1
|
Tan H, Yin F, Zheng J, Yue X, Zhao Y, Wang S, Song C, Li Y, Liu H. Unveiling interactions between anammox and denitrification from long-term steady-state scale and transient kinetic scale in a granular sludge system. BIORESOURCE TECHNOLOGY 2025; 430:132564. [PMID: 40268100 DOI: 10.1016/j.biortech.2025.132564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Interactions in hybrid anammox and denitrification sludge (HADS) systems were unveiled through the effects of carbon to nitrogen (C/N) and nitrite to nitrate (Nit/Nat) ratios in long-term steady-state scale and transient kinetic scale. In nitrite-only feed (SAD1), increasing C/N ratio in long-term operation reduced effluent nitrate to 2.9 mgN/L, achieving a total nitrogen removal efficiency (TNre) of 88.6%. Competitive interaction with full denitrification dominated in SAD1 as revealed by the transient experiment, causing that C/N ratio higher than 0.75 was unsustainable for HADS maintenance. In mixed feed (SAD2), reducing Nit/Nat ratio from 4 to 0 resulted in a TNre of 93.8%, with anammox contributing 98.3%. Excellent synergistic interaction with partial denitrification in SAD2 was derived from the electron competition effect of nitrate on nitrite reduction. The optimal HADS operation occurred with C/N between 2-3 and Nit/Nat below 0.5. These results deepen the understanding of HADS system and facilitate its operation.
Collapse
Affiliation(s)
- Hao Tan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| | - Jinjin Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xuehai Yue
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yongzhi Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
2
|
Zhu Y, Liu S, Chen H, Yu P, Chen C. Evaluating biochar for adsorption of ammonium nitrogen in wastewater:insights into modifications and mechanisms. ENVIRONMENTAL RESEARCH 2025; 277:121615. [PMID: 40239738 DOI: 10.1016/j.envres.2025.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Ammonium nitrogen (NH4+) is a highly recalcitrant pollutant, leading to severe degradation of aquatic ecosystems and posing serious risks to human health. The application of biochar for NH4+ removal from wastewater has gained widespread attention. However, its inherent limitations in adsorption capacity present a significant constraint on its broader practical implementation. To address this limitation, various modification techniques have been developed to endow biochar with a range of physicochemical properties. In this review, a systematic investigation was conducted to assess the efficacy of various modification methods on the adsorptive capacity of biochar for NH4+ in aqueous solutions. Additionally, this review summarizes the adsorption mechanisms which are divided into five categories: hydrogen bonding, pore filling, electrostatic interaction, ion exchange and surface complexation. This review offers valuable insights into the strategies for achieving enhanced adsorption of NH4+ by modified biochar, along with a comprehensive summary of the associated removal mechanisms.
Collapse
Affiliation(s)
- Yuheng Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Sichen Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, PR China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
3
|
Peng Z, Qin J, Zhao Y, Li Y, Hu F, Bai Z, Yang H, Jin B, Ji J. Comparison of the performances and mechanisms of anammox bacteria in-situ self-enrichment under heterotrophic and autotrophic conditions by inoculating ordinary activated sludge. BIORESOURCE TECHNOLOGY 2025; 422:132213. [PMID: 39947261 DOI: 10.1016/j.biortech.2025.132213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
The in-situ self-enrichment of anammox bacteria (AnAOB) was a pivotal facet of anammox in mainstream wastewaters treatment with low ammonia strength. This study explored the performances and mechanisms of AnAOB in-situ self-enrichment under heterotrophic and autotrophic conditions. The absolute abundances of AnAOB increased from 1.7 × 105 to 1.6 × 109 copies/g dry sludge in the partial denitrification/anammox (PD/A) system and 4.6 × 108 copies/g dry sludge in the single anammox system, and the corresponding anammox activities reached 42.7 and 6.5 mg NH4+-N/g VSS/d. In the PD/A system, denitrifying bacteria secreted abundant signal molecules to communicate with AnAOB, thereby promoting the high self-enrichment of AnAOB. Accordingly, the PD/A system showed significant advantages on AnAOB self-enrichment compared with the single anammox system. This study provided new insights into the mechanism of cooperative and competitive interactions between PD bacteria and AnAOB during the AnAOB self-enrichment, promoting the application of anammox process in low-ammonia wastewaters treatment.
Collapse
Affiliation(s)
- Zhaoxu Peng
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Qin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Feiyue Hu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhixuan Bai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haosen Yang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Baodan Jin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Zhengzhou Yufang Environmental Protection Technology Co.,Ltd, Zhengzhou 450001, China
| | - Jiantao Ji
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Zhu W, Zeng Z, Xia J, Li L. Achieving rapid start-up and efficient nitrogen removal of partial-denitrification/anammox process using organic matter in brewery wastewater as carbon source. ENVIRONMENTAL TECHNOLOGY 2025; 46:1481-1493. [PMID: 39258944 DOI: 10.1080/09593330.2024.2401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
To find a cost-efficient carbon source for the partial denitrification/anaerobic ammonium oxidation (anammox) (PD/A) process, the practicability of using the organic matter contained in brewery wastewater as carbon source was investigated. Quick self-enrichment of denitrifying bacteria was achieved by supplying brewery wastewater as organic carbon source and using the mature anammox sludge as the seeding sludge. The PD/A process was successfully established after 33-day operation and then the average total nitrogen removal efficiency reached 92.29% when the influent CODCr: NO3--N: NH4+-N ratio was around 2.5: 1.0: 0.67. The relative abundance of Thauera increased from 0.03% in the seeding sludge to 54.29% on day 110, whereas Candidatus brocadia decreased from 30.66% to 2.08%. The metagenomic analysis indicated that the sludge on day 110 contained more nar and napA (total of 41.24%) than nirK and nirS (total of 11.93%). Thus NO2--N was accumulated efficiently in the process of denitrification and sufficient NO2--N was supplied for anammox bacteria in the PD/A process. Using brewery wastewater as carbon source not only saved the cost of nitrogen removal but also converted waste into resource and reduced the treatment expense of brewery wastewater.
Collapse
Affiliation(s)
- Wenxuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Zhijie Zeng
- Shandong Dongyue Future Hydrogen Material Co., Ltd, Zibo, People's Republic of China
| | - Jiawei Xia
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Lingling Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Zhao N, Qi P, Li J, Tan B, Kong W, Lu H. Tracking the nitrogen transformation in saline wastewater by marine anammox bacteria-based Fe(II)-driven autotrophic denitratation and anammox. WATER RESEARCH 2025; 272:122995. [PMID: 39708377 DOI: 10.1016/j.watres.2024.122995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Marine anammox bacteria-based Fe(II)-driven autotrophic denitratation and anammox (MFeADA) was investigated for nitrogen removal from saline wastewater for the first time. The study demonstrated that varying influent doses of Fe(II), which participate in the Fe cycle, significantly influenced nitrogen removal performance by altering the fate of nitrite. When 50 mg/L Fe(II) was added, the nitrogen removal was mainly performed by the anammox and Fe(II)-driven autotrophic denitratation (FeAD). As the Fe(II) rose to 100-150 mg/L, the anammox, FeAD and Feammox mainly occurred. Optimal nitrogen removal efficiency, reaching 93 %, was achieved at an influent Fe(II) concentration of 150 mg/L. As the Fe(II) reached 250 mg/L, however, nitrate was directly reduced to dinitrogen gas by the excessive Fe(II) through the Fe(II)-driven autotrophic denitrification (FeADN). Candidatus Scalindua (4.1 %), Marinicella (5.3 %) and SM1A02 (31.8 %) were the dominant functional microbes. In addition, the normalized nitrate reductase abundance was about 3.1 times that of nitrite reductase, leading to the occurrence of FeAD, which achieved a stable nitrite supply for marine anammox bacteria. This novel study can promote the practical implementation of the MFeADA process in nitrogen-laden saline wastewater treatment.
Collapse
Affiliation(s)
- Na Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Panqing Qi
- College of Engineering, Peking University, Beijing 100871, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Bowei Tan
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Weichuan Kong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Meng Z, Yan Y, Li G, Li Y, Wu K, Zhang Z, Reid MC, Gu AZ. New strategy for integration of anaerobic side-stream reactor with mainstream B-stage nitritation for short-cut nitrogen removal with granulation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70056. [PMID: 40070314 DOI: 10.1002/wer.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
This study reported a successful mainstream B-stage nitritation reactor with sludge granulation that incorporated a side-stream anaerobic reactor to treat municipal wastewater A-stage effluent. With influent COD/N and COD/P ratios of 2.60 and 27.1, respectively, the system achieved a stable nitrite accumulating ratio (NAR) of 95.1% via partial nitrification with sludge granulations. Kinetic assessment,16S ribosomal RNA sequencing, and functional gene marker quantification confirmed successful nitrite-oxidizing bacteria (NOB) out-selection (<0.05% relative abundance), while none of the commonly employed approaches for NOB out-selection occurred in our study. Notably, approximately 90% of the total biomass was in the biofilm in the mainstream sequencing batch reactor (SBR), with the remaining 10% of the biomass in suspension as granules under the selective wasting strategy. The substrates and oxygen gradient along the depth of the biofilm's layered structure, alongside the anaerobic conditions in the side-stream reactor, were suggested to play roles in NOB suppression and out-selection. Overall, this study provided evidence for a possible new strategy for achieving stable mainstream B-stage nitritation, which is the prerequisite for the downstream anammox process. The novelty aspect of the systems, including the incorporation of an anaerobic sire-stream reactor, absence of the employment of any previously reported nitritation strategies, and granulation formation, provided possible new feasible routes to achieve mainstream short-cut nitrogen removal for efficient wastewater treatment. PRACTITIONER POINTS: Stable partial nitrification achieved in mainstream B-stage SBR under conditions distinct from previous reports. NOB out-selection confirmed by both activities' tests and molecular analysis. Thick biofilm and anaerobic side-stream reactor likely facilitated NOB suppression. Stable sludge granulation was maintained with selective wasting strategy.
