1
|
Li J, Zhou L, Zhao J, Zhang W, Pan B, Hua M. Enhanced methanogenesis of wastewater anaerobic digestion by nanoscale zero-valent iron: Mechanism on intracellular energy conservation and amino acid metabolism. BIORESOURCE TECHNOLOGY 2025; 423:132243. [PMID: 39961521 DOI: 10.1016/j.biortech.2025.132243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Nanoscale zero-valent iron (nZVI)-mediated anaerobic digestion commonly focuses on electron transfer between syntrophic bacteria, neglecting intracellular energy conservation strategies and amino acid metabolism. In this study, F420H2 dehydrogenase abundance increased by 5.1 %, 27.0 %, and 31.5 % at 10 mM, mM, 30 mM, and 50 mM nZVI dosing, respectively, enabling an efficient transmembrane proton-coupled electron transfer mode. Electron bifurcation (EB) enzymes involved in methanogenesis responded differently to nZVI, with HdrA2B2C2 initially increasing at 10 mM and decreasing at 30 mM and 50 mM, while MvhADG-HdrABC was completely down-regulated. Metabolomics further demonstrated that nZVI reduced riboflavin and flavin mononucleotide content, which is detrimental to the EB. Instead, an alternative measure to maintain electron flow and energy conservation under high nZVI exposure is high expression of ndh and F-type or V/A-type ATPase genes. Additionally, enhancing C1-unit carrier expression through amino acid metabolism regulation emerged as a key strategy. This study provides new perspectives on nZVI-mediated anaerobic digestion.
Collapse
Affiliation(s)
- Jibin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Lingyun Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinhao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Chung TH, Dhillon SK, Shin C, Pant D, Dhar BR. Microbial electrosynthesis technology for CO 2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol Adv 2024; 77:108474. [PMID: 39521393 DOI: 10.1016/j.biotechadv.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Currently, global annual CO2 emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO2 remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO2 as well as CO2 in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO2 delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Kaur Dhillon
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States
| | - Deepak Pant
- Electrochemistry Excellence Centre, Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Jin J, Wu Y, Cao P, Zheng X, Zhang Q, Chen Y. Potential and challenge in accelerating high-value conversion of CO 2 in microbial electrosynthesis system via data-driven approach. BIORESOURCE TECHNOLOGY 2024; 412:131380. [PMID: 39214179 DOI: 10.1016/j.biortech.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microbial electrosynthesis for CO2 utilization (MESCU) producing valuable chemicals with high energy density has garnered attention due to its long-term stability and high coulombic efficiency. The data-driven approaches offer a promising avenue by leveraging existing data to uncover the underlying patterns. This comprehensive review firstly uncovered the potentials of utilizing data-driven approaches to enhance high-value conversion of CO2 via MESCU. Firstly, critical challenges of MESCU advancing have been identified, including reactor configuration, cathode design, and microbial analysis. Subsequently, the potential of data-driven approaches to tackle the corresponding challenges, encompassing the identification of pivotal parameters governing reactor setup and cathode design, alongside the decipheration of omics data derived from microbial communities, have been discussed. Correspondingly, the future direction of data-driven approaches in assisting the application of MESCU has been addressed. This review offers guidance and theoretical support for future data-driven applications to accelerate MESCU research and potential industrialization.
Collapse
Affiliation(s)
- Jiasheng Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Peiyu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Xia R, Cheng J, Chen Z, Zhang Z, Zhou X, Zhou J, Zhang M. Atomic Pyridinic Nitrogen as Highly Active Metal-Free Coordination Sites at the Biotic-Abiotic Interface for Bio-Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306331. [PMID: 38054812 DOI: 10.1002/smll.202306331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Bio-electrochemical conversion of anthropogenic CO2 into value-added products using cost-effective metal-free catalysts represents a promising strategy for sustainable fuel production. Herein, N-doped carbon nanosheets synthesized via pyrolysis of the zeolitic-imidazolate framework (ZIF) are developed for constructing efficient biohybrids to facilitate CO2-to-CH4 conversion. The microbial enrichment and bio-interfacial charge transfer are significantly affected by the proportion of the co-existed graphitic-N, pyridinic-N, and pyrrolic-N in the defective carbon nanosheets. It is unfolded that pyridinic-N and pyrrolic-N with the doped N atoms near the edge can significantly enhance the adsorption of their adjacent C atoms toward O, leading to improved microbe enrichment. Especially, pyridinic-N which can provide one p electron to the aromatic π system, greatly enhances the electron-donating capability of the carbon nanosheets to the microorganisms. Correspondingly, due to its largest amount of pyridinic-N doping, the N-doped carbon nanosheets derived from ZIF pyrolysis at 900 °C (denoted 900-NC) achieve the highest methane production of ≈215.7 mmol m-2 day-1 with a high selectivity (Faradaic efficiency = ≈94.2%) at -0.9 V versus Ag/AgCl. This work demonstrates the effectiveness of N-doped carbon catalysts for bio-electrochemical CO2 fixation and contributes to the understanding of N functionalities toward microbiome response and biotic-abiotic charge transfer in various bio-electrochemical systems.
Collapse
Affiliation(s)
- Rongxin Xia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zhuo Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Ze Zhang
- Shanghai Institute of Space Propulsion, Shanghai, 201112, China
- Shanghai Academy of Spaceflight Technology (SAST), Shanghai, 201109, China
| | - Xinyi Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Meng Zhang
- State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Tian Y, Liang D, Li D, Liu G, Wu J, Xie T, Li J, Feng Y. Re-evaluating the Contribution of a Fe-Based Current Collector to Bioelectrochemical Methanogenesis: Role and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21757-21766. [PMID: 38095196 DOI: 10.1021/acs.est.3c07018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The metal-based current collector has been adopted as an essential component of cathodes for electron delivery in microbial electrosynthesis (MES) cells, while the effect of its corrosion on biofilm development and electromethanogenesis activity was overlooked. In this study, the corrosion of the Fe-based current collector was identified to in situ decorate cathode naturally which substantially boosted the performance of CO2 electromethanogenesis in terms of taking over two-thirds less time starting up MES and increasing the CH4 production rate by 3.5 times. Despite the low concentration of Fe (0.13 at%), the electrochemical analysis indicated that it was possible for these Fe deposits to act as electron shuttles and catalysts for H2 production to benefit methanogenesis. The Fe aggregates weakened the dependence of methanogens on electroactive bacteria (EABs) to conduct methanogenesis via interspecies electron transfer as the proportion of EABs on Bio FeCF (with Fe current collector, where CF is carbon felt) was only 25.5% of that on Bio CF (without Fe current collector). On the contrary, the abundance of genes encoding the proteins to uptake extracellular electrons of methanogens on Bio FeCF was 2.3 times higher than that on Bio CF. The enhanced energy transfer maintained high amounts of methanogens and live microorganisms. This study comprehensively explored the multiple roles of Fe-based current collectors in enhancing CO2 electromethanogenesis.
