1
|
Lu K, Hu Q, Zhai L, Zhu Z, Xu Y, Ding Z, Zeng H, Dong S, Gao S, Mao L. Mineralization of Few-Layer Graphene Made It Bioavailable in Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15255-15265. [PMID: 37768274 DOI: 10.1021/acs.est.3c04549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Numerous studies have emphasized the toxicity of graphene-based nanomaterials to algae, however, the fundamental behavior and processes of graphene in biological hosts, including its transportation, metabolization, and bioavailability, are still not well understood. As photosynthetic organisms, algae are key contributors to carbon fixation and may play an important role in the fate of graphene. This study investigated the biological fate of 14C-labeled few-layer graphene (14C-FLG) in Chlamydomonas reinhardtii (C. reinhardtii). The results showed that 14C-FLG was taken up by C. reinhardtii and then translocated into its chloroplast. Metabolomic analysis revealed that 14C-FLG altered the metabolic profiles (including sugar metabolism, fatty acid, and tricarboxylic acid cycle) of C. reinhardtii, which promoted the photosynthesis of C. reinhardtii and then enhanced their growth. More importantly, the internalized 14C-FLG was metabolized into 14CO2, which was then used to participate in the metabolic processes required for life. Approximately 61.63%, 25.31%, and 13.06% of the total radioactivity (from 14CO2) was detected in carbohydrates, lipids, and proteins of algae, respectively. Overall, these results reveal the role of algae in the fate of graphene and highlight the potential of available graphene in bringing biological effects to algae, which helps to better assess the environmental risks of graphene.
Collapse
Affiliation(s)
- Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Qingyuan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Li Zhai
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yunsong Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Zhaohui Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Hang Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Li Z, Yan W, Li Y, Xiao Y, Shi Y, Zhang X, Lei J, Min K, Pan Y, Chen X, Liu Q, Jiang G. Particle Size Determines the Phytotoxicity of ZnO Nanoparticles in Rice ( Oryza sativa L.) Revealed by Spatial Imaging Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13356-13365. [PMID: 37653579 DOI: 10.1021/acs.est.3c03821] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
To understand the nanotoxicity effects on plants, it is necessary to systematically study the distribution of NPs in vivo. Herein, elemental and particle-imaging techniques were used to unravel the size effects of ZnO NPs on phytotoxicity. Small-sized ZnO NPs (5, 20, and 50 nm) showed an inhibitory effect on the length and biomass of rice (Oryza sativa L.) used as a model plant. ZnO NP nanotoxicity caused rice root cell membrane damage, increased the malondialdehyde content, and activated antioxidant enzymes. As a control, the same dose of Zn2+ salt did not affect the physiological and biochemical indices of rice, suggesting that the toxicity is caused by the entry of the ZnO NPs and not the dissolved Zn2+. Laser ablation inductively coupled plasma optical emission spectroscopy analysis revealed that ZnO NPs accumulated in the rice root vascular tissues of the rhizodermis and procambium. Furthermore, transmission electron microscopy confirmed that the NPs were internalized to the root tissues. These results suggest that ZnO NPs may exist in the rice root system and that their particle size could be a crucial factor in determining toxicity. This study provides evidence of the size-dependent phytotoxicity of ZnO NPs.