Collapse
Affiliation(s)
- Zijun Meng
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Yuang Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Kenneth Wu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Zihao Zhang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Dai B, Zhou J, Wang Z, Yang Y, Wang Z, He J, Xia S, Rittmann BE. Hydrazine promoted nitrite reduction in partial-denitrification by enhancing organic-substrate uptake and electron transport. BIORESOURCE TECHNOLOGY 2025; 418:131991. [PMID: 39694109 DOI: 10.1016/j.biortech.2024.131991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Partial denitrification coupled with anammox is a promising approach for sustainable nitrogen removal from wastewater. However, this coupling can be influenced by hydrazine (N2H4) released by anammox bacteria. This study aimed to reveal how N2H4 regulates partial denitrification. Short-term batch experiments showed that 0.5 to 10 mg N/L of N2H4 promoted nitrite (NO2-) accumulation, likely by inhibiting the electron transfer from cyt c to nitrite reductase. However, long-term exposure to N2H4 (0.5 and 1 mg N/L) shifted the microbial community and increased NO2- reduction. This exposure enriched the genera OLB8, Thauera, and f_Rhodocyclaceae, and increased the abundance of genes involved in EPS formation, substrate transport and electron transport. The long-term outcome was more NO2- reduction to N2 and more substrate (COD) oxidation. While N2H4 benefits NO2- accumulation in short-term, the mechanism is not sustainable, highlighting the importance of minimizing N2H4 release for successful in such coupled nitrogen removal systems.
Collapse
Affiliation(s)
- Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuobin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Research Center of Dredging Technology and Equipment, Key Lab of Dredging Technology, CCCC, Shanghai, 200082, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, China
| | - Zhenyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Junxia He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States
| |
Collapse
|
8
|
Adams M, Issaka E, Chen C. Anammox-based technologies: A review of recent advances, mechanism, and bottlenecks. J Environ Sci (China) 2025; 148:151-173. [PMID: 39095154 DOI: 10.1016/j.jes.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
The removal of nitrogen via the ANAMMOX process is a promising green wastewater treatment technology, with numerous benefits. The incessant studies on the ANAMMOX process over the years due to its long start-up and high operational cost has positively influenced its technological advancement, even though at a rather slow pace. At the moment, relatively new ANAMMOX technologies are being developed with the goal of treating low carbon wastewater at low temperatures, tackling nitrite and nitrate accumulation and methane utilization from digestates while also recovering resources (phosphorus) in a sustainable manner. This review compares and contrasts the handful of ANAMMOX -based processes developed thus far with plausible solutions for addressing their respective bottlenecks hindering full-scale implementation. Ultimately, future prospects for advancing understanding of mechanisms and engineering application of ANAMMOX process are posited. As a whole, technological advances in process design and patents have greatly contributed to better understanding of the ANAMMOX process, which has greatly aided in the optimization and industrialization of the ANAMMOX process. This review is intended to provide researchers with an overview of the present state of research and technological development of the ANAMMOX process, thus serving as a guide for realizing energy autarkic future practical applications.
Collapse
Affiliation(s)
- Mabruk Adams
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China; Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Eliasu Issaka
- School of Environmental and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China.
| |
Collapse
|
9
|
Ji J, Hu F, Qin J, Zhao Y, Dong Y, Yang H, Bai Z, Wu G, Wang Q, Jin B. Comparation on the responses and resilience of single-Anammox system and synergistic partial-denitrification/anammox system to long-term nutrient starvation: Performance and metagenomic insights. BIORESOURCE TECHNOLOGY 2025; 415:131694. [PMID: 39447919 DOI: 10.1016/j.biortech.2024.131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Starvation disturbance was a common problem in biological sewage treatment processes. However, understanding about the responses and resilience of different active anammox biomass in autotrophic and heterotrophic systems to long-term nutrient starvation remains limited. This study compared responses and potential recovery mechanisms of autotrophic single-Anammox and heterotrophic synergistic partial-denitrification/anammox (PD/anammox) systems to prolonged starvation (31-40 days). After starvation, total inorganic nitrogen (TIN) removal efficiency of single-Anammox and synergistic PD/anammox systems decreased to 62.16 % and 78.52 %, respectively, of their original level. After the nutrient resupply, the performance of both systems gradually recovered to a similar-to-pre-starvation level at the rate of 1.26 %/day and 1.89 %/day, respectively. Compared with single-Anammox system, complex synergistic relationship of microorganisms and effective quorum sensing (QS) regulation strategies might mitigate the negative influences were caused by starvation and ensure the performance quickly return of synergistic PD/anammox system. This study would contribute to promote the application of Anammox technology.
Collapse
Affiliation(s)
- Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jing Qin
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ying Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongen Dong
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haosen Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhixuan Bai
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Guanqi Wu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiyue Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baodan Jin
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
10
|
Su Q, Domingo-Félez C, Zhi M, Jensen MM, Xu B, Ng HY, Smets BF. Formation and Fate of Reactive Nitrogen during Biological Nitrogen Removal from Water: Important Yet Often Ignored Chemical Aspects of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22480-22501. [PMID: 39671298 DOI: 10.1021/acs.est.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxylamine, nitrous acid, and nitric oxide are obligate intermediates or side metabolites in different nitrogen-converting microorganisms. These compounds are unstable and susceptible to the formation of highly reactive nitrogen species, including nitrogen dioxide, dinitrogen trioxide, nitroxyl, and peroxynitrite. Due to the high reactivity and cytotoxicity, the buildup of reactive nitrogen can affect the interplay of microorganisms/microbial processes, stimulate the reactions with organic compounds like organic micropollutants (OMP) and act as the precursors of nitrous oxide (N2O). However, there is little understanding of the occurrence and significance of reactive nitrogen during biological nitrogen conversions in engineered water systems. In this review, we evaluate the formation and fate of reactive nitrogen produced by microorganisms involved in biological nitrogen removal (BNR) processes, i.e., nitritation/nitrification, denitratation/denitrification, anammox, and the combined processes. While the formation of reactive nitrogen intermediates is entirely controlled by microbial activities, the consumption can be either biological or purely chemical. Changes in environmental conditions, such as redox transition, pH, and substrate availability, can imbalance the production and consumption of these reactive intermediates, thus leading to the transient accumulation of species. Based on previous experimental evidence, environmental relevance of reactive nitrogen in BNR systems, particularly related to abiotic N2O production and OMP transformation, is demonstrated.
Collapse
Affiliation(s)
- Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Mei Zhi
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
| | - Marlene Mark Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - Barth F Smets
- Center for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Gao C, Sui Q, Zuo F, Yue W, Wei Y. Enhancing nitrogen removal from digested swine wastewater by anammox with aeration optimization coupling real-time control strategy. BIORESOURCE TECHNOLOGY 2024; 414:131554. [PMID: 39357606 DOI: 10.1016/j.biortech.2024.131554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The nitrogen removal of anaerobically digested swine wastewater (ADSW) through partial nitritation and anammox is hindered by the challenge of balancing aeration between ammonia oxidizing bacteria (AOB) and anammox bacteria (AnAOB). This study focused on optimizing aeration through a real-time control strategy in an integrated fixed-film activated sludge reactor for treating ADSW. The system implemented a dual aeration mode that included both low dissolved oxygen (DO) (< 0.4 mg/L) and short-term high DO (0.6-1.2 mg/L), with pH, oxidation-reduction potential, and NH4+-N electrode values as real-time control parameters. NH4+-N removal rate increased from 3.37 to 12.82 mgN/(gVSS·h), and total nitrogen (TN) removal rate enhanced from 0.14 to 0.25 kgN/(m3·d). Increasing DO stimulated AOB activity by 31 % and provided sufficient NO2--N for AnAOB. The r-strategist AnAOB (Candidatus Kuenenia) proliferated well in the biofilm (0.25 % in flocs vs. 1.86 % in biofilm). The enrichment of denitrifiers improved organic matter and TN removal.
Collapse
Affiliation(s)
- Chaolong Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenhui Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Mei N, Jia F, Wang H, Hu Z, Han B, Chen Y, Zhao X, Han X, Zhang J, Li D, Yao H, Guo J. Partitioned granular sludge coupling with membrane-aerated biofilm reactor for efficient autotrophic nitrogen removal. BIORESOURCE TECHNOLOGY 2024; 414:131570. [PMID: 39368628 DOI: 10.1016/j.biortech.2024.131570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The partial nitritation-anammox process based on a membrane-aerated biofilm reactor (MABR) faces several challenges, such as difficulty in suppressing nitrite-oxidizing bacteria (NOB), excessive effluent nitrate, and ineffective synergy between denitrification and anammox bacteria. Therefore, a novel partitioned granular sludge coupling with MABR (G-MABR) was constructed. The chemical oxygen demand (COD) and nitrogen removal efficiency were 88.8 ± 1.8 %-92.6 ± 1.2 % and 88.8 ± 1.5 %-93.6 ± 0.7 %, respectively. The COD was mainly lowered in the lower granular sludge-zone, while nitrogen was removed in the upper MABR-zone. NOB was significantly suppressed in the MABR-zone due to competition for substrate with denitrifying bacteria and anammox bacteria. This partitioned configuration reduced the C/N ratio in the MABR-zone, thus facilitating autotrophic nitrogen removal. Both partial nitrification and denitrification provided nitrite for anammox bacteria in granular sludge, whereas partial nitrification mainly supplied nitrite to the anammox bacteria in membrane biofilms.
Collapse
Affiliation(s)
- Ning Mei
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Fangxu Jia
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Zhifeng Hu
- Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| | - Baohong Han
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Yao Chen
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Xingcheng Zhao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Xiangyu Han
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jingjing Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Dongmei Li
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
13
|
Han X, Liu J, Zhu Z, Lin Y, Peng Y. Strengthening the enrichment of anaerobic ammonia oxidizing bacteria in biofilms through sludge concentration control. ENVIRONMENTAL RESEARCH 2024; 262:119784. [PMID: 39142456 DOI: 10.1016/j.envres.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Controlling sludge concentration is an effective means to achieve PN. In this article, the reactor used domestic sewage as raw water and promoted the high enrichment of anammox bacteria by controlling the MLVSS of flocs to 1000-1500 mg/L and increasing the concentration of filler sludge. The measures to reduce the concentration of flocculent sludge increased the proliferation rate of the biofilm and provided sufficient substrate for AnAOB. After 102 days of operation, the abundance of Candidatus Brocadia increased from 0.43% during inoculation to 23.56% in phase VI. The ability of the microbial community to utilize energy metabolism and produce ATP was significantly improved, and the appropriate distribution of anammox bacteria and nitrifying, denitrifying bacteria in the ecological niche led to its high enrichment. In summary, this study proposes a strategy to promote the high enrichment of anammox bacteria in mainstream domestic sewage without adding any chemicals.