Collapse
Affiliation(s)
- Yan Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jing Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Ting Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| |
Collapse
|
6
|
Xia R, Cheng J, Chen Z, Zhang Z, Zhou X, Zhou J. Co-NC@Co-NP hierarchical nanoforest steering charge exchange efficiency at biotic-abiotic interface for microbial electrochemical carbon reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166793. [PMID: 37666340 DOI: 10.1016/j.scitotenv.2023.166793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Converting anthropogenic carbon dioxide (CO2) to value-added products using bio-electrochemical conversions represents a promising strategy for producing sustainable fuel. However, the reaction kinetics are hindered by insufficient attachment of microorganisms and limited charge extraction at the bioinorganic interface. A hierarchical nanoforest with doped cobalt‑nitrogen-doped carbon covering cobalt nanoparticle (Co-NC@Co-NP) was integrated with a CO2-to-CH4 conversion microbiome for methane production to address these shortcomings. In-situ nanoforests were developed on the nanosheet by chemical vapor deposition with Co nanoparticles catalyzed. The bio-nanowire-like carbon nanotubes enhanced the electrostatic force for microbe enrichment via the tip effect, providing a maximum of 3.6-fold electron-receiving microbes to utilize reducing equivalents. The Co-NC@Co-NP enhanced the direct electron transfer between microbes and electrodes, reducing the adoption of energy barriers for heme-like proteins. Thus, the optimized electron transfer pathway improved selectivity by a factor of 2.0 compared to the pristine nanosheet biohybrid. Furthermore, the adjusted microbial community structure provided sufficient methanogenesis genes to match the strong electron flow, achieving maximal methane production rates (311.1 mmol/m2/day at -0.9 V vs. Ag/AgCl), 8.62 times higher than those of the counterpart nanosheet biohybrid (36.06 mmol/m2/day). This work demonstrates a comprehensive assessment of biotic-abiotic energy transfer, which may serve as a guiding principle for designing efficient bio-electrochemical systems.
Collapse
Affiliation(s)
- Rongxin Xia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Zhuo Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Ze Zhang
- Shanghai Institute of Space Propulsion, Shanghai 201112, China; Shanghai Academy of Spaceflight Technology (SAST), Shanghai 201109, China
| | - Xinyi Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Kumar S, Tripathi A, Chakraborty I, Ghangrekar MM. Engineered nanomaterials for carbon capture and bioenergy production in microbial electrochemical technologies: A review. BIORESOURCE TECHNOLOGY 2023; 389:129809. [PMID: 37797801 DOI: 10.1016/j.biortech.2023.129809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
The mounting threat of global warming, fuelled by industrialization and anthropogenic activities, is undeniable. In 2017, atmospheric carbon dioxide (CO2), the primary greenhouse gas, exceeded 410 ppm for the first time. Shockingly, on April 28, 2023, this figure surged even higher, reaching an alarming 425 ppm. Even though extensive research has been conducted on developing efficient carbon capture and storage technologies, most suffer from high costs, short lifespans, and significant environmental impacts. Recently, the use of engineered nanomaterials (ENM), particularly in microbial electrochemical technologies (METs), has gained momentum owing to their appropriate physicochemical properties and catalytic activity. By implementing ENM, the MET variants like microbial electrosynthesis (MES) and photosynthetic microbial fuel cells (pMFC) can enhance carbon capture efficiency with simultaneous bioenergy production and wastewater treatment. This review provides an overview of ENMs' role in carbon capture within MES and pMFC, highlighting advancements and charting future research directions.
Collapse
Affiliation(s)
- Santosh Kumar
- P. K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Akash Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Makarand M Ghangrekar
- P. K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
8
|
Song Y, Zhang Z, Fang Y, Liu Y, Li D, Feng Y. Evaluating the stability and performance of a novel core-shell ZVI@C-montmorillonite particle for anaerobic treatment of chloramphenicol wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132389. [PMID: 37666169 DOI: 10.1016/j.jhazmat.2023.132389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
ZVI@C-MP is a novel composite particle consisting of zero-valent iron (ZVI) enclosed within a carbon shell. The purpose of this composite material is to enhance the anaerobic treatment of wastewater containing chloramphenicol (CAP). This approach aims to address the initial challenge of excessive corrosion experienced by ZVI, followed by its subsequent passivation and inactivation. ZVI@C-MP was synthesized through a hydrothermal process and calcination, with montmorillonite as binder, it exhibits stability, iron-carbon microelectrolysis (ICME) properties, and strong adsorption for CAP. Its ICME actions include releasing iron ions (0.70 mg/L) and COD (11.3 mg/L), generating hydrogen (3.82%), and raising the pH from 6.30 to 7.71. With minimal structural changes, it achieved release equilibrium. ZVI@C-MP boasts high removal efficiency of CAP (98.96%) by adsorption, attributed to surface characteristics (surface area: 167.985 m2/g; pore volume: 0.248 cm3/g). The addition of ZVI@C-MP increases COD removal (10.16%), methane production (72.86%), and reduces extracellular polymeric substances (EPS) from 70.58 to 52.72 mg/g MLVSS. It reduces microbial by-products and toxic effects, enhancing CAP biodegradation and microbial metabolic activity. ZVI@C-MP's electrical conductivity and biocompatibility bolster functional flora for interspecies electron transfer. It's a novel approach to antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbin Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Dongyi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
9
|
Wu KK, Zhao L, Zheng XC, Sun ZF, Wang ZH, Chen C, Xing DF, Yang SS, Ren NQ. Recovery of methane and acetate during ex-situ biogas upgrading via novel dual-membrane aerated biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 382:129181. [PMID: 37210035 DOI: 10.1016/j.biortech.2023.129181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Biological biogas upgrading has been well-proven to be a promising approach for renewable bioenergy recovery, but hydrogen (H2)-assisted ex-situ biogas upgrading is hindered by a large solubility discrepancy between H2 and carbon dioxide (CO2). This study established a new dual-membrane aerated biofilm reactor (dMBfR) to improve the upgrading efficiency. Results showed that dMBfR operated at 1.25 atm H2 partial pressure, 1.5 atm biogas partial pressure, and 1.0 d hydraulic retention time could significantly improve the efficiency. The maximum methane purity of 97.6%, acetate production rate of 34.5 mmol L-1d-1, and H2 and CO2 utilization ratios of 96.5% and 96.3% were achieved. Further analysis showed that the improved performances of biogas upgrading and acetate recovery were positively correlated with the total abundances of functional microorganisms. Taken together, these results suggest that the dMBfR, which facilitates the precise CO2 and H2 supply, is an ideal approach for efficient biological biogas upgrading.
