1
|
Rusli O, Bakels S, Hes K, Mun H, Lloyd Williams OH, Pachulicz RJ, Pukala TL, Neumaier M, Hennrich F, Ho J, Rijs AM, Rijs NJ. Gas Phase Mass- and Mobility-Resolved Structures of Metalated Glyphosate Dimers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 40391650 DOI: 10.1021/jasms.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Metalated glyphosate dimers were investigated by using electrospray ionization ion mobility-mass spectrometry and tandem ion mobility-infrared multiple photon dissociation-mass spectrometry. [M(glyphosate)(glyphosate-H)]+ dimers where M = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Cu2+ and Zn2+ were mass-selected prior to mobility separation. Each possessed a single mobility resolved isomer, with measured collision cross sections (N2CCSexp) ranging from 165 to 175 Å2. The dimers were all of similar size, with size trends consistent with periodic differences in the incorporated metals' cationic radii, except M = Cu2+. Upon IR irradiation between 2700 and 3700 cm-1, the experimental IR spectra of mass- and mobility-resolved [M(glyphosate)(glyphosate-H)]+ dimers revealed two significant absorption peaks at 3550 and 3660 cm-1. These correspond to the O-H stretching on both the carboxylate and phosphonate groups of the substituent glyphosate molecules. A thorough isomer search using CREST-CENSO algorithms and DFT optimization predicted the energetically preferred gas-phase structures of [M(glyphosate)(glyphosate-H)]+ dimers. Comparing calculated collision cross sections (N2CCScalc) and predicted vibrational frequencies with experimental data confirmed the predicted structures of the [M(glyphosate)(glyphosate-H)]+ dimers, which all share a common structural motif. In all cases, the incorporated deprotonated glyphosate is deprotonated at the phosphonate group. The divalent metal cation coordinates the deprotonated phosphonate group in a bidentate fashion and is located in the center of the dimer. The neutral glyphosate molecule is wrapped around the metal cation in an octahedral coordination. As the metal cation increases in size, the coordination distance increases, thereby increasing the overall size of the dimer. The different bonding afforded by M = Cu2+ to the amine nitrogen center leads to the observed structural difference for this metal, through the modulation of a key hydrogen bond in the dimer.
Collapse
Affiliation(s)
- Olivia Rusli
- School of Chemistry, UNSW Sydney, Sydney 2052, Australia
| | - Sjors Bakels
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Kevin Hes
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Haedam Mun
- School of Chemistry, UNSW Sydney, Sydney 2052, Australia
| | | | - River J Pachulicz
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Tara L Pukala
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Frank Hennrich
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Junming Ho
- School of Chemistry, UNSW Sydney, Sydney 2052, Australia
| | - Anouk M Rijs
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Nicole J Rijs
- School of Chemistry, UNSW Sydney, Sydney 2052, Australia
| |
Collapse
|
2
|
Li Z, Huang D, Wang Y, Yan J, Liu Y, Zhao H, Lan X, Huang Y, Astruc D, Liu X. Sustainability-Inspired Upcycling of Organophosphorus Pollutants into Phosphatic Fertilizer in a Continuous-Flow Reactor. Angew Chem Int Ed Engl 2025; 64:e202502408. [PMID: 39998984 PMCID: PMC12051758 DOI: 10.1002/anie.202502408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
With the increasing requirement for phosphorus resources and their shortage in nature, cyclic utilization of organophosphorus pollutants into phosphatic fertilizer might offer a sustainable approach to achieve the recycling of phosphorus. Herein, we first report the selective degradation of organophosphorus pollutants, via the synergistic effect of peroxymonosulfate (PMS) and sodium percarbonate (SPC), into phosphates (o-PO4 3-), which are continually converted into phosphatic fertilizer by struvite precipitation on the continuous-flow reactor. Quenching experiments, electron paramagnetic resonance (EPR) results, electrochemical analysis, and density functional theory (DFT) calculation suggest that the transfer of electrons from SPC to PMS results in the synthesis of catalytically active species (i.e., ·OH, ·O2 -, 1O2, and CO3·-) for hydroxyethylidene-1,1-diphosphonicacid (HEDP) degradation. For the real glyphosate wastewater, the PMS/SPC system exhibits excellent catalytic activity with 69.20% decrease in chemical oxygen demand (COD) and 37.80% decrease in the total organic carbon (TOC) after 90 min. Indeed, high performance liquid chromatography (HPLC) confirms that glyphosate is completely degraded in 90 min with the formation of 271.93 µmol/L of o-PO4 3-, which is further converted into phosphatic fertilizer by the precipitation of struvite with 87.20% yield on continuous-flow reactor. Finally, biotoxicity of glyphosate to zebrafish and wheat seeds are significantly deceased after treatment of PMS/SPC system by zebrafish toxicology assays and germination tests of wheat seeds.
Collapse
Affiliation(s)
- Zhangli Li
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Di Huang
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Yazhou Wang
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Jiaying Yan
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Yue Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Haiyu Zhao
- School of Life SciencesLanzhou UniversityLanzhou730000China
| | - Xianyong Lan
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Yingping Huang
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Didier Astruc
- ISM, UMR CNRS 5255Université de BordeauxTalence Cedex33405France
| | - Xiang Liu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| |
Collapse
|
3
|
Zhao Y, Gu K, Che H, Ao Y. Efficiently degradation of glyphosate and in-situ phosphorus recycle for promoting plant growth. ENVIRONMENTAL RESEARCH 2025; 278:121720. [PMID: 40306452 DOI: 10.1016/j.envres.2025.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/31/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
The efficient degradation of organophosphorus pesticides (OPPs) is of great practical importance, but the recovery of the generated phosphorus is neglected. Considering that phosphorus is a non-renewable resource and can contribute to eutrophication, it is necessary to recover the generated phosphorus during OPPs degradation. In this study, a bifunctional material was rationally designed by enclosing WO3 into alginate gel (WO3@AG) for OPPs degradation and in-situ recovery of phosphorus. The WO3@AG was used to construction of a photo-Fenton-like system which degraded 90 % of glyphosate within 15 min under visible light irradiation. More importantly, 92 % of the generated phosphorus was in-situ adsorbed through electrostatic interaction and complexation. Furthermore, the water spinach planting experiment demonstrated that the recovered WO3@AG (WO3@AG-P) significantly promoted plant growth. This work presented a novel strategy for efficient OPPs degradation and resource utilization of the generated phosphorus.