Collapse
Affiliation(s)
- Xueke Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yangang Lin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
14
|
Zhao Q, Peng Y, Li J, Jia T, Zhang Q, Zhang L. Pilot-scale implementation of mainstream anammox for municipal wastewater treatment against cold temperature. Nat Commun 2024; 15:10314. [PMID: 39609403 PMCID: PMC11604950 DOI: 10.1038/s41467-024-54805-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Applying anammox to municipal wastewater treatment promises enormous energy and resource savings; however, seasonally cold conditions pose a considerable challenge, impeding its future applications towards non-tropical regions. In this study, we establish a pilot-scale wastewater treatment plant (50 m3/d) in northern China and implement the partial denitrification coupling anammox process on actual municipal wastewater. Despite seasonal cooling, the nitrogen removal efficiency remains high, ranging from 75.0 ± 4.6% at 27.8-20.0 °C to 70.4 ± 4.5% at 10-7.5 °C. This process exhibits remarkable low-temperature tolerance, achieving an in-situ anammox rate of 32.7 ± 4.7 g-N/(m3·d) at 10-7.5 °C and contributing up to 39.7 ± 6.7% to nitrogen removal. Further 15N stable isotope tracing and kinetic tests reveal that the partial denitrification is capable of supplying increasingly abundant NO2- to anammox with decreasing temperature, enabling robust mainstream anammox against seasonal cooling. From 27.8 °C to 7.5 °C, anammox bacteria not only survive but thrive under mainstream conditions, with absolute and relative abundances increasing by 429.1% and 343.5%, respectively. This pilot-scale study sheds fresh light on extending mainstream anammox towards non-tropical regions, taking a necessary step forward toward the sustainability goals of the wastewater treatment sector.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
15
|
Dong Q, Sun B, Liu Y, Huang X. Sewerage surveillance tracking characteristics of human antibiotic resistance genes in sewer system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175850. [PMID: 39209175 DOI: 10.1016/j.scitotenv.2024.175850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Sewage surveillance is widely applied to track valid human excretion information and identify public health conditions during corona virus disease 2019 (COVID-19) pandemic. This approach can be applied to monitor the antibiotic resistance level in sewers and to assess the risk of spreading antibiotic resistance in municipal wastewater systems. However, there is still little information about human antibiotic resistance occurrence characteristics in sewer system. This study conducted a field trial for whole year to advance understanding on spatial and temporal occurrence of antibiotic resistance genes (ARGs) in gravity sewerage. The spatial distribution of ARGs along the drainage pipe line (from human settlements to wastewater treatement pant (WWTP)) was insignificant, which may be affected by irregular human emission alongside the pipeline. The correlation between ARGs and antibiotics in sewage was insignificant. The temporal distribution showed that the effect of temperature on ARGs abundance was evident, the ARGs abundance in sewage was generally higher during the cold season. Metagenomic analysis revealed that the detected ARGs were mainly distributed in Proteobacteria (47.51 %) and Antinobacteria (20.11 %). Potential hosts of ARGs in sewage were mainly identified as human gut microorganisms, including human pathogenic bacteria, such as Prevotella, Kocuria, and Propionibacterium, etc. This study provides a new insight into the sewerage surveillance tracking characteristics of human ARGs in sewer system, and suggesting that the sewage-carried ARGs surveillance is a promising method for assessment and management of antibiotic resistance level on population size.
Collapse
Affiliation(s)
- Qian Dong
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bo Sun
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Hou Z, Chen H, Chu J, Wang J, Li A, François-Xavier Corvini P. Bimetallic Pd-In alloy supported on TiO 2 nanosheets breaks the rate-limiting step for ultrafast photocatalytic denitrification. J Colloid Interface Sci 2024; 680:162-171. [PMID: 39504746 DOI: 10.1016/j.jcis.2024.10.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Herein, the bimetallic Pd3In1 alloy were deposited onto the crystal facet engineered TiO2 nanosheet (NS) via one-step photoreduction (Pd3In1/TiO2-NS) for selective conversion of nitrate (NO3-) to N2. Bimetallic Pd3In1 provides higher affinity sites to bind NO3- and significantly reduces the energy barrier of the rate-limiting step (NO3* + e- → NO2*), which is the key for the ultra-fast NO3- reduction kinetics. More importantly, the synergistic effect of Pd and In not only suppresses the hydrogen evolution reaction resulting in high efficiency utilization of photogenerated electrons, but also promotes the selective conversion of nitrite (NO2-) to N2. Consequently, Pd3In1/TiO2-NS exhibits 100 % NO3- conversion and 90 % N2 selectivity within 20 min in six cycles. One order of magnitude improvement on the NO3- reduction kinetic constants of Pd3In1/TiO2-NS (0.254 min-1) is achieved compared with pristine TiO2-NS and monometallic loaded ones. This work provides new insights into the rational construction of bimetallic alloy cocatalysts for high-efficiency photocatalytic denitrification.
Collapse
Affiliation(s)
- Zhiang Hou
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | - Hao Chen
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | - Jiangfeng Chu
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | - Jinnan Wang
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | | |
Collapse
|
17
|
Hou Z, Dong W, Wang H, Zhao Z, Li Y, Liu H, Shi K, Liang Q, Peng Y. Rapid start-up of mainstream partial denitrification /anammox and enhanced nitrogen removal through inoculation of precultured biofilm for treating low-strength municipal sewage. BIORESOURCE TECHNOLOGY 2024; 411:131320. [PMID: 39173960 DOI: 10.1016/j.biortech.2024.131320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
This study investigated the rapid start-up of mainstream partial denitrification coupled with anammox (PD/A) and nitrogen removal performance by inoculating precultured PD/A biofilm. The results showed mainstream PD/A in the anaerobic-anoxic-aerobic (A2O) process was rapidly established within 30 days. Nitrogen removal efficiency (NRE) improved by 23.8 % contrasted to the traditional A2O process. The mass balance showed that anammox contribution to total nitrogen (TN) removal were maintained at 37.9 %∼55.7 %, and reducing hydraulic retention time (HRT) strengthened simultaneously denitrification and anammox activity. The microbial community showed that the dominant bacteria such as denitrifying bacteria (DNBs) and glycogen accumulating organisms (GAOs) both in biofilm and flocculent sludge (floc), integrating with anammox bacteria (AnAOB) in biofilm might lead to enhanced nitrogen removal. Overall, this study offered a fast start-up strategy of mainstream PD/A with enhanced nitrogen removal, which are valuable for upgradation and renovation of existed municipal wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kaiyuan Shi
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiyuan Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
18
|
Kang D, Yan Y, Han IL, Lee J, McCullough K, Li G, Wang ZL, He P, Wang D, Klaus S, Zheng P, Srinivasan V, Bott C, Gu AZ. Molecular evidence of internal carbon-driven partial denitrification in a mainstream pilot A-B system coupled with side-stream EBPR treating municipal wastewater. WATER RESEARCH 2024; 265:122247. [PMID: 39178593 DOI: 10.1016/j.watres.2024.122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Achieving mainstream short-cut nitrogen removal via nitrite has become a carbon and energy efficient way, but still remains challenging for low-strength municipal wastewaters. This study integrated sidestream enhanced biological phosphorus removal system in a pilot-scale adsorption/bio-oxidation (A-B) process (named A-B-S2EBPR system) and nitrite accumulation was successfully achieved for treating the municipal wastewater. Nitrite could accumulate to 5.5 ± 0.3 mg N/L in the intermittently aerated tanks of B-stage with the nitrite accumulation ratio (NAR) of 79.1 ± 6.5 %. The final effluent concentration and removal efficiency of total inorganic nitrogen (TIN) were 4.6 ± 1.8 mg N/L and 84.9 ± 5.6 %, respectively. In-situ process performance of nitrogen conversions, routine batch nitrification/denitrification activity tests and functional gene abundance of nitrifiers collectively suggested that the nitrite accumulation was mainly caused by partial denitrification rather than out-selection of nitrite oxidizing bacteria (NOB). Moreover, the single-cell Raman spectroscopy analysis first demonstrated that there was a specific microbial population that could utilize polyhydroxyalkanoates (PHA) as the potential internal carbon source during the partial denitrification process. The integration of S2EBPR brings unique features to the conventional A-B process, such as extended anaerobic retention time, lower oxidation-reduction potential (ORP), much higher and complex volatile fatty acids (VFAs) etc., which can largely reshape the microbial communities. The dominant genera were Acinetobacter and Comamonadaceae, which accounted for (17.8 ± 15.5)% and (6.7 ± 3.4)%, respectively, while the relative abundance of conventional nitrifiers was less than 0.2%. This study provides insights into phylogenetic and phenotypic shifts of microbial communities when incorporating S2EBPR into the sustainable A-B process to achieve mainstream short-cut nitrogen removal.
Collapse
Affiliation(s)
- Da Kang
- School of Civil and Environmental Engineering, Cornell University, USA; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, PR China; Department of Environmental Engineering, Zhejiang University, PR China
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, USA
| | - I L Han
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Jangho Lee
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Kester McCullough
- Hampton Roads Sanitation District, Virginia Beach, USA; Modeleau, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC G1V 0A6, Canada
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Zijian Leo Wang
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Peisheng He
- School of Civil and Environmental Engineering, Cornell University, USA
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, PR China
| | | | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, PR China
| | | | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, USA.