Collapse
Affiliation(s)
- Kai-Kai Wu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiao-Chuan Zheng
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhong-Fang Sun
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Lin Z, Wang L, Luo M, Yi X, Chen J, Wang Y. Interactions between arsenic migration and CH 4 emission in a soil bioelectrochemical system under the effect of zero-valent iron. CHEMOSPHERE 2023; 332:138893. [PMID: 37164197 DOI: 10.1016/j.chemosphere.2023.138893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Dissimilatory soil arsenic (As) reduction and release are driven by microbial extracellular electron transfer (EET), while reverse EET mediates soil methane (CH4) emission. Nevertheless, the detailed biogeochemical mechanisms underlying the tight links between soil As migration and methanogenesis are unclear. This study used a bioelectrochemical-based system (BES) to explore the potential effects of zero-valent iron (ZVI) addition on "As migration-CH4 emission" interactions from chemical and microbiological perspectives. Voltage and ZVI amendment experiments showed that dissolved As was efficiently immobilized with increased CH4 production in the soil BES, As release and CH4 production exhibited a high negative exponential correlation, and reductive As dissolution could be entirely inhibited in the methanogenic stage. Gene quantification and bacterial community analysis showed that in contrast to applied voltage, ZVI changed the spatial heterogeneity of the distribution of electroactive microorganisms in the BES, significantly decreasing the relative abundance of arrA and dissimilatory As/Fe-reducing bacteria (e.g., Geobacter) while increasing the abundance of aceticlastic methanogens (Methanosaeta), which then dominated CH4 production and As immobilization after ZVI incorporation. In addition to biogeochemical activities, coprecipitation with ferric (iron) contributed 77-93% dissolved As removal under ZVI addition. This study will enhance our knowledge of the processes and microorganisms controlling soil As migration and CH4 emission.
Collapse
Affiliation(s)
- Zhenyue Lin
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, 350108, China
| | - Liuying Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingyu Luo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaofeng Yi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
11
|
Wang X, Xin J, Yuan M, Zhao F, Wang L. Coupled microscale zero valent iron-autotrophic hydrogen bacteria dechlorination system is not always superior to its standalone counterparts: A sustainable remediation perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159364. [PMID: 36228794 DOI: 10.1016/j.scitotenv.2022.159364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The coupling of microscale zero-valent iron with autotrophic hydrogen bacteria (mZVI-AHB) are often believed to show greater potential than the single abiotic or biotic systems in remediating chlorinated aliphatic hydrocarbon-contaminated groundwater. However, our understanding of the remediation performance of this system under real field conditions, especially by incorporating the concept of sustainable remediation, remains limited. In this study, the performances of the mZVI, H2-AHB, and mZVI-AHB systems in dechlorinating groundwater containing complex electron acceptors were compared by evaluating their removal efficiency (RE), reaction products, and electron efficiency (EE), using trichloroethylene (TCE) as the target contaminant and NO3- and SO42- as the coexisting natural electron acceptors. Ultimately, which of these systems had TCE removal superiority was dependent on the coexisting electron acceptor. mZVI-AHB and mZVI resulted in more complete dechlorination, whereas H2-AHB exhibited higher N2 selectivity in reducing NO3-. Regardless of the coexisting electron acceptor, the mZVI-alone system showed the highest EE. Finally, the sustainability concerns and applicability of the three systems were evaluated on the basis of their TCE RE, complete dechlorination ratio, N2 selectivity, EE, and cost, which were integrated into a comparison of overall benefits. Our findings provide comprehensive and insightful information on the factors that determine remediation scheme selection in real practice.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Litao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
12
|
Wu KK, Zhao L, Sun ZF, Wang ZH, Chen C, Ren HY, Yang SS, Ren NQ. Synergistic effect of hydrogen and nanoscale zero-valent iron on ex-situ biogas upgrading and acetate recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159100. [PMID: 36174700 DOI: 10.1016/j.scitotenv.2022.159100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen (H2) assisted ex-situ biogas upgrading and liquid chemicals production can augment the fossil fuel-dominated energy market, and alleviate CO2-induced global warming. Recent investigations confirmed that nanoscale zero-valent iron (nZVI) enabled the enhancement of anaerobic digestion for biogas production. However, little is known about the effect of nZVI on the downstream ex-situ biogas upgrading. Herein, different levels (0 mg L-1, 100 mg L-1, 200 mg L-1, 500 mg L-1, 1000 mg L-1, 2000 mg L-1) of nZVI were added for H2-assisted ex-situ biogas upgrading, to study whether nZVI could impact the biomethane purity and acetate yield for the first time. Results showed that all tested nZVI levels were favorable for biogas upgrading in the presence of H2, the highest biomethane content (94.1 %, v/v), the CO2 utilization ratio (95.9 %), and acetate yield (19.4 mmol L-1) were achieved at 500 mg L-1 nZVI, respectively. Further analysis indicated that increased biogas upgrading efficiency was related to an increase in extracellular polymeric substances, which ensures the microbial activity and stability of the ex-situ biogas upgrading. Microbial community characterization showed that the Petrimonas, Romboutsia, Acidaminococcus, and Clostridium predominated the microbiome during biogas upgrading at 500 mg L-1 nZVI with H2 supply. These results suggested that nZVI and H2 contributed jointly to promoting the bioconversion of CO2 in biogas to acetate. The findings could be helpful for paving a new way for efficient simultaneous ex-situ biogas upgrading and liquid chemicals recovery.