Collapse
Affiliation(s)
- Yuhao Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Kaiye Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| |
Collapse
|
4
|
Han Y, Wang J, Liu T, Wei M, Wang S, Guo J, Ma X, Li Z, Wang N, Sang Y. Synchronous nitrogen and sulfur removal in sulfur-coated iron carbon micro-electrolytic fillers: Exploring the synergy between sulfur autotrophic denitrification and iron-carbon micro-electrolysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137030. [PMID: 39740554 DOI: 10.1016/j.jhazmat.2024.137030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Sulfur autotrophic denitrification (SAD) is a promising technology for nitrogen removal, particularly suitable for low carbon-to-nitrogen wastewater without additional carbon sources. However, SAD inevitably generates significant amounts of SO42-. To address this issue, combining SAD with iron-carbon micro-electrolysis technology, which can reduce sulfate, provides electron donors for autotrophic denitrification and facilitates sulfur cycling. Nonetheless, extensive iron precipitation can cause clogging and exert toxic effects on microorganisms. Herein, a sulfur-coated iron carbon micro-electrolytic filler (Fe-C@S) was established to achieve higher removal efficiency of NO3--N (97 %) and SO42- (99 %), less NO2--N was produced (<6 mg·L-1), and the role of sulfur shell in Fe-C@S was systematically evaluated. Furthermore, when comparing the Fe-C@S filler with traditional sulfur fillers (TS) and mixed systems combining TS with iron-carbon fillers (TS-ICME), it becomes evident that the Fe-C@S exhibits dual capabilities in nitrogen removal and sulfur recycling. This effectively addresses the issues of excessive SO42- concentration in effluents and the tendency of iron-carbon fillers to harden. Moreover, the Fe-C@S demonstrates nitrogen and sulfur removal performance in continuous landfill leachate experiments. Additionally, the dominant bacteria within the Fe-C@S comprise more electrophilic denitrifying bacteria (18.2 %), its stable and efficient performance in nitrogen and sulfur removal even under low current conditions.
Collapse
Affiliation(s)
- Yanhe Han
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Jing Wang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100101, China
| | - Ting Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Mengxiang Wei
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China.
| | - Jingxuan Guo
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xuejiao Ma
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zaixing Li
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Nannan Wang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yimin Sang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
5
|
Wang Q, Xu J, Wu S, Wang M, Zhuang X, Tian G, Xu F, Liu J, Zhang G, Li J. Atomic Hydrogen in Hydrogenolysis: Converting and Detoxifying Carbon-Heteroatom Bonds via Paired Electrolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3805-3813. [PMID: 39899890 DOI: 10.1021/acs.est.4c11680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The presence of carbon-heteroatom bonds (C-N, C-O, and C-S) significantly enhances the stability and toxicity of pollutants. Hydroxyl radicals (•OH)-mediated electrochemical processes show promise; however, the bond energies associated with carbon-heteroatom bonds exceed 200 kJ/mol, which constrains the effectiveness of oxidative degradation and detoxification. We have developed a paired electrolysis process coupling hydrogen atom (H*) generation at the cathode with •OH production at the anode. The involvement of H* and •OH in this system was first confirmed by using methylene blue (MB) as an electrochemical probe. When applied to the degradation of glyphosate (GP), which contains C-N bonds, the paired electrolysis process achieved removal efficiencies for COD, TOC, and toxicity that were twice those of individual oxidation processes. The degradation kinetics also exhibited performance that was double that of individual oxidation processes. Mass spectrometry and theoretical calculations confirmed that hydrogenolysis of H* effectively attacks high-energy C-N bonds, thereby circumventing the rate-limiting steps associated with standalone •OH oxidation, enhancing pollutant degradation and reducing toxicity. When applied to pollutants containing C-O and C-S bonds, the paired electrolysis process demonstrated improvements in COD, TOC, and toxicity removal of approximately 30%, 10%, and 20%, respectively, showcasing its multifunctionality and scalability. Seven days of practical wastewater experiments further validated the effectiveness and durability of this technology.
Collapse
Affiliation(s)
- Qiancheng Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jianqiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shuai Wu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mu Wang
- Wuxi Public Utilities Environment Testing Research Institute Co. LTD., Wuxi 214063, China
| | - Xingyun Zhuang
- Wuxi Industrial Waste Safety Disposal Co., LTD., Wuxi 214000, China
| | - Guofang Tian
- Center of Pharmaceutical Technology, Tsinghua University, Beijing 100084, China
| | - Fu Xu
- Suzhou Suwater Environment Science Technology Co., LTD., Suzhou 215011, China
| | - Jianyun Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Zhang N, Sun H, Zhan G, Zu J, Zhang L. Green Glyphosate Treatment with Ferrihydrite and CaO 2 via Forming Surface Ternary Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2791-2801. [PMID: 39881631 DOI: 10.1021/acs.est.4c10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Glyphosate (PMG) is a globally used broad-spectrum herbicide and receives environmental concerns because of its moderate persistence and potential carcinogenicity. Traditional PMG treatment methods often suffer from the generation of a more toxic and persistent aminomethylphosphonic acid (AMPA) intermediate. Herein, we develop a green method with ferrihydrite (FH) and CaO2 (FH/CaO2) via regulating the coordination of PMG with FH and Ca2+, where the phosphonate group of PMG preferentially binds to FH and its carboxylate side complexes with Ca2+ released by CaO2, forming a FH-PMG-Ca ternary surface complex. This unique ternary complex can redistribute electrons within the PMG molecule for its C-P activation and C-N bond stabilization, favoring the selective C-P bond attack of superoxide radical produced by the Fenton reaction between CaO2-derived H2O2 and FH, thus generating environment-friendly glycine instead of AMPA. The FH/CaO2 process realizes over 99% PMG degradation in industrial wastewater within 1 h, with residual PMG < 0.1 ppm and AMPA < 40 ppb. More importantly, the CaO2 consumption was as low as 3.1 mg of CaO2/mg of PMG, one-fifth those of previously reported CaO2-based counterparts. This study provides an effective and environment-friendly PMG treatment strategy and highlights the importance of surface coordination modes on the degradation pathway of PMG.
Collapse
Affiliation(s)
- Nuanqin Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Junning Zu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Wu ST, Qiu ZY, Su HQ, Cao Y, Gao SQ, Wang H, Wang CH, Lin YW. Design of Mn-based nanozymes with multiple enzyme-like activities for identification/quantification of glyphosate and green transformation of organophosphorus. Biosens Bioelectron 2024; 263:116580. [PMID: 39033653 DOI: 10.1016/j.bios.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
A Mn-based nanozyme, Mn-uNF/Si, with excellent alkali phosphatase-like activity was designed by in-situ growth of ultrathin Mn-MOF on the surface of silicon spheres, and implemented as an effective solid Lewis-Brønsted acid catalyst for broad-spectrum dephosphorylation. H218O-mediated GC-MS studies confirmed the cleavage sites and the involvement of H2O in the new bonds. DRIFT NH3-IR and in-situ ATR-FTIR confirmed the coexistence of Lewis-Brønsted acid sites and the adjustment of adsorption configurations at the interfacial sites. In addition, a green transformation route of "turning waste into treasure" was proposed for the first time ("OPs→PO43-→P food additive") using edible C. reinhardtii as a transfer station. By alkali etching of Mn-uNF/Si, a nanozyme Mn-uNF with laccase-like activity was obtained. Intriguingly, glyphosate exhibits a laccase-like fingerprint-like response (+,-) of Mn-uNF, and a non-enzyme amplified sensor was thus designed, which shows a good linear relationship with Glyp in a wide range of 0.49-750 μM, with a low LOD of 0.61 μM, as well as high selectivity and anti-interference ability under the co-application of phosphate fertilizers and multiple pesticides. This work provides a controllable methodology for the design of bifunctional nanozymes, which sheds light on the highly efficient green transformation of OPs, and paves the way for the selective recognition and quantification of glyphosate. Mechanistically, we also provided deeper insights into the structure-activity relationship at the atomic scale.
