufficient similarity.
Collapse
Affiliation(s)
- Melis Onel
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
| | - Burcu Beykal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
| | - Kyle Ferguson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America
| | - Thomas J. McDonald
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, United States of America
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX, United States of America
| | - John S. House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America
| | - Fred A. Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - David A. Sheen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America
| | - Efstratios N. Pistikopoulos
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
21
|
In vitro prenatal developmental toxicity induced by some petroleum substances is mediated by their 3- to 7-ring PAH constituent with a potential role for the aryl hydrocarbon receptor (AhR). Toxicol Lett 2019; 315:64-76. [DOI: 10.1016/j.toxlet.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/05/2019] [Accepted: 08/03/2019] [Indexed: 12/31/2022]
|
22
|
Rusyn I, Greene N. The Impact of Novel Assessment Methodologies in Toxicology on Green Chemistry and Chemical Alternatives. Toxicol Sci 2019; 161:276-284. [PMID: 29378069 DOI: 10.1093/toxsci/kfx196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The field of experimental toxicology is rapidly advancing by incorporating novel techniques and methods that provide a much more granular view into the mechanisms of potential adverse effects of chemical exposures on human health. The data from various in vitro assays and computational models are useful not only for increasing confidence in hazard and risk decisions, but also are enabling better, faster and cheaper assessment of a greater number of compounds, mixtures, and complex products. This is of special value to the field of green chemistry where design of new materials or alternative uses of existing ones is driven, at least in part, by considerations of safety. This article reviews the state of the science and decision-making in scenarios when little to no data may be available to draw conclusions about which choice in green chemistry is "safer." It is clear that there is no "one size fits all" solution and multiple data streams need to be weighed in making a decision. Moreover, the overall level of familiarity of the decision-makers and scientists alike with new assessment methodologies, their validity, value and limitations is evolving. Thus, while the "impact" of the new developments in toxicology on the field of green chemistry is great already, it is premature to conclude that the data from new assessment methodologies have been widely accepted yet.
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Nigel Greene
- Predictive Compound Safety and ADME, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts 02451
| |
Collapse
|
23
|
Onel M, Beykal B, Wang M, Grimm FA, Zhou L, Wright FA, Phillips TD, Rusyn I, Pistikopoulos EN. Optimal Chemical Grouping and Sorbent Material Design by Data Analysis, Modeling and Dimensionality Reduction Techniques. ESCAPE. EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING 2018; 43:421-426. [PMID: 30534632 PMCID: PMC6284807 DOI: 10.1016/b978-0-444-64235-6.50076-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ultimate goal of the Texas A&M Superfund program is to develop comprehensive tools and models for addressing exposure to chemical mixtures during environmental emergency-related contamination events. With that goal, we aim to design a framework for optimal grouping of chemical mixtures based on their chemical characteristics and bioactivity properties, and facilitate comparative assessment of their human health impacts through read-across. The optimal clustering of the chemical mixtures guides the selection of sorption material in such a way that the adverse health effects of each group are mitigated. Here, we perform (i) hierarchical clustering of complex substances using chemical and biological data, and (ii) predictive modeling of the sorption activity of broad-acting materials via regression techniques. Dimensionality reduction techniques are also incorporated to further improve the results. We adopt several recent examples of chemical substances of Unknown or Variable composition Complex reaction products and Biological materials (UVCB) as benchmark complex substances, where the grouping of them is optimized by maximizing the Fowlkes-Mallows (FM) index. The effect of clustering method and different visualization techniques are shown to influence the communication of the groupings for read-across.
Collapse
Affiliation(s)
- Melis Onel
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, 77843, USA
| | - Burcu Beykal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, 77843, USA
| | - Meichen Wang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX, 77843, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695-7566, USA
| | - Timothy D Phillips
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Efstratios N Pistikopoulos
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
24
|
D'Atri V, Causon T, Hernandez-Alba O, Mutabazi A, Veuthey JL, Cianferani S, Guillarme D. Adding a new separation dimension to MS and LC-MS: What is the utility of ion mobility spectrometry? J Sep Sci 2017; 41:20-67. [PMID: 29024509 DOI: 10.1002/jssc.201700919] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Ion mobility spectrometry is an analytical technique known for more than 100 years, which entails separating ions in the gas phase based on their size, shape, and charge. While ion mobility spectrometry alone can be useful for some applications (mostly security analysis for detecting certain classes of narcotics and explosives), it becomes even more powerful in combination with mass spectrometry and high-performance liquid chromatography. Indeed, the limited resolving power of ion mobility spectrometry alone can be tackled when combining this analytical strategy with mass spectrometry or liquid chromatography with mass spectrometry. Over the last few years, the hyphenation of ion mobility spectrometry to mass spectrometry or liquid chromatography with mass spectrometry has attracted more and more interest, with significant progresses in both technical advances and pioneering applications. This review describes the theoretical background, available technologies, and future capabilities of these techniques. It also highlights a wide range of applications, from small molecules (natural products, metabolites, glycans, lipids) to large biomolecules (proteins, protein complexes, biopharmaceuticals, oligonucleotides).
Collapse
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tim Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU Vienna), Vienna, Austria
| | - Oscar Hernandez-Alba
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Aline Mutabazi
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sarah Cianferani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|