Collapse
Affiliation(s)
- Kai-Kai Wu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhong-Fang Sun
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
He ZW, Zou ZS, Ren YX, Tang CC, Zhou AJ, Liu W, Wang L, Li Z, Wang A. Roles of zero-valent iron in anaerobic digestion: Mechanisms, advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158420. [PMID: 36049687 DOI: 10.1016/j.scitotenv.2022.158420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
With the rapid growth of population and urbanization, more and more bio-wastes have been produced. Considering organics contained in bio-wastes, to recover resource from bio-wastes is of great significance, which can not only achieve the resource recycle, but also protect the environment. Anaerobic digestion (AD) has been proved as one of the most promising strategies to recover bio-energy from bio-wastes, as well as to realize the reduction of bio-wastes. However, the conventional interspecies electron transfer is sensitive to environmental shocks, such as high ammonia, organic pollutants, metal ions, etc., which lead to instability or failure of AD. The recent findings have proved that the introduction of zero-valent iron (ZVI) in AD system can significantly enhance methane production from bio-wastes. This review systematically highlighted the recent advances on the roles of ZVI in AD, including underlying mechanisms of ZVI on AD, performance enhancement of AD contributed by ZVI, and impact factors of AD regulated by ZVI. Furthermore, current limitations and outlooks have been analyzed and concluded. The roles of ZVI on underlying mechanisms in AD include regulating reaction conditions, electron transfer mode and function of microbial communities. The addition of ZVI in AD can not only enhance bio-energy recovery and toxic contaminants removal from bio-wastes, but also have the potential to buffer adverse effect caused by inhibitors. Moreover, the electron transfer modes induced by ZVI include both interspecies hydrogen transfer and direct interspecies electron transfer pathways. How to comprehensively evaluate the effects of ZVI on AD and further improve the roles of ZVI in AD is urgently needed for practical application of ZVI in AD. This review aims to provide some references for the introduction of ZVI in AD for enhancing bio-energy recovery from bio-wastes.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zheng-Shuo Zou
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
14
|
Gomez Vidales A, Omanovic S, Li H, Hrapovic S, Tartakovsky B. Evaluation Of Biocathode Materials For Microbial Electrosynthesis Of Methane And Acetate. Bioelectrochemistry 2022; 148:108246. [DOI: 10.1016/j.bioelechem.2022.108246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
|
15
|
Gao T, Zhang H, Xu X, Teng J. Mutual effects of CO 2 absorption and H 2-mediated electromethanogenesis triggering efficient biogas upgrading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151732. [PMID: 34826488 DOI: 10.1016/j.scitotenv.2021.151732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion coupled with bioelectrochemical system (BES) is a promising approach for biogas upgrading with low energy input. However, the alkalinity generation from electromethanogenesis is invariably ignored which could serve as a potential assistant for CO2 removal through the transformation into dissolved inorganic carbon (DIC). Herein, a novel bioelectrochemical CO2 conversion in the methanogenic BES was proposed based on active CO2 capture and in-situ microbial utilization. It was found that the BES using a stainless steel/carbon felt hybrid biocathode (BES-SSCF reactor) achieved a CH4 yield of 0.33 ± 0.03 LCH4/gCODremoval and increased CH4 production rate by 28.3% of BES-CF reactor at 1.0 V applied voltage. As the experiment progressed, CH4 content increased to 93.1% and CO2 content in the upgraded biogas maintained at below 3%. The continuous proton consumption from H2 evolution reaction in the hybrid biocathode was capable of creating a slightly alkaline condition in the BES-SSCF reactor and thereby the CO2 capture as bicarbonate was enhanced through endogenous alkalinity absorption. Microbial community analysis revealed that significant enrichment of Methanobacterium and Methanosarcina at the BES-SSCF cathodic biofilm was favorable for bicarbonate reduction into CH4 via establishment of H2-mediated electron transfer. Consequently, the remained CO2 and DIC only accounted for 12% of total carbon in the BES-SSCF reactor and the high conversion rate of CO2 to CH4 (82.3%) was achieved. These results unraveled an innovative CO2 utilization mechanism integrating CO2 absorption with H2-mediated electromethanogenesis.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China.
| | - Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| |
Collapse
|
16
|
Tian T, Zhou K, Li YS, Liu DF, Yu HQ. Recovery of Iron-Dependent Autotrophic Denitrification Activity from Cell-Iron Mineral Aggregation-Induced Reversible Inhibition by Low-Intensity Ultrasonication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:595-604. [PMID: 34932326 DOI: 10.1021/acs.est.1c05553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Iron-dependent autotrophic denitrification (IDAD) has garnered increasing interests as an efficient method for removing nitrogen from wastewater with a low carbon to nitrogen ratio. However, an inevitable deterioration of IDAD performance casts a shadow over its further development. In this work, the hidden cause for such a deterioration is uncovered, and a viable solution to this problem is provided. Batch test results reveal that the aggregation of microbial cells and iron-bearing minerals induced a cumulative and reversible inhibition on the activity of IDAD sludge. Extracellular polymeric substances were found to play a glue-like role in the cell-iron mineral aggregates, where microbial cells were caged, and their metabolisms were suppressed. Adopting low-intensity ultrasound treatment efficiently restored the IDAD activity by disintegrating such aggregates rather than stimulating the microbial metabolism. Moreover, the ultrasonication-assisted IDAD bioreactor exhibited an advantageous nitrogen removal efficiency (with a maximum enhancement of 72.3%) and operational stability compared to the control one, demonstrating a feasible strategy to achieve long-term stability of the IDAD process. Overall, this work provides a better understanding about the mechanism for the performance deterioration and a simple approach to maintain the stability of IDAD.