Collapse
Affiliation(s)
- Sheng-Tao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| | - Zhi-Yu Qiu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hui-Qi Su
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Ying Cao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, 421001, China
| | - Hui Wang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cong-Hui Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450000, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
8
|
Li H, Atkins B, Reinhart B, Herndon E. Structure-reactivity relationships in the removal efficiency of catechol and hydroquinone by structurally diverse Mn-oxides. CHEMOSPHERE 2024; 367:143602. [PMID: 39447768 DOI: 10.1016/j.chemosphere.2024.143602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Catechol and hydroquinone are widely present hydroxybenzene isomers in the natural environment that induce environmental toxicities. These hydroxybenzene compounds can be effectively removed by manganese (Mn)-oxides via sorption and oxidative degradation processes. In the present study, we investigated the structure-reactivity relationships in the sorption and oxidation of catechol and hydroquinone on Mn-oxide surfaces. Two widely present Mn-oxides, including hydrous Mn oxide (HMO) and cryptomelane, comprised of layer and tunnel structures, respectively, are specifically studied. Effects of Mn-oxide structures and environmental pH conditions on the removal efficiency of these hydroxybenzene compounds, via sorption and oxidative degradation, are investigated. Cryptomelane, which has a higher specific surface area than HMO, possesses a higher sorption and oxidation capacity. The complexation mechanisms of catechol and hydroquinone vary due to their structure-induced difference in reactivity. Catechol reduced and dissolved more Mn from Mn-oxides than hydroquinone, accompanied by a higher C loss of catechol-C, suggesting a higher reactivity of catechol. Structural changes occurred in the Mn-oxides resulting from reaction with catechol and hydroquinone: reduction of Mn(IV), corresponding formation of Mn(III) and Mn(II) in the mineral, and free Mn2+ ions released into the suspension. These insights could help us better understand and predict the fate of hydroxybenzene compounds in Mn-oxide-rich soils and wastewater treatment systems that generate Mn-oxides via Mn removal and the associated environmental toxicity.
Collapse
Affiliation(s)
- Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Benjamin Atkins
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Benjamin Reinhart
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
9
|
Jin L, Huang Y, Ye L, Huang D, Liu X. Challenges and opportunities in the selective degradation of organophosphorus herbicide glyphosate. iScience 2024; 27:110870. [PMID: 39381744 PMCID: PMC11459065 DOI: 10.1016/j.isci.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The wide and continuous usage of glyphosate in the environment poses a serious threat to biological systems. Besides the accumulation of glyphosate in vivo, a growing body of research has revealed that aminomethylphosphonic acid (AMPA), the main degradation intermediate of glyphosate, has significant environmental and biological influences by inducing chromosome aberration of fish and canceration of human erythrocyte. Therefore, the development of new strategies avoiding the generation of the toxic AMPA intermediate during the full degradation of glyphosate is becoming of high importance. Herein, we provide a mini-review that includes the most recent advances in the selective degradation of glyphosate avoiding the generation of AMPA in the last several years from 2018. The developments of the selective degradation of glyphosate, highlighting its synthesis and selective degradation mechanism, are summarized here. This review intends to attract more attention from researchers toward this area and to emphasize the recent developments of selective degradation of glyphosate in highlighting future challenges.
Collapse
Affiliation(s)
- Lei Jin
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Liqun Ye
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
10
|
Moller SR, Campos MA, Rilling JI, Bakkour R, Hollenback AJ, Jorquera MA, Jaisi DP. Persistence and pathway of glyphosate degradation in the coastal wetland soil of central Delaware. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135238. [PMID: 39096637 DOI: 10.1016/j.jhazmat.2024.135238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024]
Abstract
Glyphosate is a globally dominant herbicide. Here, we studied the degradation and microbial response to glyphosate application in a wetland soil in central Delaware for controlling invasive species (Phragmites australis). We applied a two-step solid-phase extraction method using molecularly imprinted polymers designed for the separation and enrichment of glyphosate and aminomethylphosphonic acid (AMPA) from soils before their analysis by ultra-high-performance liquid chromatography (UHPLC) and Q Exactive Orbitrap mass spectrometry methods. Our results showed that approximately 90 % of glyphosate degraded over 100 d after application, with AMPA being a minor (<10 %) product. Analysis of glyphosate-specific microbial genes to identify microbial response and function revealed that the expression of the phnJ gene, which codes C-P lyase enzyme, was consistently dominant over the gox gene, which codes glyphosate oxidoreductase enzyme, after glyphosate application. Both gene and concentration data independently suggested that C-P bond cleavage-which forms sarcosine or glycine-was the dominant degradation pathway. This is significant because AMPA, a more toxic product, is reported to be the preferred pathway of glyphosate degradation in other soil and natural environments. The degradation through a safer pathway is encouraging for minimizing the detrimental impacts of glyphosate on the environment.
Collapse
Affiliation(s)
- Spencer R Moller
- Interdisciplinary Science and Engineering Laboratory, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
| | - Marco A Campos
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 056, Temuco 4780000, Chile; Laboratorio de Ecologia Microbiana Aplicada (EMALAB), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Joaquin I Rilling
- Laboratorio de Ecologia Microbiana Aplicada (EMALAB), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Rani Bakkour
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Anthony J Hollenback
- Interdisciplinary Science and Engineering Laboratory, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Milko A Jorquera
- Laboratorio de Ecologia Microbiana Aplicada (EMALAB), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Deb P Jaisi
- Interdisciplinary Science and Engineering Laboratory, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
11
|
Azimzadeh B, Nicholson LK, Martínez CE. In the presence of the other: How glyphosate and peptide molecules alter the dynamics of sorption on goethite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169264. [PMID: 38092207 DOI: 10.1016/j.scitotenv.2023.169264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The interactions with soil mineral surfaces are among the factors that determine the mobility and bioavailability of organic contaminants and of nutrients present in dissolved organic matter (DOM) in soil and aquatic environments. While most studies focus on high molar mass organic matter fractions (e.g., humic and fulvic acids), very few studies investigate the impact of DOM constituents in competitive sorption. Here we assess the sorption behavior of a heavily used herbicide (i.e., glyphosate) and a component of DOM (i.e., a peptide) at the water/goethite interface, inclusive of potential glyphosate-peptide interactions. We used in-situ ATR-FTIR (attenuated total reflectance Fourier-transform infrared) spectroscopy to study sorption kinetics and mechanisms of interaction as well as conformational changes to the secondary structure of the peptide. NMR (nuclear magnetic resonance) spectroscopy was used to assess the level of interaction between glyphosate and the peptide and changes to the peptide' secondary structure in solution. For the first time, we illustrate competition for sorption sites results in co-sorption of glyphosate and peptide molecules that affects the extent, kinetics, and mechanism of interaction of each with the surface. In the presence of the peptide, the formation of outer-sphere glyphosate-goethite complexes is favored albeit inner-sphere glyphosate-goethite bonds (i.e., POFe) are still formed. The presence of glyphosate induces secondary structural shifts of the sorbed peptide that maximizes the formation of H-bonds with the goethite surface. However, glyphosate and the peptide do not seem to interact with one another in solution nor at the goethite surface upon sorption. The results of this work highlight potential consequences of competition for sorption sites, for example the transport of organic contaminants and nutrient-rich (i.e., nitrogen) DOM components in relevant environmental systems. Predicting the rate and extent with which organic pollutants are removed from solution by a given solid is also one of the most critical factors for the design of effective sorption systems in engineering applications.