Collapse
Affiliation(s)
- Ziqian Li
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and Laboratory of Urban Forest Ecology of Hunan Province; the Life & Science Department, Central South University of Forestry and Technology, Changsha, Hunan Province 410004, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and Laboratory of Urban Forest Ecology of Hunan Province; the Life & Science Department, Central South University of Forestry and Technology, Changsha, Hunan Province 410004, China
| | - Yong Li
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and Laboratory of Urban Forest Ecology of Hunan Province; the Life & Science Department, Central South University of Forestry and Technology, Changsha, Hunan Province 410004, China
| | - Yunmu Xiao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and Laboratory of Urban Forest Ecology of Hunan Province; the Life & Science Department, Central South University of Forestry and Technology, Changsha, Hunan Province 410004, China
| | - Yang Shi
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and Laboratory of Urban Forest Ecology of Hunan Province; the Life & Science Department, Central South University of Forestry and Technology, Changsha, Hunan Province 410004, China
| | - Xuyuan Zhang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and Laboratory of Urban Forest Ecology of Hunan Province; the Life & Science Department, Central South University of Forestry and Technology, Changsha, Hunan Province 410004, China
| | - Junjie Lei
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and Laboratory of Urban Forest Ecology of Hunan Province; the Life & Science Department, Central South University of Forestry and Technology, Changsha, Hunan Province 410004, China
| | - Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuliang Pan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and Laboratory of Urban Forest Ecology of Hunan Province; the Life & Science Department, Central South University of Forestry and Technology, Changsha, Hunan Province 410004, China
| | - Xiaoyong Chen
- College of Arts and Science, Governors State University, University Park, Illinois 60484, United States
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Valdehita A, Fernández-Cruz ML, Navas JM. The Potentiating Effect of Graphene Oxide on the Arylhydrocarbon Receptor (AhR)-Cytochrome P4501A (Cyp1A) System Activated by Benzo(k)fluoranthene (BkF) in Rainbow Trout Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2501. [PMID: 37764529 PMCID: PMC10534689 DOI: 10.3390/nano13182501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
The increasing use of graphene oxide (GO) will result in its release into the environment; therefore, it is essential to determine its final fate and possible metabolism by organisms. The objective of this study was to assess the possible role of the aryl hydrocarbon receptor (AhR)-dependent cytochrome P4501A (Cyp1A) detoxification activities on the catabolism of GO. Our hypothesis is that GO cannot initially interact with the AhR, but that after an initial degradation caused by other mechanisms, small fractions of GO could activate the AhR, inducing Cyp1A. The environmental pollutant benzo(k)fluoranthene (BkF) was used for the initial activation of the AhR in the rainbow trout (Oncorhynchus mykiss) cell line RTL-W1. Pre-, co-, and post-exposure experiments with GO were performed and Cyp1A induction was monitored. The strong stimulation of Cyp1A observed in cells after exposure to GO, when BkF levels were not detected in the system, suggests a direct action of GO. The role of the AhR was confirmed by a blockage of the observed effects in co-treatment experiments with αNF (an AhR antagonist). These results suggest a possible role for the AhR and Cyp1A system in the cellular metabolism of GO and that GO could modulate the toxicity of environmental pollutants.
Collapse
Affiliation(s)
| | | | - José M. Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain; (A.V.); (M.L.F.-C.)
| |
Collapse
|
4
|
Wu K, Li Y, Zhou Q, Hu X, Ouyang S. Integrating FTIR 2D correlation analyses, regular and omics analyses studies on the interaction and algal toxicity mechanisms between graphene oxide and cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130298. [PMID: 36356516 DOI: 10.1016/j.jhazmat.2022.130298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO, a popular 2D graphene-based nanomaterial) has developed quickly and has received considerable attention for its applications in environmental protection and pollutant removal. However, significant knowledge gaps still exist about the interaction characteristic and joint toxicity mechanism of GO and cadmium (Cd) on aquatic organisms. In this study, GO showed a high adsorption capacity (120. 6 mg/g) and strong adsorption affinity (KL = 0.85 L/mg) for Cd2+. Integrating multiple analytical methods (e.g., electron microscopy, Raman spectra, and 2D correlation spectroscopy) revealed that Cd2+ is uniformly adsorbed on the GO surface and edge mainly through cation-π interactions. The combined ecological effects of GO and Cd2+ on Chlorella vulgaris were observed. Cd2+ induced more severe growth inhibition, photosynthesis toxicity, ultrastructure damage and plasmolysis than GO. Interestingly, we found that GO nanosheets could augment the algal toxicity of Cd2+ (e.g., chlorophyll b, mitochondrial membrane damage, and uptake). Transcriptomics and metabolomics further explained the underlying mechanism. The results indicated that the regulation of PSI-, PSII-, and metal transport-related genes (e.g., ABCG37 and ZIP4) and the inhibition of metabolic pathways (e.g., amino acid, fatty acid, and carbohydrate metabolism) were responsible for the persistent phytotoxicity. The present work provides mechanistic insights into the roles of coexisting inorganic pollutants on the environmental fate and risk of GO in aquatic ecosystems.