Collapse
Affiliation(s)
- Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ke Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu-Sheng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Thanarasu A, Periyasamy K, Subramanian S. An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. CHEMOSPHERE 2022; 287:131886. [PMID: 34523450 DOI: 10.1016/j.chemosphere.2021.131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In the foreseeable future, renewable energy generation from electromethanogenesis to be more cost-effective energy. Electromethanogenesis system is a recent and efficient CO2 to methane technology to upgrade biogas to 100% methane for power generation. And this can be attained through by integrating anaerobic digestion with microbial electrolysis system. Microbial electrolysis system can able to support carbon reduction on cathode and oxidation on anode by CO2 capture thereby provides more CH4 production from an integrated anaerobic digestion system. Scale-up the recent advance technique of microbial electrolysis system in the anaerobic digestion process for 100% methane production for power generation is need of the hour. The overall objective of this review is to facilitate the recent technology of microbial electrolysis system in the anaerobic digestion process. At first, the function of electromethanogenesis system and innovative integrated design method are outlined. Secondly, different external parameters such as applied voltage, operating temperature, pH etc are examined for the significance on process optimization. Eventually, electrode selections, electrode spacing, surface chemistry and surface area are critically reviewed for the scale-up considerations of integration process.
Collapse
Affiliation(s)
- Amudha Thanarasu
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Karthik Periyasamy
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Sivanesan Subramanian
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India.
| |
Collapse
|
18
|
Zhao J, Li Y, Dong R. Recent progress towards in-situ biogas upgrading technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149667. [PMID: 34426339 DOI: 10.1016/j.scitotenv.2021.149667] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Yu Li
- College of Engineering, China Agricultural University, Qinghuadonglu No.17, 100083 Beijing, China.
| | - Renjie Dong
- College of Engineering, China Agricultural University, Qinghuadonglu No.17, 100083 Beijing, China.
| |
Collapse
|
19
|
Response of Methanogen Communities to the Elevation of Cathode Potentials in Bioelectrochemical Reactors Amended with Magnetite. Appl Environ Microbiol 2021; 87:e0148821. [PMID: 34432490 DOI: 10.1128/aem.01488-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electromethanogenesis refers to the process whereby methanogens utilize current for the reduction of CO2 to CH4. Setting low cathode potentials is essential for this process. In this study, we tested if magnetite, an iron oxide mineral widespread in the environment, can facilitate the adaptation of methanogen communities to the elevation of cathode potentials in electrochemical reactors. Two-chamber electrochemical reactors were constructed with inoculants obtained from paddy field soil. We elevated cathode potentials stepwise from the initial -0.6 V versus the standard hydrogen electrode (SHE) to -0.5 V and then to -0.4 V over the 130 days of acclimation. Only weak current consumption and CH4 production were observed in the bioreactors without magnetite. However, significant current consumption and CH4 production were recorded in the magnetite bioreactors. The robustness of electroactivity of the magnetite bioreactors was not affected by the elevation of cathode potentials from -0.6 V to -0.4 V. However, the current consumption and CH4 production were halted in the bioreactors without magnetite when the cathode potentials were elevated to -0.4 V. Methanogens related to Methanospirillum were enriched on the cathode surfaces of magnetite bioreactors at -0.4 V, while Methanosarcina relatively dominated in the bioreactors without magnetite. Methanobacterium also increased in the magnetite bioreactors but stayed off electrodes at -0.4 V. Apparently, the magnetite greatly facilitates the development of biocathodes, and it appears that with the aid of magnetite, Methanospirillum spp. can adapt to the high cathode potentials, performing efficient electromethanogenesis. IMPORTANCE Converting CO2 to CH4 through bioelectrochemistry is a promising approach to the development of green energy biotechnology. This process, however, requires low cathode potentials, which entails a cost. In this study, we tested if magnetite, a conductive iron mineral, can facilitate the adaptation of methanogens to the elevation of cathode potentials. In two-chamber reactors constructed by using inoculants obtained from paddy field soil, biocathodes developed robustly in the presence of magnetite, whereas only weak activities in CH4 production and current consumption were observed in the bioreactors without magnetite. The elevation of cathode potentials did not affect the robustness of electroactivity of the magnetite bioreactors over the 130 days of acclimation. Methanospirillum strains were identified as the key methanogens associated with the cathode surfaces during the operation at high potentials. The findings reported in this study shed new light on the adaptation of methanogen communities to the elevated cathode potentials in the presence of magnetite.
Collapse
|
20
|
Ning X, Lin R, O'Shea R, Wall D, Deng C, Wu B, Murphy JD. Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems. iScience 2021; 24:102998. [PMID: 34522851 PMCID: PMC8426204 DOI: 10.1016/j.isci.2021.102998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomethane is suggested as an advanced biofuel for the hard-to-abate sectors such as heavy transport. However, future systems that optimize the resource and production of biomethane have yet to be definitively defined. This paper assesses the opportunity of integrating anaerobic digestion (AD) with three emerging bioelectrochemical technologies in a circular cascading bioeconomy, including for power-to-gas AD (P2G-AD), microbial electrolysis cell AD (MEC-AD), and AD microbial electrosynthesis (AD-MES). The mass and energy flow of the three bioelectrochemical systems are compared with the conventional AD amine scrubber system depending on the availability of renewable electricity. An energy balance assessment indicates that P2G-AD, MEC-AD, and AD-MES circular cascading bioelectrochemical systems gain positive energy outputs by using electricity that would have been curtailed or constrained (equivalent to a primary energy factor of zero). This analysis of technological innovation, aids in the design of future cascading circular biosystems to produce sustainable advanced biofuels.