Collapse
Affiliation(s)
- Behrooz Azimzadeh
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Carmen Enid Martínez
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Chiu NC, Lessard JM, Musa EN, Lancaster LS, Wheeler C, Krueger TD, Chen C, Gallagher TC, Nord MT, Huang H, Cheong PHY, Fang C, Stylianou KC. Elucidation of the role of metals in the adsorption and photodegradation of herbicides by metal-organic frameworks. Nat Commun 2024; 15:1459. [PMID: 38368421 PMCID: PMC10874385 DOI: 10.1038/s41467-024-45546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
Here, four MOFs, namely Sc-TBAPy, Al-TBAPy, Y-TBAPy, and Fe-TBAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoic acid)pyrene), were characterized and evaluated for their ability to remediate glyphosate (GP) from water. Among these materials, Sc-TBAPy demonstrates superior performance in both the adsorption and degradation of GP. Upon light irradiation for 5 min, Sc-TBAPy completely degrades 100% of GP in a 1.5 mM aqueous solution. Femtosecond transient absorption spectroscopy reveals that Sc-TBAPy exhibits enhanced charge transfer character compared to the other MOFs, as well as suppressed formation of emissive excimers that could impede photocatalysis. This finding was further supported by hydrogen evolution half-reaction (HER) experiments, which demonstrated Sc-TBAPy's superior catalytic activity for water splitting. In addition to its faster adsorption and more efficient photodegradation of GP, Sc-TBAPy also followed a selective pathway towards the oxidation of GP, avoiding the formation of toxic aminomethylphosphonic acid observed with the other M3+-TBAPy MOFs. To investigate the selectivity observed with Sc-TBAPy, electron spin resonance, depleted oxygen conditions, and solvent exchange with D2O were employed to elucidate the role of different reactive oxygen species on GP photodegradation. The findings indicate that singlet oxygen (1O2) plays a critical role in the selective photodegradation pathway achieved by Sc-TBAPy.
Collapse
Affiliation(s)
- Nan Chieh Chiu
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Jacob M Lessard
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Emmanuel Nyela Musa
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Logan S Lancaster
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Clara Wheeler
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Trenton C Gallagher
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Makenzie T Nord
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, 300387, Tianjin, China.
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA.
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA.
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
13
|
Moller SR, Wallace AF, Zahir R, Quadery A, Jaisi DP. Effect of temperature on the degradation of glyphosate by Mn-oxide: Products and pathways of degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132467. [PMID: 37716266 DOI: 10.1016/j.jhazmat.2023.132467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Glyphosate is the most commonly used herbicide in the United States. In the environment, glyphosate residues can either degrade into more toxic and persistent byproducts such as aminomethylphosphonic acid (AMPA) or environmentally benign species such as sarcosine or glycine. In this research, the birnessite-catalyzed degradation of glyphosate was studied under environmentally relevant temperatures (10-40 °C) using high-performance liquid chromatography, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and theoretical calculations. Our results show a temperature-dependent degradation pathway preference for AMPA and glycine production. The AMPA and glycine pathways are competitive at short reaction times, but the glycine pathway became increasingly preferred as reaction time and temperature increased. The measured free energy barriers are comparable for both the glycine and AMPA pathways (93.5 kJ mol-1 for glycine and 97.1 kJ mol-1 for AMPA); however, the entropic energy penalty for the AMPA pathway is significantly greater than the glycine pathway (-TΔS‡ = 26.2 and 42.8 kJ mol-1 for glycine and AMPA, respectively). These findings provide possible routes for biasing glyphosate degradation towards safer products, thus to decrease the overall environmental toxicity.
Collapse
Affiliation(s)
- Spencer R Moller
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam F Wallace
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| | - Rumana Zahir
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| | - Abrar Quadery
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| | - Deb P Jaisi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
14
|
Azimzadeh B, Martínez CE. Unraveling the role of polysaccharide-goethite associations on glyphosate' adsorption-desorption dynamics and binding mechanisms. J Colloid Interface Sci 2024; 653:1283-1292. [PMID: 37797504 DOI: 10.1016/j.jcis.2023.09.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
HYPOTHESIS Glyphosate retention at environmental interfaces is strongly governed by adsorption and desorption processes. In particular, glyphosate can react with organo-mineral associations (OMAs) in soils, sediments, and aquatic environments. We hypothesize mineral-adsorbed biomacromolecules modulate the extent and rate of glyphosate adsorption and desorption where electrostatic and noncovalent interactions with organo-mineral surfaces are favored. EXPERIMENTS Here we use in-situ attenuated total reflectance Fourier-transform infrared, X-ray photoelectron spectroscopy, and batch experiments to characterize glyphosate' adsorption and desorption mechanisms and kinetics at an organo-mineral interface. Model polysaccharide-goethite OMAs are prepared with a range of organic (polysaccharide, PS) surface loadings. Sequential adsorption-desorption studies are conducted by introducing glyphosate and background electrolyte solutions, respectively, to PS-goethite OMAs. FINDINGS We find the extent of glyphosate adsorption at PS-goethite interfaces was reduced compared to that at the goethite interface. However, increased polysaccharide surface loading resulted in lower relative glyphosate desorption. At the same time, increased PS surface loading yielded slower glyphosate adsorption and desorption kinetics compared to corresponding processes at the goethite interface. We highlight that adsorbed PS promotes the formation of weak noncovalent interactions between glyphosate and PS-goethite OMAs, including the evolution of hydrogen bonds between (i) the amino group of glyphosate and PS and (ii) the phosphonate group of glyphosate and goethite. It is also observed that glyphosate' phosphonate group preferentially forms inner-sphere monodentate complexes with goethite in PS-goethite whereas bidentate configurations are favored on goethite.
Collapse
Affiliation(s)
- Behrooz Azimzadeh
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Carmen Enid Martínez
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Liu Q, Niu X, Zhang D, Ye X, Tan P, Shu T, Lin Z. Phototransformation of phosphite induced by zinc oxide nanoparticles (ZnO NPs) in aquatic environments. WATER RESEARCH 2023; 245:120571. [PMID: 37683523 DOI: 10.1016/j.watres.2023.120571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Phosphite, an essential component in the biogeochemical phosphorus cycle, may make significant contributions to the bioavailable phosphorus pool as well as water eutrophication. However, to date, the potential impacts of coexisting photochemically active substances on the environmental fate and transformation of phosphite in aquatic environments have been sparsely elucidated. In the present study, the effect of zinc oxide nanoparticles (ZnO NPs), a widely distributed photocatalyst in aquatic environments, on phosphite phototransformation under simulated solar irradiation was systematically investigated. The physicochemical characteristics of the pristine and reacted ZnO NPs were thoroughly characterized. The results showed that the presence of ZnO NPs induced the indirect phototransformation of phosphite to phosphate, and the reaction rate increased with increasing ZnO NPs concentration. Through experiments with quenching and trapping free radicals, it was proved that photogenerated reactive oxygen species (ROS), such as hydroxyl radical (•OH), superoxide anion (O2•-), and singlet oxygen (1O2), made substantial contributions to phosphite phototransformation. In addition, the influencing factors such as initial phosphite concentration, pH, water matrixes (Cl-, F-, Br-, SO42-, NO3-, NO2-, HCO3-, humic acid (HA) and citric acid (CA)) were investigated. The component of generated precipitates after the phosphite phototransformation induced by ZnO NPs was still dominated by ZnO NPs, while the presence of amorphous Zn3(PO4)2 was identified. This work explored ZnO NPs-mediated phosphite phototransformation processes, indicating that nanophotocatalysts released into aquatic environments such as ZnO NPs may function as photosensitizers to play a beneficial role in the transformation of phosphite to phosphate, thereby potentially mitigating the toxicity of phosphite to aquatic organisms while exacerbating eutrophication. The findings of this study provide a novel insight into the comprehensive assessment of the environmental fate, potential ecological risk, and biogeochemical behaviors of phosphite in natural aquatic environments under the condition of combined pollution.