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, USA.
| |
Collapse
|
19
|
Shen H, Zhang Q, Li M, Tan X, Dong X, Wang H. Research on intensive nitrogen removal of municipal sewage by mainstream anaerobic ammonia oxidation process. CHEMOSPHERE 2024; 367:143622. [PMID: 39461438 DOI: 10.1016/j.chemosphere.2024.143622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The anaerobic ammonia oxidation (anammox) process is a pivotal nitrogen removal technique, playing a significant role in the field of wastewater treatment. The paper commences by delineating the merits of the anammox process in comparison to conventional nitrification-denitrification techniques. Subsequently, it delves into the characteristics of different sludge morphologies process of the behavior of anammox bacteria and their reactions to environmental factors. Revising the issues associated with managing urban sewage in mainstream areas., it discusses the issues faced by the anammox process under reduced nitrogen loads, such as restricted activity due to decreased the levels of ammonia nitrogen and nitrite concentrations, as well as the impact of environmental factors like low temperature, organic matter, and sulfur ions. Following this, a comprehensive review of various types of coupled anammox processes is provided, highlighting the advantages and characteristics of partial nitrification (PN), partial denitrification (PD), methane-dependent nitrite/nitrate reduction (DAMO), sulfur-driven autotrophic denitrification (SAD), iron ammonia oxidation (feammox) and algae photoautotrophy coupling techniques, emphasizing their significance in system stability and resource utilization efficiency. Future research directions include exploring the applicability of the anammox process under various temperature conditions and addressing NO3--N issues in effluent. The findings from these studies will offer valuable insights for further enhancing the optimization of the anammox process in mainstream urban wastewater treatment.
Collapse
Affiliation(s)
- Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xibei Tan
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoqian Dong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
20
|
Li B, Liu C, Bai J, Huang Y, Su R, Wei Y, Ma B. Strategy to mitigate substrate inhibition in wastewater treatment systems. Nat Commun 2024; 15:7920. [PMID: 39256375 PMCID: PMC11387818 DOI: 10.1038/s41467-024-52364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Global urbanization requires more stable and sustainable wastewater treatment to reduce the burden on the water environment. To address the problem of substrate inhibition of microorganisms during wastewater treatment, which leads to unstable wastewater discharge, this study proposes an approach to enhance the tolerance of bacterial community by artificially setting up a non-lethal high substrate environment. And the feasibility of this approach was explored by taking the inhibition of anammox process by nitrite as an example. It was shown that the non-lethal high substrate environment could enhance the nitrite tolerance of anammox bacterial community, as the specific anammox activity increasing up to 24.71 times at high nitrite concentrations. Moreover, the system composed of anammox bacterial community with high nitrite tolerance also showed greater resistance (two-fold) in response to nitrite shock. The antifragility of the system was enhanced without affecting the operation of the main reactor, and the non-lethal high nitrite environment changed the dominant anammox genera to Candidatus Jettenia. This approach to enhance tolerance of bacterial community in a non-lethal high substrate environment not only allows the anammox system to operate stably, but also promises to be a potential strategy for achieving stable biological wastewater treatment processes to comply with standards.
Collapse
Affiliation(s)
- Beiying Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Conghe Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jingjing Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yikun Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Run Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resources Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
21
|
Liu H, Li S, Zhang S, Chen S, Zhang L, Maddela NR. Sulfamethoxazole exposure shifts partial denitrification to complete denitrification: Reactor performance and microbial community. CHEMOSPHERE 2024; 364:143225. [PMID: 39216555 DOI: 10.1016/j.chemosphere.2024.143225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
This study elucidated the influence on a partial denitrification (PD) system under 0-1 mg/L sulfamethoxazole (SMX) stress in a sequencing batch reactor. The results showed that the nitrite accumulation rate (NAR) significantly (P ≤ 0.01) decreased from 68.68 ± 9.00% to 49.05 ± 11.68%, while the total nitrogen removal efficiency significantly (P ≤ 0.001) increased from 23.19 ± 4.42% to 31.36 ± 2.73% in presence of SMX. The results indicated that SMX exposure switched the PD process to complete denitrification through the deterioration of the nitrite accumulation and the promotion of further nitrite reduction. The SMX removal loading rate increased from 0.21 ± 0.04 to 5.03 ± 0.77 mg-SMX/(g-MLVSS·d) with the extended reactor operation under SMX stress. Low SMX concentration exposure increased extracellular polymeric substances (EPS) content from 107.69 ± 20.78 mg/g-MLVSS (0.05 mg-SMX/L) to 123.64 ± 9.66 mg/g-MLVSS (0.5 mg-SMX/L), while EPS secretion was inhibited under high SMX concentration exposure (i.e., 1 mg-SMX/L). Moreover, SMX exposure promoted the synthesis of aromatic protein-like compounds and changed the functional groups as revealed by EEM and FTIR analysis. Additionally, SMX exposure significantly shifted the microbial community structures at both phylum and genus levels. Particularly, the abundance of Thauera, i.e., functional bacteria related to PD, considerably decreased from 41.69% to 11.62% after SMX exposure, whereas the abundances of Denitratisoma and SM1A02 significantly rose under different SMX concentrations. These outcomes hinted that the addition of SMX resulted in the shifting of partial denitrification to complete denitrification.
Collapse
Affiliation(s)
- Huan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Shugeng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| | - Shaoqing Zhang
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512005, PR China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Siyu Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Liqiu Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| |
Collapse
|
22
|
Luo X, Guo M, Zheng X, Zheng S, Li S. Distinguished denitrifying phosphorus removal in the high-rate anoxic/microaerobic system for sewage treatment. CHEMOSPHERE 2024; 359:142377. [PMID: 38768781 DOI: 10.1016/j.chemosphere.2024.142377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
This study re-evaluated the role of anoxic and anaerobic zones during the enhanced biological phosphorus (P) removal process by investigating the potential effect of introducing an anoxic zone into a high-rate microaerobic activated sludge (MAS) system (1.60-1.70 kg chemical oxygen demand (COD) m-3 d-1), i.e., a high-rate anoxic/microaerobic (A/M) system for sewage treatment. In the absence of a pre-anaerobic zone, introducing an anoxic zone considerably reduced effluent NOx--N concentrations (7.2 vs. 1.5 mg L-1) and remarkably enhanced total nitrogen (75% vs. 89%) and total P (18% vs. 60%) removal and sludge P content (1.48% vs. 1.77% (dry weight)) due to further anoxic denitrifying P removal in the anoxic zone (besides simultaneous nitrification and denitrification in the microaerobic zone). High-throughput pyrosequencing demonstrated the niche differentiation of different polyphosphate accumulating organism (PAO) clades (including denitrifying PAO [DPAO] and non-DPAO) in both systems. Introducing an anoxic zone considerably reduced the total PAO abundance in sludge samples by 42% and modified the PAO community structure, including 17-19 detected genera. The change was solely confined to non-DPAOs, as no obvious change in total abundance or community structure of DPAOs including 7 detected genera was observed. Additionally, introducing an anoxic zone increased the abundance of ammonia-oxidizing bacteria by 39%. The high-rate A/M process provided less aeration, higher treatment capacity, a lower COD requirement, and a 75% decrease in the production of waste sludge than the conventional biological nutrient removal process.
Collapse
Affiliation(s)
- Xiaojie Luo
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Mengya Guo
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Xiangnan Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Shaokui Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China.
| | - Shida Li
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
23
|
Wang Z, Yu Q, Zhao Z, Zhang Y. Ferroheme/Ferriheme Directly Involved in the Synthesis and Decomposition of Hydrazine as an Electron Carrier during Anammox. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10140-10148. [PMID: 38781353 DOI: 10.1021/acs.est.3c08525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Anammox bacteria performed the reaction of NH4+ and NO with hydrazine synthase to produce N2H4, followed by the decomposition of N2H4 with hydrazine dehydrogenase to generate N2. Ferroheme/ferriheme, which serves as the active center of both hydrazine synthase and hydrazine dehydrogenase, is thought to play a crucial role in the synthesis and decomposition of N2H4 during Anammox due to its high redox activity. However, this has yet to be proven and the exact mechanisms by which ferroheme/ferriheme is involved in the Anammox process remain unclear. In this study, abiotic and biological assays confirmed that ferroheme participated in NH4+ and NO reactions to generate N2H4 and ferriheme, and the produced N2H4 reacted with ferriheme to generate N2 and ferroheme. In other words, the ferroheme/ferriheme cycle drove the continuous reaction between NH4+ and NO. Raman, ultraviolet-visible spectroscopy, and X-ray absorption fine structure spectroscopy confirmed that ferroheme/ferriheme is involved in the synthesis and decomposition of N2H4 via the core FeII/FeIII cycle. The mechanism of ferroheme/ferriheme participation in the synthesis and decomposition of N2H4 was proposed by density functional theory calculations. These findings revealed for the first time the heme electron transfer mechanisms, which are of great significance for deepening the understanding of Anammox.
Collapse
Affiliation(s)
- Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
24
|
Chen L, Xiang H, Zhou LT, Zhang YQ, Ding YC, Wu D, Zhu NW, Zhang YF, Feng HJ. Low-voltage stimulated denitrification performance of high-salinity wastewater using halotolerant microorganisms. BIORESOURCE TECHNOLOGY 2024; 401:130688. [PMID: 38604298 DOI: 10.1016/j.biortech.2024.130688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Nitrate is a common contaminant in high-salinity wastewater, which has adverse effects on both the environment and human health. However, conventional biological treatment exhibits poor denitrification performance due to the high-salinity shock. In this study, an innovative approach using an electrostimulating microbial reactor (EMR) was explored to address this challenge. With a low-voltage input of 1.2 V, the EMR reached nitrate removal kinetic parameter (kNO3-N) of 0.0166-0.0808 h-1 under high-salinities (1.5 %-6.5 %), which was higher than that of the microbial reactor (MR) (0.0125-0.0478 h-1). The mechanisms analysis revealed that low-voltage significantly enhanced microbial salt-in strategy and promoted the secretion of extracellular polymeric substances. Halotolerant denitrification microorganisms (Pseudomonas and Nitratireductor) were also enriched in EMR. Moreover, the EMR achieved a NO3-N removal efficiency of 73.64 % in treating high-salinity wastewater (salinity 4.69 %) over 18-cycles, whereas the MR only reached 54.67 %. In summary, this study offers an innovative solution for denitrification of high-salinity wastewater.