Collapse
Affiliation(s)
- Kangying Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Lu Q, Zhou X, Liu R, Shi G, Zheng N, Gao G, Wang Y. Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114451. [PMID: 38321670 DOI: 10.1016/j.ecoenv.2022.114451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Chlorella is a dominant species during harmful algal blooms (HABs) worldwide, which bring about great environmental problems and are also a serious threat to drinking water safety. Application of bacterial algicides is a promising way to control HABs. However, the identified bacterial algicides against Chlorella and the understanding of their effects on algal metabolism are very limited. Here, we isolated a novel bacterium Microbacterium paraoxydans strain M1 that has significant algicidal activities against Chlorella vulgaris (algicidal rate 64.38 %, at 120 h). Atrazine-desethyl (AD) was then identified from strain M1 as an effective bacterial algicide, with inhibition or algae-lysing concentration values (EC50) of 1.64 μg/mL and 1.38 μg/mL, at 72 h and 120 h, respectively. LAD (2 μg/mL AD) or HAD (20 μg/mL AD) causes morphology alteration and ultrastructure damage, chlorophyll a reduction, gene expression regulation (for example, psbA, 0.05 fold at 24 h, 2.97 fold at 72 h, and 0.23 fold of the control in HAD), oxidative stress, lipid oxidation (MDA, 2.09 and 3.08 fold of the control in LAD and HAD, respectively, at 120 h) and DNA damage (average percentage of tail DNA 6.23 % at 120 h in HAD, slight damage: 5∼20 %) in the algal cells. The impacts of AD on algal metabolites and metabolic pathways, as well as the algal response to the adverse effects were investigated. The results revealed that amino acids, amines, glycosides and urea decreased significantly compared to the control after 24 h exposure to AD (p < 0.05). The main up-regulated metabolic pathways implied metabonomic resistance and defense against osmotic pressure, oxidative stress, photosynthesis inhibition or partial cellular structure damage, such as phenylalanine metabolism, arginine biosynthesis. The down-regulated glycine, serine and threonine metabolism is a major lead in the algicidal mechanism according to the value of pathway impact. The down-regulated glycine, and serine are responsible for the downregulation of glyoxylate and dicarboxylate metabolism, aminoacyl-tRNA biosynthesis, glutathione metabolism, and sulfur metabolism, which strengthen the algae-lysing effect. It is the first time to highlight the pivotal role of glycine, serine and threonine metabolism in algicidal activities, which provided a new perspective for understanding the mechanism of bacterial algicides exerting on algal cells at the metabolic level.
Collapse
Affiliation(s)
- Qianqian Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Xinzhu Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Ruidan Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Guojing Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Ningning Zheng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Guanghai Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China; State key Laboratory of Hydroscience and Engineering, Tsinghua University, China.
| | - Yingying Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China; Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, China.
| |
Collapse
|
6
|
Li X, Yan Y, Li X, Mu L, Zhao J, Yao M, Hu X. Humic acids alleviate the toxicity of reduced graphene oxide modified by nanosized palladium in microalgae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113794. [PMID: 35738107 DOI: 10.1016/j.ecoenv.2022.113794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The use of graphene-family materials modified by nanosized palladium (Pd/GFMs) has intensified rapidly in various fields; however, the effects of environmental factors (e.g., natural organic matter (NOM)) on the transformation and ecotoxicity of Pd/GFMs remain largely unknown. In this study, reduced graphene oxide modified by nanosized Pd (Pd/rGO) was incubated with humic acid (HA) under light irradiation for 56 d to explore the effects of NOM on the physicochemical transformations (e.g., defects, surface charges and dispersity) and biological toxicity (e.g., growth inhibition, oxidative stress and ultrastructural damage on algae cells) of Pd/GFMs. The results revealed that HA increased the defects and dispersity of Pd/rGO. Growth inhibition, damage to cellular ultrastructures, and oxidative stress in microalgae cells were induced by Pd/rGO, and corresponding defense responses (e.g., superoxide dismutase, peroxidase and glutathione) were activated. HA diminished the above defense responses in microalgae triggered by Pd/rGO by regulating GSH metabolism and the alanine biosynthesis pathway. In the presence of HA, cell wall damage (i.e., hole formation) caused by exposure to Pd/rGO was restored, and the plasmolysis area was reduced by 28.6 %. In addition, growth inhibition, lipid peroxidation, loss of mitochondrial membrane potential and ROS formation induced by 1.0 mg/L MoS2NPs were decreased by 1.4-65.6 %, 13.9-26.1 %, 21.8-58.3 % and 9.6-16.1 %, respectively. These findings highlight the need to consider the effects of HA on the environmental transformation and biological toxicity of Pd/GFMs, which presents significant implications for the management of Pd/GFMs.