Collapse
Affiliation(s)
- Qiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xingyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Peibing Tan
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Ting Shu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
16
|
Chen Y, Huang Y, Tian H, Ye L, Li R, Chen C, Dai Z, Huang D. Fluorine-doped BiVO 4 photocatalyst: Preferential cleavage of C-N bond for green degradation of glyphosate. J Environ Sci (China) 2023; 127:60-68. [PMID: 36522089 DOI: 10.1016/j.jes.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 06/17/2023]
Abstract
With increasing concerns on the environment and human health, the degradation of glyphosate through the formation of less toxic intermediates is of great importance. Among the developed methods for the degradation of glyphosate, photodegradation is a clean and efficient strategy. In this work, we report a new photocatalyst by doping F ion on BiVO4 that can efficiently degrade glyphosate and reduce the toxic emissions of aminomethylphosphonic acid (AMPA) through the selective (P)-C-N cleavage in comparison of BiVO4 catalyst. The results demonstrate that the best suppression of AMPA formation was achieved by the catalyst of 0.3F@BiVO4 at pH = 9 (AMPA formation below 10%). In situ attenuated total reflectance Fourier transforms infrared (ATR-FTIR) spectroscopy indicates that the adsorption sites of glyphosate on BiVO4 and 0.3F@BiVO4 are altered due to the difference in electrostatic interactions. Such an absorption alteration leads to the preferential cleavage of the C-N bond on the N-C-P skeleton, thereby inhibiting the formation of toxic AMPA. These results improve our understanding of the photodegradation process of glyphosate catalyzed by BiVO4-based catalysts and pave a safe way for abiotic degradation of glyphosate.
Collapse
Affiliation(s)
- Yunlong Chen
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China; College of Biology & Pharmacy, China Three Gorges University, Yichang 443002, China
| | - Hailin Tian
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China; College of Biology & Pharmacy, China Three Gorges University, Yichang 443002, China
| | - Liqun Ye
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Ruiping Li
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Chuncheng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongxu Dai
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Di Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
17
|
Yu J, Jin B, Ji Q, Wang H. Detoxification and metabolism of glyphosate by a Pseudomonas sp. via biogenic manganese oxidation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130902. [PMID: 36731313 DOI: 10.1016/j.jhazmat.2023.130902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biogenic manganese oxides (BMO) are widely distributed in groundwater and provides promise for adsorbing and oxidizing a wide range of micropollutants, however, the continuous biodegradation and bioavailability of micropollutants via cycle biogenic Mn(II) oxidation remains to be elucidated. In this study, glyphosate was degraded and to serve as the nutrient source by a Pseudomonas sp. QJX-1. The addition of glyphosate will not affect the Mn(II) oxidation function of the strain but will affect its Mn(II) oxidation process and effect. The glyphosate degradation products could further be used as the C, N and P sources for bacterium growth. Analysis of the RNA-seq data suggested that Mn(II) oxidation driven by oxidoreductases for glyphosate degradation. The long-term column experiments using biological Mn(II) cycling to realize continuous detoxification and metabolism of glyphosate, and thus revealed the synergism effects of biological and chemical conversion on toxic micropollutants and continuous metabolism in an aquatic ecosystem.
Collapse
Affiliation(s)
- Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Boxuan Jin
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding 071002, China; College of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
18
|
Aslam S, Jing Y, Nowak KM. Fate of glyphosate and its degradation products AMPA, glycine and sarcosine in an agricultural soil: Implications for environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130847. [PMID: 36696778 DOI: 10.1016/j.jhazmat.2023.130847] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate can be biodegraded via the aminomethylphosponic acid (AMPA) and the sarcosine/glycine pathway leading to the formation of three intermediate products AMPA, sarcosine or glycine. The fate of the three intermediate compounds of glyphosate biodegradation including nature of non-extractable residues (NERs; harmless biogenic [NERsbiogenic] versus hazardous xenobiotic [NERsxenobiotic]) in soils has not been investigated yet. This information is crucial for an assessment of environmental risks related to the speciation of glyphosate-derived NERs which may stem from glyphosate intermediates. Therefore, we incubated 13C- and 15N-labeled glyphosate (2-13C,15N-glyphosate) and its degradation product AMPA (13C,15N-AMPA), sarcosine (13C3,15N-sarcosine) or glycine (13C2,15N-glycine) in an agricultural soil separately for a period of 75 days. 13C2-glycine and 13C3-sarcosine mineralized rapidly compared to 2-13C-glyphosate and 13C-AMPA. The mineralization of 13C-AMPA was lowest among all four compounds due to its persistent nature. Only 0.5% of the initially added 2-13C,15N-glyphosate and still about 30% of the initially added 13C,15N-AMPA was extracted from soil after 75 days. The NERs formed from 13C,15N-AMPA were mostly NERsxenobiotic as compared to other three compounds for which significant amounts of NERsbiogenic were determined. We noticed 2-13C,15N-glyphosate was biodegraded via two biodegradation pathways simultaneously; however, the sarcosine/glycine pathway with the formation of harmless NERsbiogenic presumably dominated.
Collapse
Affiliation(s)
- Sohaib Aslam
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Environmental Sciences, Forman Christian College (A Chartered University), Ferozepur Road, 54600 Lahore, Pakistan
| | - Yuying Jing
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karolina M Nowak
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
19
|
Musa EN, Kaur S, Gallagher TC, Anthony TM, Stickle WF, Árnadóttir L, Stylianou KC. Two Birds, One Stone: Coupling Hydrogen Production with Herbicide Degradation over Metal–Organic Framework-Derived Titanium Dioxide. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
| | - Sumandeep Kaur
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | | | | | - William F. Stickle
- HP Inc., 1000 NE Circle Boulevard, Corvallis, Oregon 97330, United States
| | - Líney Árnadóttir
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | | |
Collapse
|
20
|
Synthesis of Synthetic Musks: A Theoretical Study Based on the Relationships between Structure and Properties at Molecular Scale. Int J Mol Sci 2023; 24:ijms24032768. [PMID: 36769089 PMCID: PMC9917709 DOI: 10.3390/ijms24032768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Synthetic musks (SMs), as an indispensable odor additive, are widely used in various personal care products. However, due to their physico-chemical properties, SMs were detected in various environmental media, even in samples from arctic regions, leading to severe threats to human health (e.g., abortion risk). Environmentally friendly and functionally improved SMs have been theoretically designed in previous studies. However, the synthesizability of these derivatives has barely been proven. Thus, this study developed a method to verify the synthesizability of previously designed SM derivatives using machine learning, 2D-QSAR, 3D-QSAR, and high-throughput density functional theory in order to screen for synthesizable, high-performance (odor sensitivity), and environmentally friendly SM derivatives. In this study, three SM derivatives (i.e., D52, D37, and D25) were screened and recommended due to their good performances (i.e., high synthesizability and odor sensitivity; low abortion risk; and bioaccumulation ability in skin keratin). In addition, the synthesizability mechanism of SM derivatives was also analyzed. Results revealed that high intramolecular hydrogen bond strength, electrostatic interaction, qH+ value, energy gap, and low EHOMO would lead to a higher synthesizability of SMs and their derivatives. This study broke the synthesizability bottleneck of theoretically designed environment-friendly SM derivatives and advanced the mechanism of screening functional derivatives.