Collapse
Affiliation(s)
- Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Hai Xiang
- College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Li-Ting Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yan-Qing Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yang-Cheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Di Wu
- Center for Environmental and Energy Research (CEER) - Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, South Korea
| | - Nan-Wen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Feng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China.
| |
Collapse
|
25
|
Su X, Li J, Peng Y, Yuan Y, Wu L, Peng Y. An overlooked effect of hydroxylamine on anammox granular sludge: Promoting granulation and boosting activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171176. [PMID: 38395175 DOI: 10.1016/j.scitotenv.2024.171176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The exogenous hydroxylamine dosing has been proven to enhance nitrite supply for anammox bacteria. In this study, exogenous hydroxylamine was fed into a sequencing batch reactor to investigate its long-term effect on anammox granular sludge. The results showed that hydroxylamine enhanced the reactor's performance with an increase in total nitrogen removal rate from 0.23 to 0.52 kg N/m3/d and an increase in bacterial activity from 11.65 to 78.24 mg N/g VSS/h. Meanwhile, hydroxylamine promoted granulation by eluting flocs. And higher anammox activity and granulation were supported by extracellular polymeric substances (EPS) characteristics. Moreover, Candidatus Brocadia's abundance increased from 1.10 % to 3.03 %, and its symbiosis with heterotrophic bacteria was intensified. Additionally, molecular docking detailed the mechanism of the hydroxylamine effect. Overall, this study would provide new insights into the hydroxylamine dosing strategy application.
Collapse
Affiliation(s)
- Xinwei Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- SDIC Xinkai Water Environmental Investment Co., Ltd., Beijing 101101, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
26
|
Li G, Yu Y, Li X, Jia H, Ma X, Opoku PA. Research progress of anaerobic ammonium oxidation (Anammox) process based on integrated fixed-film activated sludge (IFAS). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13235. [PMID: 38444262 PMCID: PMC10915381 DOI: 10.1111/1758-2229.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
The integrated fixed-film activated sludge (IFAS) process is considered one of the cutting-edge solutions to the traditional wastewater treatment challenges, allowing suspended sludge and attached biofilm to grow in the same system. In addition, the coupling of IFAS with anaerobic ammonium oxidation (Anammox) can further improve the efficiency of biological denitrification. This paper summarises the research progress of IFAS coupled with the anammox process, including partial nitrification anammox, simultaneous partial nitrification anammox and denitrification, and partial denitrification anammox technologies, and describes the factors that limit the development of related processes. The effects of dissolved oxygen, influent carbon source, sludge retention time, temperature, microbial community, and nitrite-oxidising bacteria inhibition methods on the anammox of IFAS are presented. At the same time, this paper gives an outlook on future research focus and engineering practice direction of the process.
Collapse
Affiliation(s)
- Guang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Yunyong Yu
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xingyu Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Hongsheng Jia
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xiaoning Ma
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | | |
Collapse
|
27
|
Ji J, Zhao Y, Bai Z, Qin J, Yang H, Hu F, Peng Z, Jin B, Yang X. Robustness of the synergistic partial-denitrification, anammox, and fermentation process for treating domestic and nitrate wastewaters under fluctuating C/N ratios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120547. [PMID: 38452621 DOI: 10.1016/j.jenvman.2024.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
The synergistic partial-denitrification, anammox, and fermentation (SPDAF) process presents a promising solution to treat domestic and nitrate wastewaters. However, its capability to handle fluctuating C/N ratios (the ratios of COD to total inorganic nitrogen) in practical applications remains uncertain. In this study, the SPDAF process was operated for 236 days with C/N ratios of 0.7-3.5, and a high and stable efficiency of nitrogen removal (84.9 ± 7.8%) was achieved. The denitrification and anammox contributions were 6.1 ± 7.1% and 93.9 ± 7.1%, respectively. Batch tests highlighted the pivotal role of in situ fermentation at low biodegradable chemical oxygen demand (BCOD)/NO3- ratios. As the BCOD/NO3- ratios increased from 0 to 6, the NH4+ and NO3- removal rates increased, while the anammox contribution decreased from 100% to 80.1% but remained the primary pathway of nitrogen removal. The cooperation and balanced growth of denitrifying bacteria, anammox bacteria, and fermentation bacteria contributed to the system's robustness under fluctuating C/N ratios.
Collapse
Affiliation(s)
- Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhixuan Bai
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jing Qin
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Haosen Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhaoxu Peng
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Baodan Jin
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xiaoxuan Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
28
|
Wang D, Zhang Y, Jiang R, Wang W, Li J, Huang K, Zhang XX. Distinct microbial characteristics of the robust single-stage coupling system during the conversion from anammox-denitritation to anammox-denitratation patterns. CHEMOSPHERE 2024; 351:141231. [PMID: 38237781 DOI: 10.1016/j.chemosphere.2024.141231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Simultaneous anammox-denitrification is effectively operated in two types, i.e., the anammox-denitritation (SAD pattern) and the anammox-denitratation (PDA pattern). The nitrate derived from inevitable nitrite oxidization likely determines the practical operational pattern of the coupling system, while little information is available regarding the microbial characteristics during the pattern conversion. Here, the single-stage bioreactor coupling anammox with denitrification was operated under conditions with a changed ratio of influent nitrite and nitrate. Results showed that the bioreactor exhibited a robust performance during the conversion from SAD to PDA patterns, corresponding with the total nitrogen removal efficiency ranging from 89.5% to 92.4%. Distinct community structures were observed in two patterns, while functional bacteria including the genera Denitratisoma, Thauera, Candidatus Brocadia, and Ca. Jettenia steadily co-existed. Meanwhile, the high transcription of hydrazine synthase genes demonstrated a stable anammox process, while the up-regulated transcription of nitrite and nitrous oxide reductase genes indicated that the complete denitrification process was enhanced for total nitrogen removal during the PDA pattern. Ecologically, stochastic processes dominantly governed the community assembly in two patterns. The PDA pattern improved the interconnectivity of communities, especially for the cooperative behaviors between dominant denitrifying bacteria and low-abundant species. These findings deepen our understanding of the microbial mechanism underlying the different patterns of the coupling system and potentially expand its engineering application.
Collapse
Affiliation(s)
- Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yujie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ruiming Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wuqiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; LingChao Supply Chain Management Co., Ltd., Shenzhen, 518000, China
| | - Jialei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Institute of Environmental Research at Greater Bay/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Nanjing Jiangdao Institute of Environmental Research Co., Ltd., Nanjing, 210019, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
29
|
Li H, Zhao Z, Shi M, Luo B, Wang G, Wang X, Gu J, Song Z, Sun Y, Zhang L, Wang J. Metagenomic binning analyses of swine manure composting reveal mechanism of nitrogen cycle amendment using kaolin. BIORESOURCE TECHNOLOGY 2024; 393:130156. [PMID: 38056679 DOI: 10.1016/j.biortech.2023.130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The efficient control of nitrogen loss in composting and the enhancement of product quality have become prominent concerns in current research. The positive role of varying concentrations kaolin in reducing nitrogen loss during composting was revealed using metagenomic binning combined with reverse transcription quantitative polymerase chain reaction. The results indicated that the addition of 0.5 % kaolin significantly (P < 0.05) up-regulated the expression of nosZ and nifH on day 35, while concurrently reducing norB abundance, resulting in a reduction of NH3 and N2O emissions by 61.4 % and 17.5 %, respectively. Notably, this study represents the first investigation into the co-occurrence of nitrogen functional genes and heavy metal resistance genes within metagenomic assembly genomes during composting. Emerging evidence indicates that kaolin effectively impedes the binding of Cu/Zn to nirK and nosZ gene reductases through passivation. This study offers a novel approach to enhance compost quality and waste material utilization.
Collapse
Affiliation(s)
- Huakang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; China Construction Sixth Division Construction & Development Co., Ltd., Tianjin 300450, China
| | - Zixuan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Water Conservancy and Architectural Engineering, Tarim University, Alar 843300, China
| | - Bin Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangdong Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Hou X, Li X, Zhu X, Li W, Kao C, Peng Y. Advanced nitrogen removal from municipal wastewater through partial nitrification-denitrification coupled with anammox in step-feed continuous system. BIORESOURCE TECHNOLOGY 2024; 391:129967. [PMID: 37923230 DOI: 10.1016/j.biortech.2023.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Combined partial nitrification-denitrification/anammox (PN-PD/A) processes have attracted great attention from researchers in recent years to achieve high nitrogen removal from low carbon /nitrogen (C/N) municipal wastewater. In this context, a step-feed anoxic/oxic (A/O) process was conducted in this study through the combination of the partial nitrification-anammox (PN/A) and partial denitrification-anammox (PD/A) to remove N from municipal wastewater with low C/N. The enhancement of the PN-PD/A process resulted in N removal efficiency of 85.6% at C/N of 2.8. The contributions of the anammox reached 36.4 and 8.8% in the anoxic and oxic chambers, respectively. The biocarriers added to the anoxic and oxic chambers increased the relative abundance of the anammox bacteria in biofilms from 0.61% to 1.51% and 1.02%, respectively. This study demonstrated that employing the step-feed A/O process can create optimal conditions for the anammox bacteria growth, thereby ensuring advanced N removal from low C/N municipal wastewater.