Collapse
Affiliation(s)
- Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yan Yan
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoqiang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Agro-product Safety, Key Laboratory for Environmental Factor Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Jingqi Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingqi Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Xu Q, Li K, Wang P, Tian R, Lu C. Fluorescence Technique Lighting the Particle Migration in Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peili Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Meng X, Wang F, Li Y, Deng P, Hu D, Zhang Y. Comparing toxicity and biodegradation of racemic glufosinate and L-glufosinate in green algae Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153791. [PMID: 35150682 DOI: 10.1016/j.scitotenv.2022.153791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Glufosinate-ammonium, a widely used chiral herbicide, has become the focus of attention because of its toxicity toward non-target organisms and its degradation behavior in the environment. With the introduction of L-glufosinate-ammonium products, the toxicity and environmental behavior of rac-glufosinate-ammonium and L-glufosinate-ammonium have become the subject of increasing interest. The overall goal of this study was to investigate the differences in toxicity and biodegradation of rac-glufosinate-ammonium and L-glufosinate-ammonium in an aquatic organism, Scenedesmus obliquus. The toxicity of rac-glufosinate-ammonium and L-glufosinate-ammonium to S. obliquus was compared by measuring EC50, malondialdehyde (MDA) content, protein content and antioxidant enzyme activity. The 96-h EC50 values of rac-glufosinate-ammonium and L-glufosinate-ammonium were 57.22 μg/mL and 25.55 μg/mL, respectively, which indicated that L-glufosinate-ammonium was more toxic to S. obliquus than rac-glufosinate-ammonium. Based on the MDA content, protein content, and antioxidant enzyme (SOD and CAT) activity, we found that L-glufosinate-ammonium could cause more serious oxidative damage than rac-glufosinate-ammonium. The residual amount of glufosinate-ammonium and its metabolites in the culture medium and S. obliquus were determined by HPLC-HRMS. Comparison of glufosinate-ammonium concentrations in algae-free and algae-containing media, showed that glufosinate-ammonium degradation in the S. obliquus system was significantly increased, and the degradation rate of L-glufosinate-ammonium was faster than that of D-glufosinate-ammonium. No enantiomerization was observed for pure L-glufosinate-ammonium treatment. N-acetyl-glufosinate was identified as the main metabolite of glufosinate-ammonium.
Collapse
Affiliation(s)
- Xiurou Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Fei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yunfang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Pengyu Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yuping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
9
|
Cao X, Zhao J, Wang Z, Xing B. New insight into the photo-transformation mechanisms of graphene oxide under UV-A, UV-B and UV-C lights. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123683. [PMID: 32846254 DOI: 10.1016/j.jhazmat.2020.123683] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/17/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Photo-transformation dominates the fate of graphene oxide (GO) in the environment. However, the photo-transformation mechanisms of GO under different UV bands remain unclear. Our results showed that UV bands played a crucial role in sunlight-induced GO transformation. UVA and UVB induced significant photo-reduction of GO as indicated by decreasing surface O/C ratio, which could be explained by an O2-independent electron-hole pair-mediated mechanism (Mechanism I), and an O2-dependent reactive oxygen species (ROS)-mediated reduction mechanism (Mechanism II). Mechanism II accounted for 62.7 % and 33.3 % of total GO photo-transformation under UVA and UVB, respectively. Different from UVA and UVB, UVC led to GO reduction under anaerobic condition via Mechanism I and Mechanism III (direct decarboxylation). However, under aerobic condition, UVC caused significant oxidation of GO, which was the combined effect of Mechanisms I-III and the oxidation of graphitic structure on GO with the assistance of O2 (Mechanism IV). Moreover, it was demonstrated that the environmental factors (e.g., dissolved organic matter, phosphate) significantly enhanced the photo-transformation of GO in natural water. The information in the present work is useful for better understanding the fate of GO in aquatic environments.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Zhao Y, Liu Y, Zhang X, Liao W. Environmental transformation of graphene oxide in the aquatic environment. CHEMOSPHERE 2021; 262:127885. [PMID: 32805658 DOI: 10.1016/j.chemosphere.2020.127885] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