Collapse
|
21
|
Xiao R, Kuang B, Hu Y, Wang Y, Bai J, Zhang L, Wang C, Wei Z, Zhang K, Jorquera MA, Campos M, Acuña JJ, Pan W. Ecological risk assessment of glyphosate and its possible effect on bacterial community in surface sediments of a typical shallow Lake, northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114445. [PMID: 38321664 DOI: 10.1016/j.ecoenv.2022.114445] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
Glyphosate is a widely used herbicide worldwide and its prevalent presence in aquatic ecosystems poses a threat to living organisms. This study evaluated potential ecological risk of glyphosate to sediment-dwelling organisms and assessed the probable effect of glyphosate on structure and predicated function of sediment-attached bacterial communities from a large shallow lake in northern China based on 16S rRNA high-throughput sequencing. Results suggested that glyphosate showed a medium to high concentration (up to 8.63 mg/kg) and chronic risk to sediment-dwelling organisms (10% samples exhibiting medium to high risk quotient), especially in sites nearby farmland and residential areas in August. Bacterial community identification based on 16S rRNA sequence indicated some species of dominant phylum Proteobacteria and Campilobacterota (e.g., Steroidobacteraceae, Thiobacillus, Gallionellaceae, Sulfurimonadaceae) were stimulated while some species of dominant phylum Actinobacteriota, Acidobacteriota and Firmicutes (e.g., Nocardioidaceae, Microtrichales, Vicinamibacteraceae, Paenisporosarcina) were inhibited by glyphosate accumulation. The stimulating species were related to sulfur-oxidizing, sulfate-, iron-, or nitrate-reducing bacteria; The inhibiting species were related to plant bacterial endophytes, polyphosphate-accumulating organisms (PAOs) and denitrifers. Correspondingly, promoted bacterial metabolic functions of "sulfite respiration", "nitrogen respiration", "aromatic compound degradation" and "nitrification" but suppressed "cellulolysis", "manganese oxidation", "anoxygenic photoautotrophy S oxidizing" and "nitrate denitrification" were predicated on functional annotation of prokaryotic taxa. Although these results could only partly suggest the impacts of glyphosate on the bacterial communities due to the lack of actual results from control experiments, the identified Steroidobacteraceae could be thought as a bioindicator in the future mechanism study for the ecological effect and bioremediation of glyphosate. This work intends to arise the concern about the depletion of biodiversity and bacterial metabolic functions with contribution of glyphosate in part in eutrophic lakes.
Collapse
Affiliation(s)
- Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Bo Kuang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chen Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhuoqun Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Marco Campos
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Jacquelinne J Acuña
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
22
|
Xu F, Zhao Z, Wang X, Guan W, Liu M, Yu N, Tian H, Li J, Zhang S, Gu Y, Kong Q. Cladophora can mitigate the shock of glyphosate-containing wastewater on constructed wetlands coupled with microbial fuel cells. CHEMOSPHERE 2022; 308:136273. [PMID: 36064020 DOI: 10.1016/j.chemosphere.2022.136273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the performance of constructed wetlands coupled with microbial fuel cells (CW-MFCs) treating agricultural wastewater containing glyphosate (N-phosphonomethyl glycine, PMG), and the use of Cladophora as a cathode plant in this system. Ten devices were divided into Cladophora groups (CGs) and no Cladophora groups (NGs), with five PMG concentrations (0, 10, 25, 50, and 100 mg/L). PMG removal efficiency significantly decreased with increasing PMG (P < 0.01) and was higher in CG devices than in NG devices at low PMG concentrations (<50 mg/L). The removal efficiency of chemical oxygen demand (COD) and NH4+ in CGs was significantly higher than in NGs (P < 0.01). The highest power densities of 6.37 (CGs) and 6.26 mW/m2 (NGs) were obtained at 50 mg/L PMG, and the average voltage was significantly higher in CGs than in NGs (p < 0.01). Moreover, PMG had a negative effect on the enrichment of electrochemically active bacteria, but Cladophora could mitigate this effect. The abundance of the resistance gene epsps was stabilized; The phnJ gene increased with increasing PMG in NGs and was downregulated at high PMG concentration in CGs, indicating better microbial adaptation to PMG in CGs throughout the experiment.
Collapse
Affiliation(s)
- Fei Xu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Zheng Zhao
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Wei Guan
- Shandong Jining Eco-environment Monitoring Center, Jining, 272004, Shandong, PR China
| | - Mengyu Liu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Ningning Yu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Haihan Tian
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Jingying Li
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Siju Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Yuchen Gu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China; Dongying Institute, Shandong Normal University, Dongying, 257092, Shandong, PR China.
| |
Collapse
|
23
|
Wimmer B, Neidhardt H, Schwientek M, Haderlein SB, Huhn C. Phosphate addition enhances alkaline extraction of glyphosate from highly sorptive soils and aquatic sediments. PEST MANAGEMENT SCIENCE 2022; 78:2550-2559. [PMID: 35322519 DOI: 10.1002/ps.6883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Analytical constraints complicate environmental monitoring campaigns of the herbicide glyphosate and its major degradation product aminomethylphosphonic acid (AMPA): their strong sorption to soil minerals requires harsh extraction conditions. Coextracted matrix compounds impair downstream analysis and must be removed before analysis. RESULTS A new extraction method combined with subsequent capillary electrophoresis-mass spectrometry for derivatization-free analysis of glyphosate and AMPA in soil and sediment was developed and applied to a suite of environmental samples. It was compared to three extraction methods from literature. We show that no extraction medium reaches 100% recovery. The new phosphate-supported alkaline extraction method revealed (1) high recoveries of 70-90% for soils and aquatic sediments, (2) limits of detections below 20 μg kg-1 , and (3) a high robustness, because impairing matrix components (trivalent cations and humic acids) were precipitated prior to the analysis. Soil and sediment samples collected around Tübingen, Germany, revealed maximum glyphosate and AMPA residues of 80 and 2100 μg kg-1 , respectively, with residues observed along a core of lake sediments. Glyphosate and/or AMPA were found in 40% of arable soils and 57% of aquatic sediment samples. CONCLUSION In this work, we discuss soil parameters that influence (de)sorption and thus extraction. From our results we conclude that residues of glyphosate in environmental samples are easily underestimated. With its possible high throughput, the method presented here can resolve current limitations in monitoring campaigns of glyphosate by addressing soil and aquatic sediment samples with critical sorption characteristics.