Collapse
Affiliation(s)
- Xue Ning
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
- Corresponding author
| | - Richard O'Shea
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - David Wall
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Chen Deng
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Benteng Wu
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Jerry D. Murphy
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| |
Collapse
|
21
|
Zhang S, Jiang J, Wang H, Li F, Hua T, Wang W. A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Dykstra CM, Pavlostathis SG. Hydrogen sulfide affects the performance of a methanogenic bioelectrochemical system used for biogas upgrading. WATER RESEARCH 2021; 200:117268. [PMID: 34098269 DOI: 10.1016/j.watres.2021.117268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Methanogenic bioelectrochemical systems (BESs) can convert carbon dioxide (CO2) to methane (CH4) and may be used for anaerobic digester biogas upgrading. However, the effect of hydrogen sulfide (H2S), a common biogas component, on BES performance is unknown. Thus, the objective of this study was to assess the effect of H2S addition to the cathode headspace on BES performance at a range of initial gas-phase H2S concentrations (0-6% v/v), as well as its effect on the anode and cathode microbial communities. As the initial cathode headspace H2S increased from 0 to 2% (v/v), biocathodic CH4 production increased by two-fold to 3.56 ± 0.36 mmol/L-d, due to dissolved H2S transport from the cathode to the anode where H2S was oxidized. Elemental sulfur and sulfate were H2S oxidation products detected in the anode. Above 3% initial cathode headspace H2S, biocathodic CH4 production declined due to inhibition. A phylotype most closely related to Methanobrevibacter arboriphilus dominated the cathode archaeal communities. In the sulfide-amended BES, a phylotype similar to the exoelectrogen Ochrobactrum anthropi was enriched in both the anode and cathode, whereas phylotypes related to sulfate-reducing and sulfur oxidizing Bacteria were detected in the bioanode. Thus, sulfide transport and oxidation in the anode play an important role in methanogenic BESs treating sulfide-bearing biogas.
Collapse
Affiliation(s)
- Christy M Dykstra
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0512, United States; Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States.
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0512, United States
| |
Collapse
|
23
|
Lai CY, Zhou L, Yuan Z, Guo J. Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. WATER RESEARCH 2021; 197:117120. [PMID: 33862393 DOI: 10.1016/j.watres.2021.117120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
As a clean and renewable energy, biogas is an important alternative to fossil fuels. However, the high carbon dioxide (CO2) content in biogas limits its value as a fuel. 'Biogas upgrading' is an advanced process which removes CO2 from biogas, thereby converting biogas to biomethane, which has a higher commercial value. Microbial technologies offer a sustainable and cost-effective way to upgrade biogas, removing CO2 using hydrogen (H2) as electron donor, generated by surplus electricity from renewable wind or solar energy. Hydrogenotrophic methanogens can be applied to convert CO2 with H2 to methane (CH4), or alternatively, homoacetogens can convert both CO2 and H2 into value-added chemicals. Here, we comprehensively review the current state of biogas generation and utilization, and describe the advances in biological, H2-dependent biogas upgrading technologies, with particular attention to key challenges associated with the processes, e.g., metabolic limitations, low H2 transfer rate, and finite CO2 conversion rate. We also highlight several new strategies for overcoming technical barriers to achieve efficient CO2 conversion, including process optimization to eliminate metabolic limitation, novel reactor designs to improve H2 transfer rate and utilization efficiency, and employing advanced genetic engineering tools to generate more efficient microorganisms. The insights offered in this review will promote further exploration into microbial, H2-driven biogas upgrading, towards addressing the global energy crisis and climate change associated with use of fossil fuels.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Linjie Zhou
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
24
|
Long S, Zhao L, Chen J, Kim J, Huang CH, Pavlostathis SG. Tetracycline inhibition and transformation in microbial fuel cell systems: Performance, transformation intermediates, and microbial community structure. BIORESOURCE TECHNOLOGY 2021; 322:124534. [PMID: 33360083 DOI: 10.1016/j.biortech.2020.124534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Tetracycline (TC) transformation in the anode of an air cathode microbial fuel cell (MFC) and in the cathode of an MFC-Fenton system was investigated. TC at 10 mg/L in the anolyte was removed by 43-74% in 14-d cycles, mainly attributed to adsorption. The electrochemical activity, COD and acetate consumption of the anodic biofilm were inhibited by TC; inhibition was reversed when TC addition was stopped. Over 84 d of MFC operation with TC, Geobacter and Mycobacterium in the anode biofilm decreased, while Janthinobacterium and Comamonas increased. Over 99% of TC at 10-40 mg/L was removed within 8 h in the MFC-Fenton cathode. O2-•/HO2• and •OH were responsible for the cathodic TC degradation. The maximum current was 0.93 mA (at 250 Ω) and increased by 36.3% by the MFC-Fenton reaction. Cathodic MFC-Fenton is an efficient and energy-saving process for TC removal, compared to slow and problematic anodic TC bio-oxidation.
Collapse
Affiliation(s)
- Sha Long
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jinchen Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA.
| |
Collapse
|
25
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
26
|
Zhang J, Qu Y, Qi Q, Zhang P, Zhang Y, Tong YW, He Y. The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion: A review. WATER RESEARCH 2020; 186:116405. [PMID: 32932096 DOI: 10.1016/j.watres.2020.116405] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Zero-valent iron (ZVI) is known to be an additive in facilitating waste treatment and improving biogas production in anaerobic digestion (AD) systems. This review concentrates on the chemical cycle of iron as well as the function of the iron cycle in the removal of four kinds of pollutants: organic carbon, nitrogen, sulphur and phosphorus, which are commonly encountered in waste treatment. In recent studies, the addition of ZVI to an AD system promoted the in-situ production of CH4 from CO2, enabling carbon capture through biotechnology. Additionally, using iron-carbon microbial electrolytic cells in AD systems in order to accelerate electron transport, as well as specific pollutant degradation mechanisms, are illustrated in the present study. Particularly, the main factors affecting the removal efficiency of contaminants in a ZVI-AD system such as pH, VFA/ Alkalinity (ALK), oxidation-reduction potential and particle size are reviewed. According to the above characteristics, combined with technical model and economic analyses, an AD system based on ZVI was considered to be an economical, efficient and carbon-neutral pollutant treatment technology. Accordingly, Iron-based AD is suggested to be a promising and sustainable approach orientated to a circular economy, which may be applied to many waste treatments fields.