Collapse
Affiliation(s)
- Xiaohang Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiaorong Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University Beijing 100730, China; Beijing Diabetes Institute, Beijing 100730, China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
31
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
32
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
33
|
Zhao Q, Zhang L, Li J, Jia T, Deng L, Liu Q, Sui J, Zhang Q, Peng Y. Carbon-Restricted Anoxic Zone as an Overlooked Anammox Hotspot in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21767-21778. [PMID: 38096549 DOI: 10.1021/acs.est.3c07017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The anoxic zone serves as the core functional unit in municipal wastewater treatment plants (MWWTPs). Unfortunately, in most cases, the downstream range of the anoxic zone is severely lacking in available organic carbon and thus contributes little to the removal of nutrients. This undesirable range is termed the "carbon-restricted anoxic zone", representing an insurmountable drawback for traditional MWWTPs. This study uncovers a previously overlooked role for the carbon-restricted anoxic zone: a hotspot for anaerobic ammonium oxidation (anammox). In a continuous-flow pilot-scale plant treating municipal wastewater (55 m3/d), virgin biocarriers were introduced into the carbon-restricted anoxic zone (downstream 25% of the anoxic zone with BOD5 of 5.9 ± 2.3 mg/L). During the 517-day monitoring, anammox bacteria highly self-enriched within the biofilms, with absolute and relative abundance reaching up to (9.4 ± 0.1) × 109 copies/g-VSS and 6.17% (Candidatus Brocadia), respectively. 15N isotopic tracing confirmed that anammox overwhelmingly dominated nitrogen metabolism, responsible for 92.5% of nitrogen removal. Following this upgrade, the contribution ratio of the carbon-restricted anoxic zone to total nitrogen removal increased from 9.2 ± 4.1% to 19.2 ± 4.2% (P < 0.001), while its N2O emission flux decreased by 84.5% (P < 0.001). These findings challenge stereotypes about the carbon-restricted anoxic zone and highlight the multiple environmental implications of this newfound anammox hotspot.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, Guangdong 510075, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
34
|
Tao Y, Shi R, Li L, Xia S, Ning J, Xu W. Performance optimization and nitrogen removal mechanism of up-flow partial denitrification/anammox process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119191. [PMID: 37827074 DOI: 10.1016/j.jenvman.2023.119191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
This study aimed to remediate the problems of sludge floating and uneven mass transfer in up-flow partial denitrification/anammox (PDA) reactors and dissect the nitrogen removal mechanism. Two up-flow PDA reactors were operated, whereby in R1 combined biological carriers were added, while in R2 mechanical stirring was applied, the reactors were inoculated with PD sludge and anammox sludge. Results showed the TN removal rates at the end of the operation were 89% (R1) and 92% (R2). The addition of both strategies suppressed the occurrence of sludge upwelling and deterioration of settling performance, even when the granule diameter of the granular zone in R1 and R2 reached 1.921 and 2.006 mm, respectively. 16SrRNA sequencing revealed R1 had a higher abundance of anammox bacteria (AAOB, 14.53%-R1, 9.06%-R2, respectively), and R2 had a higher quantity of denitrifying bacteria (61.92%-R1, 67.11%-R2, respectively). And the nitrogen removal was contributed by anammox and denitrification in combination, with contributions of 82.17%, 17.83% (R1), and 85.07%, 14.93% (R2), respectively. In summary, both strategies prevented sludge flotation and uneven nitrogen mass transfer. However, mechanical agitation had a more substantial positive effect on the performance of PDA than the addition of biocarriers because it achieved a more adequate mass transfer.
Collapse
Affiliation(s)
- Youqi Tao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Rui Shi
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Linjing Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Suhui Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jianyong Ning
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Wenlai Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
35
|
Jiang CK, Deng YF, Xu Z, Siriweera B, Wu D, Chen GH. Sulphate reduction, mixed sulphide- and thiosulphate-driven Autotrophic denitrification, NItrification, and Anammox (SANIA) integrated process for sustainable wastewater treatment. WATER RESEARCH 2023; 247:120824. [PMID: 37956523 DOI: 10.1016/j.watres.2023.120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
This study proposes the Sulphate reduction, mixed sulphide- and thiosulphate-driven Autotrophic denitrification, Nitrification, and Anammox integrated (SANIA) process for sustainable treatment of mainstream wastewater after organics capture. Three moving-bed biofilm reactors (MBBRs) were applied for developing sulphate reduction (SR), mixed sulphide- and thiosulphate-driven partial denitrification and Anammox (MSPDA), and NItrification (N), respectively. Typical mainstream wastewater after organics capture (e.g., chemically enhanced primary treatment, CEPT) was synthesized with chemical oxygen demand (COD) of 110 mg/L, sulphate of 50 mg S/L, ammonium of 30 mgN/L. The feasibility of SANIA was investigated with mimic nitrifying effluent supplied in MSPDA-MBBR (Period I), followed by the examination of the applicability of SANIA process with N-MBBR integrated (Period II), under moderate temperatures (25-27 ℃). In Period I, SANIA process was established with both SR- and MSPDA-MBBR continuously operated for over 300 days (no Anammox biomass inoculation). Specifically, in MSPDA-MBBR, high rates of denitratation (2.7 gN/(m2·d)) and Anammox (2.8 gN/(m2·d)) were achieved with Anammox contributing to 81 % of the total inorganic nitrogen removal. In Period II, the integrated SANIA system was continuously operated for over 130 days, achieving up to 90 % of COD, 93 % of ammonium, and 61 % of total inorganic nitrogen (TIN) removal, with effluent concentrations lower than 10 mg COD/L, 3 mg NH4+-N/L, and 13 mg TIN-N/L. The implementation of SANIA can ultimately reduce 75 % and 40 % of organics and aeration energy for biological nitrogen removal. Considering the combination of SANIA with CEPT for carbon capture and sludge digestion/incineration for energy recovery, the new integrated wastewater technology can be a promising strategy for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Chu-Kuan Jiang
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yang-Fan Deng
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangzhou, China
| | - Zou Xu
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Buddhima Siriweera
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Centre for Environment and Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, and Centre for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium.
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangzhou, China.
| |
Collapse
|
36
|
Chen J, Zhang X, Zhou L, Zhu Z, Wu Z, Zhang K, Wang Y, Ju T, Ji X, Jin D, Wu P, Zhang X. Metagenomics insights into high-rate nitrogen removal from municipal wastewater by integrated nitrification, partial denitrification and Anammox at an extremely short hydraulic retention time. BIORESOURCE TECHNOLOGY 2023; 387:129606. [PMID: 37572889 DOI: 10.1016/j.biortech.2023.129606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
To achieve high-rate nitrogen removal in municipal wastewater treatment through anaerobic ammonia oxidation (Anammox), the nitrification, partial denitrification, and Anammox processes were integrated by a step-feed strategy. An exceptional nitrogen removal load of 0.224 kg N/(m3·d) was achieved by gradient-reducing the hydraulic retention time (HRT) to 5 h. Metagenomic analysis demonstrated that Nitrosospira could express all genes encoding ammonia oxidation under low nitrogen and dissolved oxygen conditions (less than 0.5 mg/L), enabling complete nitrification. With the short of HRT, the relative abundance of Thauera increased from 2.8 % to 6.4 %. Frequent substrate exchanges at such extremely short HRT facilitated enhanced synergistic interactions among Nitrosospira, Thauera, and Candidatus Brocadia. These findings provide a comprehensive understanding of the utilization of Anammox combined processes for high-speed nitrogen removal in municipal wastewater treatment and the microbial interactions involved.
Collapse
Affiliation(s)
- Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road,Suzhou 215009, China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
37
|
Wang Y, Wang X, Niu J. Implemented impediment of extracellular electron transfer-dependent anammox process :Unstable nitrogen removal efficiency and decreased abundance of anammox bacteria. CHEMOSPHERE 2023; 337:139415. [PMID: 37414301 DOI: 10.1016/j.chemosphere.2023.139415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
The present study investigates the extracellular electron transfer (EET)-dependent anammox process as a promising approach for sustainable wastewater treatment. The study examines the performance and metabolic pathway of the EET-dependent anammox process in comparison to the nitrite-dependent anammox process. The EET-dependent reactor successfully achieved nitrogen removal with a maximum removal efficiency of 93.2%, although it exhibited a lower ability to sustain high nitrogen removal load when compared to the nitrite-dependent anammox process, which poses opportunity and challenge for ammonia-wastewater treatment under applied voltage conditions. Nitrite was identified as a critical factor responsible for the changes in microbial community structure, resulting in a significant reduction in nitrogen removal load in the absence of nitrite. The study further suggests that the Candidatus Kuenenia species could dominate the EET-dependent anammox process, while nitrifying and denitrifying bacteria also contribute to the nitrogen removal in this system.
Collapse
Affiliation(s)
- Yameng Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Xiaojing Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
38
|
Huang Y, Su R, Bu Y, Ma B. A predictive model for determining the nitrite concentration in the effluent of an anammox reactor using ensemble regression tree algorithm. CHEMOSPHERE 2023; 339:139553. [PMID: 37482314 DOI: 10.1016/j.chemosphere.2023.139553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a cost-effective biological nitrogen removal method for treating wastewater. Nitrite has strong negative effect on microbial activity of anammox bacteria, while the conventional equitment available for determining nitrite on-line is challenging due to high price. By knowing the concentration of nitrite in the effluent, its concentration in the reactor can be controlled accordingly. To investigate this, an ensemble regression tree algorithm was used to establish the predictive model proposed in the current work. Moreover, the Bayesian algorithm was adopted to systematically optimize various parameters of machine learning algorithms. The predicted concentrations of nitrite were in good agreement with the observed values, and the coefficient of determination (R2) and root mean squared error (RMSE) values reached 0.91 and 4.81, respectively. Furthermore, the model established by the ensemble regression tree algorithm was compared with models established by commonly used machine learning algorithms. Finally, the established models were applied to another anammox reactor, and the predicted results of ensemble regression tree model were found to be in good agreement with the experimental values with R2 and RMSE values of 0.84 and 6.34, respectively.
Collapse
Affiliation(s)
- Yikun Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou, 570228, China
| | - Run Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou, 570228, China
| | - Yinan Bu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou, 570228, China.