In recent years, research on graphene oxide (GO) has developed rapidly in both academic and industrial applications such as electronic, biosensor, drug delivery, water treatment and so forth. Based on the large amount of applications, it is anticipated that GO will inevitably find its own way to the environment, if used are not restricted to prevent their release. Environmental transformation is an important transformation process in the natural environment. In this review, we will summarize the recent developments on environmental transformation of GO in the aquatic environment. Although papers on environmental transformation of graphene-based nanomaterials can be found, a systematic picture describing photo-transformation of GO (dividing into different irradiation sources), environmental transformation of GO in the dark environmental, the environmental toxicity of GO are still lacking. Thus, it is essential to summarize how different light sources will affect the GO structure and reactive oxygen species generation in the photo-transformation process, how GO will react with various natural constituents in the aquatic environment, whether GO will toxic to different aquatic organisms and what will be the interactions between GO and the intracellular receptors in the intracellular level once GO released into the aquatic environment. This review will arouse the realization of potential risk that GO can bring to the aquatic environment and enlighten us to pay attention to behaviors of other two-dimensional GO-like nanomaterials, which have been intensively applied and studied in recent years.
Collapse
Affiliation(s)
- Yingcan Zhao
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, PR China; Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, PR China.
| | - Yang Liu
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, NO.26, Jinjing Rd, Xiqing District, Tianjin, 300384, PR China; Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, NO.26, Jinjing Rd, Xiqing District, Tianjin, 300384, PR China.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, NO.26, Jinjing Rd, Xiqing District, Tianjin, 300384, PR China; Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, NO.26, Jinjing Rd, Xiqing District, Tianjin, 300384, PR China
| | - Wenchao Liao
- College of Health and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Rd, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| |
Collapse
|
11
|
Wang H, Jin M, Mao W, Chen C, Fu L, Li Z, Du S, Liu H. Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green algae Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136176. [PMID: 31972914 DOI: 10.1016/j.scitotenv.2019.136176] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
The widespread use of pharmaceuticals and personal care products (PPCPs) has raised serious concerns regarding their potential ecotoxicological effects. We examined the photosynthetic toxicity of four non-steroidal anti-inflammatory drugs (NSAIDs), i.e. ibuprofen (rac-IBU and S-(+)-IBU), aspirin (ASA) and ketoprofen (KEP) on the green alga Scenedesmus obliquus. Our results showed that NSAIDs exerted inhibitory effects on algal growth; the IC50-24h of S-(+)-IBU, rac-IBU, ASA, and KEP was 123.29, 107.91, 103.05, and 4.03 mg/L, respectively. KEP was the most toxic, ASA was slightly more toxic than rac-IBU, and S-(+)-IBU was the least toxic. NSAIDs adversely affected the cellular ultrastructure, as evident from plasmolysis, chloroplast deformation and disintegration. NSAID treatments decreased the chlorophyll and carotenoid content, and chlorophyll fluorescence parameters such as minimum fluorescence yield (F0), maximum fluorescence yield (Fm), maximum photochemical quantum yield (Fv/Fm), PSII (photosystem II) effective quantum yield [Y(II)], photosynthetic electron transfer rate (ETR), and the photochemical quenching (qP), were also adversely affected. Algal photosynthetic and respiratory rates decreased following NSAID treatments, and the expression of genes involved in photosynthetic electron transport (psaA, psaB, psbB, psbD, and rbcL) was down-regulated. Furthermore, the functioning of the photosynthetic electron transport chain from PSI (photosystem I) to PSII, carbon assimilation, and photorespiration were affected. Our results suggest that NSAIDs can exert considerable toxic effects on the photosynthetic system of S. obliquus. These results provide a basis for evaluating the environmental safety of NSAIDs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenfeng Mao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Cijia Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linya Fu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhe Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
12
|