Collapse
Affiliation(s)
- Benedikt Wimmer
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Harald Neidhardt
- Geoscience, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Marc Schwientek
- Center for Applied Geosciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stefan B Haderlein
- Center for Applied Geosciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Zhang Y, Cao H, Lu J, Li Y, Bao M. Enhanced photocatalytic activity of glyphosate over a combination strategy of GQDs/TNAs heterojunction composites. J Colloid Interface Sci 2022; 607:607-620. [PMID: 34520904 DOI: 10.1016/j.jcis.2021.08.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023]
Abstract
A photocatalytic process was used to effectively remove glyphosate, an emerging pollutant and contaminant, through advanced oxidation. For this purpose, a feasible combination strategy of two-step anodisation and electrodeposition methods were proposed to fabricate graphene quantum dots (GQDs) supported titanium dioxide nanotube arrays (TNAs). The resultant GQDs/TNAs heterojunction composite exhibited significant degradation reactivity and circulation stability for glyphosate due to its excellent photo-generated electron and hole separation ability. After the introduction of GQDs into TNAs, the photodegradation efficiency of glyphosate increased from 69.5% to 94.7% within 60 min under UV-Vis light irradiation (λ = 320-780 nm). By analysing the intermediate products and through the evolvement of heteroatoms during glyphosate photodegradation, alanine and serine were discovered for the first time, and a detailed degradation mechanism of glyphosate was proposed. This study indicates that GQDs/TNAs heterojunction composite can almost completely degrade the glyphosate into inorganics under the appropriate conditions.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Chemistry and Chemical engineering, Ocean University of China, Qingdao 266100, China
| | - Hao Cao
- College of Chemistry and Chemical engineering, Ocean University of China, Qingdao 266100, China
| | - Jinren Lu
- College of Chemistry and Chemical engineering, Ocean University of China, Qingdao 266100, China.
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
25
|
Sadatsharifi M, Ingersoll DW, Purgel M. The fate of a hazardous herbicide: a DFT-based ab initio study on glyphosate degradation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1018-1028. [PMID: 34288996 DOI: 10.1039/d1em00100k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glyphosate degradation has been extensively examined; however, only a few detailed computational studies have been performed on the topic so far. There are substantial differences between the degradation products of glyphosate, as AMPA (aminomethylphosphonic acid) is toxic while sarcosine intermediate is non-toxic. These species can have different effects on the environment and, indirectly, on the human body. We performed calculations using density functional theory and post-Hartree-Fock correlated ab initio methods to find the possible mechanisms for the degradation process by small (hydroxyl, peroxyl, and superoxide) radicals. We found that direct sarcosine formation is strongly dependent on the concentration of the radical species. AMPA and glycine were mostly formed as aldehyde derivatives, while in addition to the former, glyoxylate and bicarbonate are formed alternatively. A significant pH effect was also found for the competitive reactions determined by the calculated rate constants of the elementary steps. Overall barriers showed similarities by DFT but ab initio methods could separate them.
Collapse
Affiliation(s)
| | - Daniel W Ingersoll
- St. Mary's College of Maryland, 47645 College Drive, St. Mary's City, MD 20686-3001, USA
| | - Mihály Purgel
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| |
Collapse
|
26
|
Liang Y, Wei D, Hu J, Zhang J, Liu Z, Li A, Li R. Glyphosate and nutrients removal from simulated agricultural runoff in a pilot pyrrhotite constructed wetland. WATER RESEARCH 2020; 168:115154. [PMID: 31630020 DOI: 10.1016/j.watres.2019.115154] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Pyrrhotite is often considered as a gangue mineral, and discarded in mine wastes and tailings. Glyphosate and fertilizer, often excessively used in agriculture, flow into water bodies with agriculture runoff, and cause pollution of water bodies. In this study, the pyrrhotite was used as a substrate in a pilot constructed wetland (CW) to remove the glyphosate and nutrients from simulated agriculture runoff. In nearly one year, the pilot pyrrhotite constructed wetland (Pyrr-CW) removed 90.3 ± 6.1% of glyphosate, 88.2 ± 5.1 of total phosphorus (TP) and 60.40 ± 5.60% of total nitrogen (TN) on average, much higher than the control CW. The abundances of sulfur-oxidizing bacteria, such as Sulfurifustis, Sulfuriferula and Thiobacillus, were much higher in the Pyrr-CW than those in the control CW. In the Pyrr-CW goethite was produced by pyrrhotite aerobic oxidation (PAO) and pyrrhotite autotrophic denitrification (PAD) continuously and spontaneously. Higher glyphosate and TP removals were resulted from adsorption on the goethite produced, and higher TN removal was attributed to the PAD. High glyphosate and nutrients removal could keep a long term until the pyrrhotite in the Pyrr-CW was used up. The phosphorus (P) sequestered in the Pyrr-CW existed mainly in organic P, (Fe + Al)P and (Ca + Mg)P, and their order was (Fe + Al)P > organic P > (Ca + Mg)P. No heavy metal ions released from the Pyrr-CW. With higher and lasting removal rate, and lower cost, the Pyrr-CW is a promising technology for simultaneous glyphosate and nutrients removal from agricultural runoff and wastewater.
Collapse
Affiliation(s)
- Ying Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, 210023, China
| | - Dongyang Wei
- South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China
| | - Junsong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, 210023, China
| | - Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, 210023, China
| | - Zhuo Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, 210023, China
| | - Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, 210023, China.
| |
Collapse
|
27
|
Narimani M, da Silva G. Thermal decomposition kinetics of glyphosate (GP) and its metabolite aminomethylphosphonic acid (AMPA). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:152-160. [PMID: 31778134 DOI: 10.1039/c9em00422j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glyphosate (GP) is a widely used herbicide worldwide, yet accumulation of GP and its main byproduct, aminomethylphosphonic acid (AMPA), in soil and water has raised concerns about its potential effects on human health. Thermal treatment, in which contaminants are vaporised and decomposed in the gas-phase, is one option for decontaminating material containing GP and AMPA, yet the thermal decomposition chemistry of these compounds remains poorly understood. Here, we have revealed the thermal decomposition mechanism of GP and AMPA in the gas phase by applying computational chemistry and reaction rate theory methods. The preferred decomposition channel for both substances involves the elimination of P(OH)3 to yield the imine N-methylene-glycine (from GP) or methanimine (from AMPA), with relatively low barrier heights (ca. 45 kcal mol-1). The half-life of GP and AMPA at 1000 K are predicted to be 0.1 and 4 ms respectively, and they should be readily destroyed via conventional incineration processes. The further decomposition of N-methylene-glycine is expected to also take place at similar temperatures, leading to N-methyl-methanimine + CO2, with a barrier height of ca. 48 kcal mol-1. The imine decomposition products of GP and AMPA are expected to react with water vapour to form simple amines and carbonyl compounds.
Collapse
Affiliation(s)
- Milad Narimani
- Department of Chemical Engineering, University of Melbourne, Victoria 3010, Australia.
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
28
|
Hu E, Pan S, Zhang W, Zhao X, Liao B, He F. Impact of dissolved O 2 on phenol oxidation by δ-MnO 2. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:2118-2127. [PMID: 31667476 DOI: 10.1039/c9em00389d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although redox reactions of organic contaminants with manganese oxides have been extensively studied, the role of dissolved O2 in these processes has largely been overlooked. In this study, the oxidative degradation of phenol by δ-MnO2 was investigated under both oxic and anoxic conditions. Dissolved O2 inhibited phenol degradation due to its promoting role in the reoxidation and precipitation of reduced Mn(ii) to Mn(iii) on the δ-MnO2 surface, resulting in partial transformation of δ-MnO2 to "c-disordered" H+-birnessite at pH 5.5 and feitknechtite, manganite, and hausmannite at pH 7.0 and 8.5. The reformed Mn(iii) phases could reduce phenol oxidation by blocking reactive sites of δ-MnO2. In addition, dissolved O2 caused a higher degree of particle agglomeration and a more severe specific surface area decrease, and hence lower reactivity of δ-MnO2. These findings revealed that after reductive dissolution by phenol and reoxidation by dissolved O2 throughout continuous redox cycling, δ-MnO2 became less reactive rather than being regenerated. These results can provide new insights into the understanding of the oxidation of organic contaminants by manganese oxides in the natural environment.