Collapse
Affiliation(s)
- Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yiyuan Qu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuxian Qi
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengshuai Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaobin Zhang
- School of Environmental Science and Technology, Dalian University of Technology, China
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
27
|
Dykstra CM, Cheng C, Pavlostathis SG. Comparison of Carbon Dioxide with Anaerobic Digester Biogas as a Methanogenic Biocathode Feedstock. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8949-8957. [PMID: 32544322 DOI: 10.1021/acs.est.9b07438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BES biogas upgrading studies have typically used bicarbonate or commercial gas mixtures as a biocathode substrate instead of anaerobic digester biogas. Therefore, the objective of this study was to (i) compare the performance of a methanogenic BES between CO2-fed and biogas-fed cycles; (ii) investigate possible factors that may account for observed performance differences; and (iii) assess the performance of a biogas-fed biocathode at various applied cathode potentials. The maximum 1-d CH4 production rate in a biogas-fed biocathode (3003 mmol/m2-d) was 350% higher than in a CO2-fed biocathode (666 mmol/m2-d), and the biogas-fed biocathode was capable of maintaining high performance despite a variable biogas feed composition. Anode oxidation of reduced gases (e.g., CH4 and H2S) from biogas may theoretically contribute 4% to 35% of the total charge transfer from anode to cathode at applied cathode potentials of -0.80 to -0.55 V (vs SHE). The introduction of biogas did not significantly change the biocathode archaeal community (dominated by a Methanobrevibacter sp. phylotype), but the bacterial community shifted away from Bacteroidetes and toward Proteobacteria, which may have contributed to the improved performance of the biogas-fed system. This study shows that anaerobic digester biogas is a promising biocathode feedstock for BES biogas upgrading.
Collapse
Affiliation(s)
- Christy M Dykstra
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
- School of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182-0003, United States
| | - Cheng Cheng
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
- College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
| |
Collapse
|
28
|
Gao X, Zhang Y, Li F, Tian B, Wang X, Wang Z, Carozza JC, Zhou Z, Han H, Xu C. Surface Modulation and Chromium Complexation: All-in-One Solution for the Cr(VI) Sequestration with Bifunctional Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8373-8379. [PMID: 32421314 DOI: 10.1021/acs.est.0c00710] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sulfidation of zero valent iron (ZVI) to an Fe@FeSx (S-ZVI) composite has been intensively explored in the ZVI field. Yet, further benefits from the FeSx coating layer are seldom realized, especially those effectively using its intrinsic physical and chemical properties for elaborate design. Here, we demonstrate that in a traditional Cr(VI) sequestration reaction, the FeSx layer displays a great utility in immobilizing molecules containing hydroxyl groups (-OH) and hence, attracting Cr(VI) complexes chelated with carboxyl organics (RCOOH). Such intermolecular attraction readily promotes the diffusion of the Cr(VI) complexes to the S-ZVI surface, affording a higher reaction rate for the Cr(VI) sequestration process. In addition, the above mechanism was used to guide a rational selection of molecules incorporating both hydroxyl and carboxyl functional groups with a proper ratio and thereby, a significantly improved reaction efficiency was achieved. Furthermore, the FeSx phase was revealed to be consumed in the reaction, acting as a supplementary reductant. This work is the first to unveil the relationship between molecules with specific functionalization and the FeSx phase, providing a general rule in choosing appropriate reaction media for Cr(VI) sequestration and related reactions.
Collapse
Affiliation(s)
- Xuyan Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Boyang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jesse C Carozza
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Haixiang Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
29
|
Liu C, Sun D, Zhao Z, Dang Y, Holmes DE. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer. BIORESOURCE TECHNOLOGY 2019; 291:121877. [PMID: 31376672 DOI: 10.1016/j.biortech.2019.121877] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Bioelectrochemical conversion of CO2 to CH4 is a promising way to increase the calorific value of biogas produced during anaerobic digestion. There are two groups of methanogens enriched in these systems, hydrogenotrophs and acetoclastic methanogens that can also directly accept electrons from an electrode or another microorganism. In this study, a microbial electrolysis cell (MEC) poised at -500 mV (vs. SHE) was operated for biogas upgrading. Methane content in the biogas increased from 71% to >90%, and 8.2% of the CO2 was converted to methane. Methanothrix, an acetoclastic methanogen that can participate in direct electron transfer (DET), and Azonexus, an acetate-oxidizing electrogen, were enriched on the cathode. Transcriptomics revealed that Methanothrix on the cathode were using the CO2 reduction pathway, while Methanothrix in the bulk sludge were using the acetate decarboxylation pathway for production of methane. These results show that stimulation of DET in MEC enhances biogas-upgrading processes.
Collapse
Affiliation(s)
- Chuanqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, United States
| |
Collapse
|
30
|
Zhang Z, Song Y, Zheng S, Zhen G, Lu X, Kobayashi T, Xu K, Bakonyi P. Electro-conversion of carbon dioxide (CO 2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. BIORESOURCE TECHNOLOGY 2019; 279:339-349. [PMID: 30737066 DOI: 10.1016/j.biortech.2019.01.145] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Given the aggravated greenhouse effect caused by CO2 and the current energy shortage, CO2 capture and reuse has been gaining ever-increasing concerns. Microbial Electrolysis Cells (MECs) has been considered to be a promising alternative to recycle CO2 bioelectrochemically to low-carbon electrofuels such as CH4 by combining electroactive microorganisms with electrochemical stimulation, enabling both CO2 fixation and energy recovery. In spite of the numerous efforts dedicated in this field in recent years, there are still many problems that hinder CO2 bioelectroconversion technique from the scaling-up and potential industrialization. This review comprehensively summarized the working principles, extracellular electron transfers behaviors, and the critical factors limiting the wide-spread utilization of CO2 electromethanogenesis. Various characterization and electrochemical testing methods for helping to uncover the underlying mechanisms in CO2 electromethanogenesis have been introduced. In addition, future research needs for pushing forward the development of MECs technology in real-world CO2 fixation and recycling were elaborated.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shaojuan Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China.