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou, 570228, China.
| |
Collapse
|
39
|
Xu R, Cui H, Fan F, Zhang M, Yuan S, Wang D, Gan Z, Yu Z, Wang C, Meng F. Combination of Sequencing Batch Operation and A/O Process to Achieve Partial Mainstream Anammox: Pilot-Scale Demonstration and Microbial Ecological Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13887-13900. [PMID: 37667485 DOI: 10.1021/acs.est.3c03022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this study, sequencing batch operation was successfully combined with a pilot-scale anaerobic biofilm-modified anaerobic/aerobic membrane bioreactor to achieve anaerobic ammonium oxidation (anammox) without inoculation of anammox aggregates for municipal wastewater treatment. Both total nitrogen and phosphorus removal efficiencies of the reactor reached up to 80% in the 250-day operation, with effluent concentrations of 4.95 mg-N/L and 0.48 mg-P/L. In situ enrichment of anammox bacteria with a maximum relative abundance of 7.86% was observed in the anaerobic biofilm, contributing to 18.81% of nitrogen removal, with denitrification being the primary removal pathway (38.41%). Denitrifying phosphorus removal (DPR) (40.54%) and aerobic phosphorus uptake (48.40%) played comparable roles in phosphorus removal. Metagenomic sequencing results showed that the biofilm contained significantly lower abundances of NO-reducing functional genes than the bulk sludge (p < 0.01), favoring anammox catabolism in the former. Interactions between the anammox bacteria and flanking community were dominated by cooperation behaviors (e.g., nitrite supply, amino acids/vitamins exchange) in the anaerobic biofilm community network. Moreover, the hydrolytic/fermentative bacteria and endogenous heterotrophic bacteria (Dechloromonas, Candidatus competibacter) were substantially enriched under sequencing batch operation, which could alleviate the inhibition of anammox bacteria by complex organics. Overall, this study provides a feasible and promising strategy for substantially enriching anammox bacteria and achieving partial mainstream anammox as well as DPR.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
40
|
Luo X, Guo M, Zheng X, Zheng S, Li S. Distinguished denitrifying phosphorus removal in the high-rate anoxic/microaerobic system for sewage treatment. CHEMOSPHERE 2023:139712. [PMID: 37536543 DOI: 10.1016/j.chemosphere.2023.139712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
This study re-evaluated the role of anoxic and anaerobic zones during the enhanced biological phosphorus (P) removal process by investigating the potential effect of introducing an anoxic zone into a high-rate microaerobic activated sludge (MAS) system (1.60-1.70 kg chemical oxygen demand (COD) m-3 d-1), i.e., a high-rate anoxic/microaerobic (A/M) system for sewage treatment. In the absence of a pre-anaerobic zone, introducing an anoxic zone considerably reduced effluent NOx--N concentrations (7.2 vs. 1.5 mg L-1) and remarkably enhanced total nitrogen (75% vs. 89%) and total P (18% vs. 60%) removal and sludge P content (1.48% vs. 1.77% (dry weight)) due to further anoxic denitrifying P removal denitrification in the anoxic zone (besides simultaneous nitrification and denitrification in the microaerobic zone). High-throughput pyrosequencing demonstrated the niche differentiation of different polyphosphate accumulating organism (PAO) clades (including denitrifying PAO [DPAO] and non-DPAO) in both systems. Introducing an anoxic zone considerably reduced the total PAO abundance in sludge samples by 42% and modified the PAO community structure, including 17-19 detected genera. The change was solely confined to non-DPAOs, as no significant change in total abundance or community structure of DPAOs including seven detected genera was observed. Additionally, introducing an anoxic zone increased the abundance of ammonia-oxidizing bacteria by 39%. The high-rate A/M process provided less aeration, higher treatment capacity, a lower COD requirement, and a 75% decrease in the production of waste sludge than the conventional biological nutrient removal process.
Collapse
Affiliation(s)
- Xiaojie Luo
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Mengya Guo
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Xiangnan Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Shaokui Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China.
| | - Shida Li
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
41
|
Zhang W, Jiang H, Guo W, Li S, Zhang Q. Unexpectedly high nitrate levels in a pristine forest river on the Southeastern Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132047. [PMID: 37453353 DOI: 10.1016/j.jhazmat.2023.132047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
River nitrate (NO3-) pollution is a global environmental issue. Recently, high NO3- levels in some pristine or minimally-disturbed rivers were reported, but their drivers remain unclear. This study integrated river isotopes (δ18O/δ15N-NO3- and δD/18O-H2O), 15N pairing experiments, and qPCR to reveal the processes driving the high NO3- levels in a nearly pristine forest river on the Qinghai-Tibet Plateau. The river isotopes suggested that, at the catchment scale, NO3- removal was prevalent in summer, but weak in winter. The pristine forest soils contributed more than 90 % of the riverine NO3-, indicating the high NO3- backgrounds. The release of soil NO3- to the river was "transport-limited" in both seasons, i.e., the NO3- production/stock in the soils exceeded the capacity of hydrological NO3- leaching. In summer, this regime and the NO3--plentiful conditions in the soils associated with the strong NO3- nitrification led to the high riverine NO3- levels. While the in-soil nitrification was weak in winter, the leaching of legacy NO3- resulted in the consistently high NO3- levels. This study provides insights into the reasons for high NO3- levels in pristine or minimally-disturbed rivers worldwide and highlights the necessity to consider NO3- backgrounds when evaluating anthropogenic NO3- pollution in rivers.
Collapse
Affiliation(s)
- Wenshi Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.
| | - Wenjing Guo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shen Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| |
Collapse
|
42
|
Hou Z, Dong W, Wang H, Zhao Z, Li Z, Liu H, Li Y, Zeng Z, Xie J, Zhang L, Liu J. Response of nitrite accumulation to elevated C/NO- 3-N ratio during partial denitrification process: Insights of extracellular polymeric substance, microbial community and metabolic function. BIORESOURCE TECHNOLOGY 2023:129269. [PMID: 37290706 DOI: 10.1016/j.biortech.2023.129269] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
This study investigated the response of nitrite accumulation to elevated COD/NO3--N ratio (C/N) during partial denitrification (PD). Results indicated nitrite was gradually accumulated and remained stable (C/N = 1.5 ∼ 3.0), while that rapidly declined after reaching the peak (C/N = 4.0 ∼ 5.0). The polysaccharide (PS) and protein (PN) content of tightly-bound extracellular polymeric substances (TB-EPS) reached the maximum at C/N of 2.5 ∼ 3.0, which might be stimulated by high level of nitrite. Illumina MiSeq sequencing showed Thauera and OLB8 were dominated denitrifying genera at C/N of 1.5 ∼ 3.0, while Thauera was further enriched with fading OLB8 at C/N of 4.0 ∼ 5.0. Meanwhile, the highly-enriched Thauera might enhance the activity of nitrite reductase (nirK) promoting further nitrite reduction. Redundancy analysis (RDA) showed positive correlations between nitrite production and PN content of TB-EPS, denitrifying bacteria (Thauera and OLB8) and nitrate reductases (narG/H/I) in low C/N. Finally, their synergistic effects for driving nitrite accumulation were comprehensively elucidated.
Collapse
Affiliation(s)
- Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Zhuoyang Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiwei Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Liang Zhang
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| | - Jie Liu
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| |
Collapse
|
43
|
Zhao Q, Li J, Deng L, Jia T, Zhao Y, Li X, Peng Y. From hybrid process to pure biofilm anammox process: Suspended sludge biomass management contributing to high-level anammox enrichment in biofilms. WATER RESEARCH 2023; 236:119959. [PMID: 37058918 DOI: 10.1016/j.watres.2023.119959] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The application of mainstream anammox is highly desirable for municipal wastewater treatment. However, enrichment of anammox bacteria (AnAOB) is challenging, particularly given the vicious competition from denitrifying bacteria (DB). Here, suspended sludge biomass management, a novel operational strategy for hybrid process (suspended sludge/biofilm), was investigated for 570 days based on a modified anaerobic-anoxic-oxic system treating municipal wastewater. By successively decreasing the suspended sludge concentration, the traditional hybrid process was successfully upgraded to a pure biofilm anammox process. During this process, both the nitrogen removal efficiency (NRE) and rate (NRR) were significantly improved (P < 0.001), from 62.1 ± 4.5% to 79.2 ± 3.9% and from 48.7 ± 9.7 to 62.3 ± 9.0 g N/(m3·d), respectively. Mainstream anammox was improved in the following: Candidatus Brocadia was enriched from 0.70% to 5.99% in anoxic biofilms [from (9.94 ± 0.99) × 108 to (1.16 ± 0.01) × 1010 copies/g VSS, P < 0.001]; the in situ anammox reaction rate increased from 8.8 ± 1.9 to 45.5 ± 3.2 g N/(m3·d) (P < 0.001); the anammox contribution to nitrogen removal rose from 9.2 ± 2.8% to 67.1 ± 8.3% (P < 0.001). Core bacterial microbiome analysis, functional gene quantification, and a series of ex situ batch experiments demonstrated that the stepwise decreases in suspended sludge concentration effectively mitigated the vicious competition of DB against AnAOB, enabling high-level AnAOB enrichment. This study presents a straightforward and effective strategy for enriching AnAOB in municipal wastewater, shedding fresh light on the application and upgradation of mainstream anammox.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yang Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
44
|
Al-Hazmi HE, Maktabifard M, Grubba D, Majtacz J, Hassan GK, Lu X, Piechota G, Mannina G, Bott CB, Mąkinia J. An Advanced Synergy of Partial Denitrification-Anammox for Optimizing Nitrogen Removal from Wastewater: A Review. BIORESOURCE TECHNOLOGY 2023; 381:129168. [PMID: 37182680 DOI: 10.1016/j.biortech.2023.129168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Anammox is a widely adopted process for energy-efficient removal of nitrogen from wastewater, but challenges with NOB suppression and NO3- accumulation have led to a deeper investigation of this process. To address these issues, the synergy of partial denitrification and anammox (PD-anammox) has emerged as a promising solution for sustainable nitrogen removal in wastewater. This paper presents a comprehensive review of recent developments in the PD-anammox system, including stable performance outcomes, operational parameters, and mathematical models. The review categorizes start-up and recovery strategies for PD-anammox and examines its contributions to sustainable development goals, such as reducing N2O emissions and saving energy. Furthermore, it suggests future trends and perspectives for improving the efficiency and integration of PD-anammox into full-scale wastewater treatment system. Overall, this review provides valuable insights into optimizing PD-anammox in wastewater treatment, highlighting the potential of simultaneous processes and the importance of improving efficiency and integration into full-scale systems.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mojtaba Maktabifard
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Environmental and Energy Engineering, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki P.O. Box 12622, Egypt
| | - Xi Lu
- Three Gorges Smart Water Technology Co., LTD, 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland.
| | - Giorgio Mannina
- Engineering Department, Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Charles B Bott
- Hampton Roads Sanitation District, 1436 Air Rail Ave., Virginia Beach, VA 23455, USA
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
45
|
Deng J, Wu Z, Li YY, Liu J. Energy-neutral municipal wastewater treatment based on partial denitrification-anammox driven by side-stream sulphide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163790. [PMID: 37121318 DOI: 10.1016/j.scitotenv.2023.163790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
"Low-carbon" has become an important evaluation index of modernisation construction. In the area of wastewater treatment has also caused considerable concern. Anaerobic ammonium oxidation (anammox) is a novel autotrophic nitrogen removal process that provides an opportunity for low-carbon remodelling of municipal wastewater treatment plants (MWTPs). The stable supply of nitrite is of great significance for the application of anammox. As a process with stable nitrite supply, partial denitrification (PD) is of great significance in the coupling nitrogen removal with anammox in municipal wastewater. Furthermore, innovation of the low-carbon nitrogen removal process can enable the recovery of abundant bioenergy resource from MWTPs. The low-carbon nitrogen removal via PD-anammox process and the bioenergy recovery for municipal wastewater in the previous studies has been summarised. On this basis, a novel energy-neutralisation municipal wastewater treatment process based on partial denitrification-anammox driven by sulphide produced in the side-stream has been proposed. The long-term retention of mainstream anammox and improvement of energy recovery efficiency under the requirement of ensuring nitrogen removal require additional detailed investigation.