Tong Y, Feng A, Hou X, Zhou Q, Hu X. Nanoholes Regulate the Phytotoxicity of Single-Layer Molybdenum Disulfide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13938-13948. [PMID: 31671268 DOI: 10.1021/acs.est.9b04198] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-layer molybdenum disulfide (SLMoS2) are applied as a hot 2D nanosheet in various fields involving water treatments. Both intentional design and environmental or biological processes induce many nanoholes in SLMoS2. However, the effects of nanoholes on the environmental stability and ecotoxicity of SLMoS2 remain largely unknown. The present work discovered that visible-light irradiation induced nanoholes (diameters, approximately 20 nm) in the plane of SLMoS2, with irregular edges and increased interplanar crystal spacing. The ratios of Mo to S in pristine and transformed SLMoS2 were 0.53 and 0.33, respectively. After 96 h exposure at concentrations from 0.1 to 1 mg/L, the above nanoholes promoted algal division, induced a stress-response hormesis, decreased the generation of •OH, and mitigated the cell shrinkage and wall rupture of Chlorella vulgaris induced by SLMoS2. In terms of stress response, the nanohole-bearing SLMoS2 induced fewer vacuoles and polyphosphate bodies of Chlorella vulgaris than the pristine form. Metabolomic analysis revealed that nanoholes perturbed the metabolisms of energy, carbohydrates, and fatty acids. This work proposes that nanoholes cause obvious effects on the environmental fate and ecotoxicity of SLMoS2 and that the environmental risks of engineered nanomaterials should be reevaluated using nanohole-bearing rather than pristine forms for testing.
Collapse
Affiliation(s)
- Yuchen Tong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Anqi Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| |
Collapse
|
13
|
Cao X, Ma C, Zhao J, Musante C, White JC, Wang Z, Xing B. Interaction of graphene oxide with co-existing arsenite and arsenate: Adsorption, transformation and combined toxicity. ENVIRONMENT INTERNATIONAL 2019; 131:104992. [PMID: 31288181 DOI: 10.1016/j.envint.2019.104992] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
The outstanding commercial application potential of graphene oxide (GO) will inevitably lead to its increasing release into the environment, and then affect the environmental behavior and toxicity of conventional pollutants. Interactions between arsenite [As (III)]/arsenate [As (V)] with GO and their combined toxicity to Chlorella pyrenoidosa were investigated. Under abiotic conditions, approximately 42% of the adsorbed As (III) was oxidized by GO with simulated sunlight illumination, which was induced by electron-hole pairs on the surface of GO. Co-exposure with GO greatly enhanced the toxicity of As (III, V) to alga. When adding 10 mg/L GO, the 72 h median effect concentration of As (III) and As (V) to C. pyrendoidosa decreased to 12.7 and 9.4 mg/L from 30.1 and 16.3 mg/L in the As alone treatment, respectively. One possible mechanism by which GO enhanced As toxicity could be that GO decreased the phosphate concentration in the algal medium, and then increased the accumulation of As (V) in algae. In addition, transmission electron microscope (TEM) images demonstrated that GO acted as a carrier for As (III) and As (V) transport into the algal cells. Also, GO induced severe oxidative stress, which could have subsequently compromised important detoxification pathways (e.g., As complexation with glutathione, As methylation, and intracellular As efflux) in the algal cells. Our findings highlight the significant impact of GO on the fate and toxicity of As in the aquatic environment.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Craig Musante
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
14
|
Cao X, Ma C, Zhao J, Guo H, Dai Y, Wang Z, Xing B. Graphene oxide mediated reduction of silver ions to silver nanoparticles under environmentally relevant conditions: Kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:270-278. [PMID: 31082600 DOI: 10.1016/j.scitotenv.2019.05.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
We systematically investigated the reduction mechanisms and reduction kinetics of silver ions (Ag ions) by graphene oxide (GO) under ambient condition. UV-vis spectroscopy, transmission electron microscopy, and electron diffraction results revealed that silver nanoparticles (Ag NPs) could be formed from aqueous Ag ions in the presence of GO at pH 8 under light. Formation of Ag NPs increased with increasing pH (7.4, 8, and 9) and temperature (from 30 to 90); however, the increasing ionic strength and dissolved oxygen reduced the Ag NPs yield. The Ag ions reduction by GO followed pseudo-first-order kinetics under both dark and light, and light irradiation significantly accelerated the Ag NPs formation induced by GO. The phenolic-OH on GO was the dominating electron donator for Ag ion reduction in dark. Exposure to light increased the concentration of phenolic-OH on the GO surface, thereby stimulating the reduction rate of Ag ions by GO. In addition, the light induced electron-hole pairs on GO surface and light activated oxygen-centered radicals on GO surface promoted the reduction of adsorbed Ag ions by GO. Our findings provide important information for the role of GO in reducing Ag ions to Ag NPs in aquatic environments, and shed light on understanding the environmental fate and risk of both Ag ions and GO materials.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Huiyuan Guo