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Takuro Kobayashi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| |
Collapse
|
31
|
Wilkin RT, Lee TR, Sexton MR, Acree SD, Puls RW, Blowes DW, Kalinowski C, Tilton JM, Woods LL. Geochemical and Isotope Study of Trichloroethene Degradation in a Zero-Valent Iron Permeable Reactive Barrier: A Twenty-Two-Year Performance Evaluation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:296-306. [PMID: 30525490 PMCID: PMC6755902 DOI: 10.1021/acs.est.8b04081] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study provides a twenty-two-year record of in situ degradation of chlorinated organic compounds by a granular iron permeable reactive barrier (PRB). Groundwater concentrations of trichloroethene (TCE) entering the PRB were as high as 10670 μg/L. Treatment efficiency ranged from 81 to >99%, and TCE concentrations from <1 μg/L to 165 μg/L were detected within and hydraulically down-gradient of the PRB. After 18 years, effluent TCE concentrations were above the maximum contaminant level (MCL) along segments of the PRB exhibiting upward trending influent TCE. Degradation products included cis-dichloroethene ( cis-DCE), vinyl chloride (VC), ethene, ethane, >C4 compounds, and possibly CO2(aq) and methane. Abiotic patterns of TCE degradation were indicated by compound-specific stable isotope data and the distribution of degradation products. δ13C values of methane within and down-gradient of the PRB varied widely from -94‰ to -16‰; these values cover most of the isotopic range encountered in natural methanogenic systems. Methanogenesis is a sink for inorganic carbon in zerovalent iron PRBs that competes with carbonate mineralization, and this process is important for understanding pore-space clogging and longevity of iron-based PRBs. The carbon isotope signatures of methane and inorganic carbon were consistent with open-system behavior and 22% molar conversion of CO2(aq) to methane.
Collapse
Affiliation(s)
- Richard T Wilkin
- U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division , 919 Kerr Research Drive , Ada , Oklahoma 74820 , United States
| | - Tony R Lee
- U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division , 919 Kerr Research Drive , Ada , Oklahoma 74820 , United States
| | - Molly R Sexton
- U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division , 919 Kerr Research Drive , Ada , Oklahoma 74820 , United States
| | - Steven D Acree
- U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division , 919 Kerr Research Drive , Ada , Oklahoma 74820 , United States
| | - Robert W Puls
- PulsEnvironmental Consulting , Hilton Head , South Carolina 29926 , United States
| | - David W Blowes
- Department of Earth and Environmental Sciences , University of Waterloo , Waterloo , Ontario Canada , N2L 3G1
| | - Christopher Kalinowski
- Arcadis U.S., Inc. , 801 Corporate Center Drive, Suite 300 , Raleigh , North Carolina 27607 , United States
| | - Jennifer M Tilton
- Arcadis U.S., Inc. , 801 Corporate Center Drive, Suite 300 , Raleigh , North Carolina 27607 , United States
| | - Leilani L Woods
- U.S. Coast Guard Base , 1664 Weeksville Road, Bldg 981 , Elizabeth City , North Carolina 27909 , United States
| |
Collapse
|
32
|
Vyrides I, Andronikou M, Kyprianou A, Modic A, Filippeti A, Yiakoumis C, Samanides CG. CO2 conversion to CH4 using Zero Valent Iron (ZVI) and anaerobic granular sludge: Optimum batch conditions and microbial pathways. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Zhen G, Zheng S, Lu X, Zhu X, Mei J, Kobayashi T, Xu K, Li YY, Zhao Y. A comprehensive comparison of five different carbon-based cathode materials in CO 2 electromethanogenesis: Long-term performance, cell-electrode contact behaviors and extracellular electron transfer pathways. BIORESOURCE TECHNOLOGY 2018; 266:382-388. [PMID: 29982061 DOI: 10.1016/j.biortech.2018.06.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Each carbon-based material, due to the discrepancy in critical properties, has distinct capability to enrich electroactive microbes able to electrosynthesize methane from CO2. To optimize electromethanogenesis process, this study physically prepared and examined several carbon-based cathode materials: carbon stick (CS), CS twined by Ti wire (CS-Ti) or covered with carbon fiber (CS-CF), graphite felt (CS-GF) and carbon cloth (CS-CC). CS-GF electrode had constantly stable methane production (75.8 mL/L/d at -0.9 V vs. Ag/AgCl) while CS-CC showed a suppressed performance over time caused by the desposition of inorganic shell. Electrode material properties affected biofilms growth, cell-electrode contact behaviors and electron exchange. Methane formation with CS-CC biocathode was H2-concnetration dependent; CS-GF cathode possessed high antifouling properties and extensive space, enriching the microorganisms capable of catalyzing electromethanogenesis through more efficient non-H2 route. This study re-interpreted the application potentials of carbon-based materials in CO2 electroreduction and electrofuel recovery, providing valuable guidance for materials' selection.
Collapse
Affiliation(s)
- Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China
| | - Shaojuan Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| | - Xuefeng Zhu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Juan Mei
- Jiangsu Key Laboratory of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, PR China
| | - Takuro Kobayashi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| |
Collapse
|
34
|
Dou Z, Dykstra CM, Pavlostathis SG. Bioelectrochemically assisted anaerobic digestion system for biogas upgrading and enhanced methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1012-1021. [PMID: 29758854 DOI: 10.1016/j.scitotenv.2018.03.255] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to evaluate the effect of biofilm and external voltage on the performance and microbial community composition of batch-fed, combined anaerobic digestion-bioelectrochemical cell (AD-BEC) systems under different operational conditions. A dextrin/peptone mixture was fed at a range of organic loading rates (0.34 to 1.37g COD/L-d). The hybrid system with both suspended biomass and biofilm without any external potential application achieved a substantially higher initial soluble COD consumption (53.7±2.3% vs. 39.7±3.7) and methane (CH4) production (331 vs. 225mL) within one day of feeding than the conventional AD system (suspended biomass only). Compared to the conventional AD system, the hybrid systems had higher resilience to shock organic loadings. A range of external potential (0.5 to 2.0V vs. Ag/AgCl) was applied to AD-BEC reactors, developed with two different start-up procedures. A potential of 2.0V resulted in water electrolysis leading to a higher CH4 production rate (105 vs. 84mL/L-d) and biogas CH4 content (88.5±1.4 vs. 64.5±1.9%) in the AD-BEC reactor (closed vs. open circuit condition, respectively). Application of external potential enriched putative exoelectrogens at the anode biofilm and hydrogenotrophic methanogens at the cathode biofilm, which may have contributed to the observed enhanced CH4 production in the AD-BEC system. A phylotype related to Methanobacterium formicicum, a hydrogenotrophic methanogen, dominated the archaeal community in the AD-BEC cathode biofilm.
Collapse
Affiliation(s)
- Zeou Dou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Christy M Dykstra
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA.
| |
Collapse
|