Collapse
Affiliation(s)
- Jiayuan Deng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Zhangsong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
46
|
Zhang D, Yu H, Yang Y, Liu F, Li M, Huang J, Yu Y, Wang C, Jiang F, He Z, Yan Q. Ecological interactions and the underlying mechanism of anammox and denitrification across the anammox enrichment with eutrophic lake sediments. MICROBIOME 2023; 11:82. [PMID: 37081531 PMCID: PMC10116762 DOI: 10.1186/s40168-023-01532-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Increasing attention has recently been devoted to the anaerobic ammonium oxidation (anammox) in eutrophic lakes due to its potential key functions in nitrogen (N) removal for eutrophication control. However, successful enrichment of anammox bacteria from lake sediments is still challenging, partly due to the ecological interactions between anammox and denitrifying bacteria across such enrichment with lake sediments remain unclear. RESULTS This study thus designed to fill such knowledge gaps using bioreactors to enrich anammox bacteria with eutrophic lake sediments for more than 365 days. We continuously monitored the influent and effluent water, measured the anammox and denitrification efficiencies, quantified the anammox and denitrifying bacteria, as well as the related N cycling genes. We found that the maximum removal efficiencies of NH4+ and NO2- reached up to 85.92% and 95.34%, respectively. Accordingly, the diversity of anammox and denitrifying bacteria decreased significantly across the enrichment, and the relative dominant anammox (e.g., Candidatus Jettenia) and denitrifying bacteria (e.g., Thauera, Afipia) shifted considerably. The ecological cooperation between anammox and denitrifying bacteria tended to increase the microbial community stability, indicating a potential coupling between anammox and denitrifying bacteria. Moreover, the nirS-type denitrifiers showed stronger coupling with anammox bacteria than that of nirK-type denitrifiers during the enrichment. Functional potentials as depicted by metagenome sequencing confirmed the ecological interactions between anammox and denitrification. Metagenome-assembled genomes-based ecological model indicated that the most dominant denitrifiers could provide various materials such as amino acid, cofactors, and vitamin for anammox bacteria. Cross-feeding in anammox and denitrifying bacteria highlights the importance of microbial interactions for increasing the anammox N removal in eutrophic lakes. CONCLUSIONS This study greatly expands our understanding of cooperation mechanisms among anammox and denitrifying bacteria during the anammox enrichment with eutrophic lake sediments, which sheds new insights into N removal for controlling lake eutrophication. Video Abstract.
Collapse
Affiliation(s)
- Dandan Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuchun Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Mingyue Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Yuhe Yu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Feng Jiang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
47
|
Al-Hazmi HE, Lu X, Grubba D, Majtacz J, Badawi M, Mąkinia J. Sustainable nitrogen removal in anammox-mediated systems: Microbial metabolic pathways, operational conditions and mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161633. [PMID: 36669661 DOI: 10.1016/j.scitotenv.2023.161633] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Anammox-mediated systems have attracted considerable attention as alternative cost-effective technologies for sustainable nitrogen (N) removal from wastewater. This review comprehensively highlights the importance of understanding microbial metabolism in anammox-mediated systems under crucial operation parameters, indicating the potentially wide applications for the sustainable treatment of N-containing wastewater. The partial nitrification-anammox (PN-A), simultaneous PN-A and denitrification (SNAD) processes have demonstrated sustainable N removal from sidestream wastewater. The partial denitrification-anammox (PD-A) and denitrifying anaerobic methane oxidation-anammox (DAMO-A) processes have advanced sustainable N removal efficiency in mainstream wastewater treatment. Moreover, N2O production/emission hotspots are extensively discussed in anammox-based processes and are related to the dominant ammonia-oxidizing bacteria (AOB) and denitrifying heterotrophs. In contrast, N2O is not produced in the metabolism pathways of AnAOB and DAMO-archaea; Moreover, the actual contribution of N2O production by dissimilatory nitrate reduction to ammonium (DNRA) and DAMO-bacteria in their species remains uncertain. Thus, PD-A and DAMO-A processes would achieve reduction in greenhouse gas production, as well as energy consumption for the reliability of N removal efficiencies. In addition to reaction mechanisms, this review covers the mathematical models for simultaneous anammox, partial nitrification and/or denitrification (i.e., PN-A, PD-A, and SNAD). Promising NO3- reduction technologies by endogenous PD, sulfur-driven autotrophic denitrification, and DNRA by anammox are also discussed. In summary, this review provides a better understanding of sustainable N removal in anammox-mediated systems, thereby encouraging future investigation and exploration of the sustainable N bio-treatment from wastewater.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Xi Lu
- Three Gorges Smart Water Technology Co., Ltd., 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
48
|
Zhao W, Bi X, Bai M, Wang Y. Research advances of ammonia oxidation microorganisms in wastewater: metabolic characteristics, microbial community, influencing factors and process applications. Bioprocess Biosyst Eng 2023; 46:621-633. [PMID: 36988685 DOI: 10.1007/s00449-023-02866-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Ammonia oxidation carried out by ammonia-oxidizing microorganisms (AOMs) is a central step in the global nitrogen cycle. Aerobic AOMs comprise conventional ammonia-oxidizing bacteria (AOB), novel ammonia-oxidizing archaea (AOA), which could exist in complex and extreme conditions, and complete ammonia oxidizers (comammox), which directly oxidize ammonia to nitrate within a single cell. Anaerobic AOMs mainly comprise anaerobic ammonia-oxidizing bacteria (AnAOB), which can transform NH4+-N and NO2--N into N2 under anaerobic conditions. In this review, the unique metabolic characteristics, microbial community of AOMs and the influencing factors are discussed. Process applications of nitrification/denitrification, nitritation/denitrification, nitritation/anammox and partial denitrification/anammox in wastewater treatment systems are emphasized. The future development of nitrogen removal processes using AOMs is expected, enrichment of comammox facilitates the complete nitrification performance, inhibiting the activity of comammox and NOB could achieve stable nitritation, and additionally, AnAOB conducting the anammox process in municipal wastewater is a promising development direction.
Collapse
Affiliation(s)
- Weihua Zhao
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China.
- Qingdao University of Technology, Huangdao District, Qingdao, 266525, People's Republic of China.
| | - Xuejun Bi
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Meng Bai
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Yanyan Wang
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| |
Collapse
|
49
|
Zhang Q, Zheng J, Zhao L, Liu W, Chen L, Cai T, Ji XM. Succession of microbial communities reveals the inevitability of anammox core in the development of anammox processes. BIORESOURCE TECHNOLOGY 2023; 371:128645. [PMID: 36681349 DOI: 10.1016/j.biortech.2023.128645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The lack of anammox seeds is regarded as the bottleneck of anammox-based processes. Although the interactions in anammox consortia have attracted increasing attention, little is known about the influence of inoculated sludge populations on the growth of anammox bacteria. In this study, four sludge of distinct communities mixed with anammox sludge (the relative abundance of Ca. Kuenenia was 1.96 %) were used as the seeds, respectively for the start-up of anammox processes. Notably, all these mixed microbial communities tend to form a similar microbial community, defined as the anammox core, containing anammox-bacteria (22.9 ± 5.9 %), ammonia-oxidizing-bacteria (0.8 ± 0.7 %), nitrite-oxidizing-bacteria (0.2 ± 0.2 %), Chloroflexi-bacteria (0.7 ± 0.4 %), and heterotrophic-denitrification-bacteria (0.3 ± 0.2 %). It also elucidated that the communities of Nitrosomonas-dominated sludge were the closest to the anammox core, and achieved the highest nitrogen-removal rate of 0.73 kg-N m-3 d-1. This study sheds light on the solution to the shortage of anammox seeds in the full-scale wastewater treatment application.
Collapse
Affiliation(s)
- Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Leizhen Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
50
|
Zeng Z, Wang Y, Zhu W, Xie T, Li L. Effect of COD/ NO3−-N ratio on nitrite accumulation and microbial behavior in glucose-driven partial denitrification system. Heliyon 2023; 9:e14920. [PMID: 37123922 PMCID: PMC10130780 DOI: 10.1016/j.heliyon.2023.e14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
COD/NO3 --N ratio was considered to be one of the key factors achieving effective nitrite accumulation during partial denitrification. In two parallel reactors incubated with glucose as carbon source at COD/NO3 --N of 3 and 5, respectively, the microbial community structure shift and the nitrite accumulation performance during long-term operation were investigated. The maximum nitrite accumulation ratios at COD/NO3 --N of 3 and 5 were 17.9% and 47.04%, respectively. Thauera was the dominant genus in both reactors on day 220 with the relative abundance of 18.67% and 64.01%, respectively. Batch experiments with different electron acceptors suggested that the distinction in nitrite accumulation at COD/NO3 --N of 3 and 5 might be caused by the differences in the abundance of Thauera.
Collapse
|