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yanhui Dai
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
15
|
Li D, Hu X, Zhang S. Biodegradation of graphene-based nanomaterials in blood plasma affects their biocompatibility, drug delivery, targeted organs and antitumor ability. Biomaterials 2019; 202:12-25. [DOI: 10.1016/j.biomaterials.2019.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
|
16
|
Lu J, Zhu X, Tian S, Lv X, Chen Z, Jiang Y, Liao X, Cai Z, Chen B. Graphene oxide in the marine environment: Toxicity to Artemia salina with and without the presence of Phe and Cd 2. CHEMOSPHERE 2018; 211:390-396. [PMID: 30077935 DOI: 10.1016/j.chemosphere.2018.07.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Given the increasing potential of graphene oxide entering marine environments, it is imperative to assess the risks of GO on marine ecosystem, including its direct toxicity to marine organisms and indirect toxicity brought by co-existing aquatic pollutants, as a result of the remarkable adsorption capacity of GO. In the present study, the acute toxicity of GO, Phe, Cd2+, GO-Phe, and GO-Cd2+ to Artemia salina were systemically assessed and compared for the first time. Although the lethal effects of GO alone to A. salina only appeared at high GO dose (500 mg/L), its sublethal toxicity (growth inhibition) at concentrations as low as 1 mg/L was observed by microscopy, which was likely closely related to the GO-induced oxidative stress in A. salina. Compared with the toxicity of Phe alone, GO-Phe exhibited a synergistic effect to A. salina at a high GO concentration. For GO-Cd2+, the toxicity was positively correlated with both GO dose and Cd2+ dose. The increased toxicity of GO-Phe or GO-Cd2+ at high doses might be attributed to the promoted bioaccumulation of toxicants by GO, as the adhesion of GO complexes to intestinal tract of A. salina was observed during the toxicity tests, which probably resulted in further toxicological effects.
Collapse
Affiliation(s)
- Jing Lu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology (Shenzhen), 518055, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.
| | - Shengyan Tian
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaohui Lv
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zuohong Chen
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Yuelu Jiang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xingsheng Liao
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China
| | - Zhonghua Cai
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Baiyang Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology (Shenzhen), 518055, China.
| |
Collapse
|
17
|
Hu X, Ren C, Kang W, Mu L, Liu X, Li X, Wang T, Zhou Q. Characterization and toxicity of nanoscale fragments in wastewater treatment plant effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1332-1341. [PMID: 29898540 DOI: 10.1016/j.scitotenv.2018.01.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Much attention has been paid to extracting and isolating specific and well-known nanoparticles (especially for engineered nanomaterials) from complex environmental matrices. However, such research may not provide global information on actual contamination because nanoscale fragments exist as mixtures of various elements and matrices in the real environment. The present work first isolated and characterized nanoscale fragments in effluents from municipal wastewater treatment plants (WWTPs). The nanoscale fragments were found to be composed of 70-85% carbon and low amounts of oxygen, heavy metals and other elements and exhibited nanosheet topographies (approximately 0.87-1.31 nm thickness and 68-187 nm lateral length). Because the isolated nanoscale fragments were mixtures rather than one specific type of nanoparticle, they were present at high concentrations ranging from 0.07 to 0.55 mg/L. It was also found that the accumulation of nanoscale fragments in rice reached 0.59 mg/g under exposure to environmentally relevant concentrations, leading to marked phytotoxicity (e.g., ultrastructural damage to chloroplasts and mitochondria). Metabolic analysis revealed the toxicological mechanisms to be related to disorders of carbohydrate, amino acid and fatty acid metabolism. This study is the first to characterize the properties and analyze the toxicity of nanoscale fragments in the effluents of WWTPs. Given that WWTP effluents containing nanoscale fragments are continuously discharged to the soil, surface water and seas, nanoscale fragment materials deserve considerable attention in future work compared with the few widely studied engineered nanoparticles.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chaoxiu Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for environmental factors control of Agro-product quality safety (Ministry of Agriculture), Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China.