Collapse
Affiliation(s)
- Erdan Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | | | |
Collapse
|
29
|
Sun M, Li H, Jaisi DP. Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. WATER RESEARCH 2019; 163:114840. [PMID: 31319360 DOI: 10.1016/j.watres.2019.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/07/2019] [Accepted: 07/03/2019] [Indexed: 05/09/2023]
Abstract
Glyphosate, the most commonly used herbicide in the world, can be degraded into more toxic and persistent products such as aminomethylphosphonic acid (AMPA) or non-toxic products such as sarcosine and glycine. In this study, we used liquid chromatography mass spectrometry (LC-MS) and electrospray ionization (ESI) source Q Extractive Orbitrap mass spectrometry (ESI-Orbitrap MS) to identify glyphosate degradation products and combined with sequential extraction and stable isotopes to investigate the degradation of glyphosate and transformation of phosphorous (P) product in a soil-water system. The LC-MS and ESI-Orbitrap MS results showed that glycine formed during the early stage but was rapidly utilized by soil microorganisms. AMPA started to accumulate at the late stage and was found to be 3-6 times more resistant than glyphosate against degradation; while no sarcosine was formed. The 18O labeling and phosphate oxygen isotope results allowed a clear distinction of the fraction of inorganic P (Pi) derived from glyphosate, about half of which was then rapidly taken up and recycled by soil microorganisms. Our results provide the first evidence of the preferential utilization of glyphosate-derived Pi by microorganisms in the soil-water system. The rapid cycling of Pi derived from this disregarded source has important implications on nutrient management as well as water quality.
Collapse
Affiliation(s)
- Mingjing Sun
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hui Li
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deb P Jaisi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
30
|
Brock AL, Rein A, Polesel F, Nowak KM, Kästner M, Trapp S. Microbial Turnover of Glyphosate to Biomass: Utilization as Nutrient Source and Formation of AMPA and Biogenic NER in an OECD 308 Test. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5838-5847. [PMID: 30994338 DOI: 10.1021/acs.est.9b01259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Environmental fate assessment of chemicals involves standardized simulation tests with isotope-labeled molecules to balance transformation, mineralization, and formation of nonextractable residues (NER). Methods to predict microbial turnover and biogenic NER have been developed, having limited use when metabolites accumulate, the chemicals are not the only C source, or provide for other macroelements. To improve predictive capability, we extended a recently developed method for microbial growth yield estimation to account for incomplete degradation and multiple-element assimilation and combined it with a dynamic model for fate description in soils and sediments. We evaluated the results against the unique experimental data of 13C3-15N co-labeled glyphosate turnover with AMPA formation in water-sediment systems (OECD 308). Balancing 13C- and 15N- fluxes to biomass showed a pronounced shift of glyphosate transformation from full mineralization to AMPA formation. This may be explained by various hypotheses, for example, the limited substrate turnover inherent to the batch conditions of the test system causing microbial starvation or inhibition by P release. Modeling results indicate initial N overload due to the lower C/N ratio in glyphosate compared to average cell composition leading to subsequent C demand and accumulation of AMPA.
Collapse
Affiliation(s)
- Andreas Libonati Brock
- Department of Environmental Engineering , Technical University of Denmark , Bygningstorvet 115 , 2800 Kgs . Lyngby , Denmark
| | - Arno Rein
- Chair of Hydrogeology , Technical University of Munich , Arcisstrasse 21 , Munich 80333 , Germany
| | - Fabio Polesel
- Department of Environmental Engineering , Technical University of Denmark , Bygningstorvet 115 , 2800 Kgs . Lyngby , Denmark
| | - Karolina M Nowak
- Department of Environmental Biotechnology , Helmholtz-Centre for Environmental Research-UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Matthias Kästner
- Department of Environmental Biotechnology , Helmholtz-Centre for Environmental Research-UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Stefan Trapp
- Department of Environmental Engineering , Technical University of Denmark , Bygningstorvet 115 , 2800 Kgs . Lyngby , Denmark
| |
Collapse
|
31
|
Wang X, Liu B, Liu J. DNA-Functionalized Nanoceria for Probing Oxidation of Phosphorus Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15871-15877. [PMID: 30516388 DOI: 10.1021/acs.langmuir.8b03335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemical reactions without an obvious optical signal change, such as fluorescence or color, are difficult to monitor. Often, more advanced analytical techniques such as high-performance liquid chromatography and mass spectroscopy are needed. It would be useful to convert such reactions to those with changes in optical signals. In this work, we demonstrate that fluorescently labeled DNA oligonucleotides adsorbed on nanomaterials can probe such reactions, and oxidation of phosphorus-containing species was used as an example. Various metal oxides were tested, and CeO2 nanoparticles were found to be the most efficient for this purpose. Among phosphate, phosphite, and hypophosphite, only phosphate produced a large signal, indicating its strongest adsorption on CeO2 to displace the DNA. This was further used to screen oxidation agents to convert lower oxidation-state compounds to phosphate, and bleach was found to be able to oxidize phosphite. Canonical discriminant analysis was performed to discriminate various phosphorus species using a sensor array containing different metal oxides. On the basis of this, glyphosate was studied for its adsorption and oxidation. Although this method is not specific enough for selective biosensors, it is useful as a tool to produce sensitive optical signals to follow important chemical transformations.
Collapse
Affiliation(s)
- Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
32
|
Lopes Catão AJ, López-Castillo A. On the degradation pathway of glyphosate and glycine. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1148-1157. [PMID: 29987286 DOI: 10.1039/c8em00119g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The degradation in water of the most widespread herbicide, glyphosate, is still under debate. Experimental disagreements on this process exist and there are only a few theoretical studies to support any conclusions. Moreover, the relationship between glyphosate and glycine is underestimated. Besides the structural similarity, glycine is a product of glyphosate degradation; hence, their studies are complementary. In this study, two mechanisms for the decomposition of the glyphosate molecule and glycine molecule in water are proposed. These mechanisms were explored by using quantum mechanical calculations. A combined microsolvation/PCM approach was employed to find and characterize their transition states, by which the reaction pathways were determined via the IRC method. The results have shown that the degradation processes might occur via a C-C bond cleavage, through a concerted mechanism, whereby the proton transfers and the CO2 detachments occur simultaneously. The second mechanism had two consecutive steps, a decarboxylation followed by the proton transfers. The water molecules served as a conduit for the proton transfers, away from the amine group (or the phosphonate, glyphosate case). Their function was to assist the reactions in a water-mediated decarboxylation. In these particular cases, the free energy of activation was 42.68 and 42.28 kcal mol-1 for the glycine structure and the glyphosate structure, respectively. These results agreed with the photodegradation and thermodegradation of glyphosate, as well as with the spontaneous decarboxylation of glycine. A concerted mechanism might be expected to yield C-P and C-N bond cleavages in the glyphosate molecule.
Collapse
Affiliation(s)
- Anderson José Lopes Catão
- Chemistry Department, Universidade Federal de São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos CEP 13565-905, Brazil.
| | | |
Collapse
|