| | - Xiaowei Liu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for environmental factors control of Agro-product quality safety (Ministry of Agriculture), Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
18
|
Goodwin DG, Adeleye AS, Sung L, Ho KT, Burgess RM, Petersen EJ. Detection and Quantification of Graphene-Family Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4491-4513. [PMID: 29505723 PMCID: PMC5940015 DOI: 10.1021/acs.est.7b04938] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An increase in production of commercial products containing graphene-family nanomaterials (GFNs) has led to concern over their release into the environment. The fate and potential ecotoxicological effects of GFNs in the environment are currently unclear, partially due to the limited analytical methods for GFN measurements. In this review, the unique properties of GFNs that are useful for their detection and quantification are discussed. The capacity of several classes of techniques to identify and/or quantify GFNs in different environmental matrices (water, soil, sediment, and organisms), after environmental transformations, and after release from a polymer matrix of a product is evaluated. Extraction and strategies to combine methods for more accurate discrimination of GFNs from environmental interferences as well as from other carbonaceous nanomaterials are recommended. Overall, a comprehensive review of the techniques available to detect and quantify GFNs are systematically presented to inform the state of the science, guide researchers in their selection of the best technique for the system under investigation, and enable further development of GFN metrology in environmental matrices. Two case studies are described to provide practical examples of choosing which techniques to utilize for detection or quantification of GFNs in specific scenarios. Because the available quantitative techniques are somewhat limited, more research is required to distinguish GFNs from other carbonaceous materials and improve the accuracy and detection limits of GFNs at more environmentally relevant concentrations.
Collapse
Affiliation(s)
- David G. Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899
| | - Adeyemi S. Adeleye
- National Research Council Research Associate, US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Lipiin Sung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899
| |
Collapse
|
19
|
Su Y, Tong X, Huang C, Chen J, Liu S, Gao S, Mao L, Xing B. Green Algae as Carriers Enhance the Bioavailability of 14C-Labeled Few-Layer Graphene to Freshwater Snails. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1591-1601. [PMID: 29283255 DOI: 10.1021/acs.est.7b05796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The waterborne exposure of graphene to ecological receptors has received much attention; however, little is known about the contribution of food to the bioaccumulation potential of graphene. We investigated the effect of algal food on the uptake and distribution of 14C-labeled few-layer graphene (FLG) in freshwater snails, a favorite food for Asian people. In a water-only system, FLG (∼158 μg/L) was ingested by and accumulated in the snails. Adding algae to the water significantly enhanced FLG accumulation in the snails, with a bioaccumulation factor of 2.7 (48 h exposure). Approximately 92.5% of the accumulated FLG was retained in the intestine; in particular, the accumulated FLG in the intestine was able to pass through the intestinal wall and enter the intestinal epithelial cells. Of them, 1.3% was subsequently transferred/internalized to the liver/hepatocytes, a process that was not observed in the absence of the algae. Characterizations data further suggested that both of the extra- and intracellular FLG in the algae (the algae-bound fraction was 30.2%) significantly contributed to the bioaccumulation. Our results provide the first evidence that algae as carriers enhanced FLG bioavailability to the snails, as well as the potential of FLG exposure to human beings through consuming the contaminated snails.
Collapse
Affiliation(s)
- Yu Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Chi Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Jiani Chen
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210093, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|