1
|
Lu J, Guo Y, Pan M, Fu Q, Zhou B, Zhang T, Peng Z, Shi J, He H, Zeng C, Xu B. Synergistic oxidation and coagulation of raw water by novel Fe(II)/sulfite process: A comparative study with peroxydisulfate and peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138418. [PMID: 40311525 DOI: 10.1016/j.jhazmat.2025.138418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/31/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Latest findings demonstrate that the oxidative Fe(II)/sulfite (Fe(II)/S(IV)) process can rapidly generate iron particles, holding potential for coagulation while simultaneously removing emerging contaminants. Herein, we first report the synergistic oxidation-coagulation treatment of RW by Fe(II)/S(IV) process, and compare with traditional Fe-based coagulation (FeSO4, Fe2(SO4)3), Fe(II)/PDS and Fe(II)/PMS processes. Results revealed that the Fe(II)/S(IV) process outperformed traditional Fe-based coagulants, Fe(II)/PDS and Fe(II)/PMS in removing turbidity, UV254, and DOC. For emerging contaminants removal from RW, Fe(II)/PMS showed the highest efficiency, followed by Fe(II)/PDS, while Fe(II)/S(IV) was slightly less effective, it still demonstrated a significant improvement (40 %∼65 %) over traditional coagulation processes. Moreover, the Fe(II)/S(IV) process is the most effective in reducing DBPs formation (56 %∼86 %). Although Fe(II)/PDS and Fe(II)/PMS also significantly reduce DBPs formation, their high oxidation potential at low pH generated toxic N-DBPs. Mechanistic analysis indicated that the Fe(II)/S(IV) process was most effective in removing humic substances and biopolymers. Its moderate oxidation preserved macromolecular structures, enhancing coagulation. And the hydrolysis of S(IV) generates OH⁻, promoting electrostatic neutralization and floc enlargement. Cost analysis revealed that the Fe(II)/S(IV) process is significantly more economical, with costs only 1/60 of Fe(II)/PMS. These results highlight the Fe(II)/S(IV) process as a promising and cost-effective approach to advanced water treatment.
Collapse
Affiliation(s)
- Jian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yuhao Guo
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Minyuan Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bin Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jun Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chao Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
2
|
He H, Wang X, Huang X, Wang X, Zhu H, Chen F, Wu X, Wu H, Ma J, Wen X. Leveraging almost hydrophobic PVDF membrane and in-situ ozonation in O 3/UF/BAC system for superior anti-fouling and rejection performance in drinking water treatment. WATER RESEARCH 2025; 274:123105. [PMID: 39798531 DOI: 10.1016/j.watres.2025.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O3/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone. Consequently, the physicochemical properties of the PVDF membrane remained unchanged in the laboratory continuous flow experiment with in-situ ozonation at 2.86 mg/L. The almost hydrophobicity of the PVDF membrane not only resisted fouling but also facilitated the reaction between ozone and foulants of higher concentrations locally at membrane surface, leading to dynamic changes in membrane fouling, with TMP/TMP0 initially increasing, then decreasing and stable. Therefore, the Rtotal, Rcake and Rgel of the PVDF membrane decreased by 47.40 %, 46.79 % and 50.99 % as compared to the UF/BAC system, respectively, in the O3/UF/BAC system. In-situ ozonation transformed macromolecular substances into micromolecules, particularly organic matter with lignin/carboxylic-rich alicyclic molecules and aromatic structures. The majority of these micromolecules were either rejected by the deposited foulants layer through Van der Waals interaction and utilized as a carbon source by membrane surface microorganisms (eg., Curvibacter and Methyloversatilis), or further degraded by microorganism in the BAC unit. This resulted in a 19.34 % and 40.58 % reduction in CODMn concentrations in the UF and BAC effluents, respectively. The system's anti-fouling and water purification performance observed in laboratory experiments was confirmed in a pilot test, providing new insights into the use of in-situ ozonation and organic membranes.
Collapse
Affiliation(s)
- Haiyang He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Fengxiang Chen
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Xianzhi Wu
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Huifeng Wu
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Song W, Ma J, Miao S, Zhao Q, Chu H, Zhou X, Zhang Y. Unveiling the role of stratified extracellular polymeric substances in membrane-based microalgae harvesting: Thermodynamic and computational insights. WATER RESEARCH 2025; 273:123079. [PMID: 39756225 DOI: 10.1016/j.watres.2024.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Membrane separation technology has emerged as a highly energy-efficient method for microalgae enrichment and harvesting in wastewater treatment. However, membrane fouling caused by algal cells and stratified extracellular polymeric substances (EPS) remains a critical barrier to its industrial-scale application. This study meticulously investigates the micro process of algae-derived pollutants stacking to the membrane surface affected by stratified EPS. The fouling process resulting from algal cell particle deposition and cake layer formation are clearly simulated using a semi-coupled computational method of Computational Fluid Dynamics (CFD)-Discrete Element Method (DEM) for the first time. The results reveal that the hydrophilic component and spatial network structure of soluble EPS (S-EPS) effectively impede the algae-membrane adhesion, and enable the algal cake layer exhibit "dynamic membrane" characteristic to enhance the organic matter retention. In contrast, bound EPS (B-EPS) with higher protein content exhibits a stronger fouling potential and adhesion tendency of algal cells. The influence of stratified EPS on the variation of thermodynamic interaction with contact scale in the sphere-plane/sphere-sphere model is inventively conducted. Based on different algal cell filtration modes, a sequential increase in the eigenvalue n was observed by delaminating EPS layer by layer, indicative of a more severe membrane pore blockage. The semi-coupled CFD-DEM method provides a quantitative analysis of the deposition process, offering spatial resolution and force analysis for algal-derived pollutants. Additionally, we propose a novel calculation method to reverse the deposition process based on the particle stress, providing a valuable reference for simulating membrane-based microalgae harvesting under the influence of stratified EPS.
Collapse
Affiliation(s)
- Wenxin Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jiaying Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shiyong Miao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Qipeng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
4
|
Huang W, Lv W, Li T, Yang H, Yuan Q, Zhou W, Liu J. Control ultrafiltration membrane fouling in Chlorella-laden water treatment by integrated heat-activated peroxydisulfate pre-oxidation and coagulation treatment. ENVIRONMENTAL RESEARCH 2024; 263:119986. [PMID: 39270951 DOI: 10.1016/j.envres.2024.119986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The membrane fouling induced by algal extracellular organic matter (EOM) remain a bottleneck in restricting ultrafiltration (UF) application during harmful algal-water treatment. In current study, the application of heat-activated peroxydisulfate (PMS) and coagulation (Aluminum chlorohydrate, PACI) on membrane fouling behavior during Chlorella-laden water treatment was investigated. The membrane fouling mechanism was analyzed using the extended Derjaguin-Landau-Verwey-Over-beek (XDLVO) theory. The results revealed that separated heat-activated PMS could enhance the filtration flux of EOM at high PMS does >0.2 mM, whereas the membrane fouling was further alleviated by combined heat-activated PMS (0.2-1.0 mM) and PACI (20 mg/L) treatment, especially at low PMS dose. Combined heat-activated PMS and PACI pretreatment could effectively increase the adhesive repulsion between membrane and foulants and reduce the cohesion free energies between organic foulants than those by separated heat-activated PMS treatment, making the initial filtration flux reduced and the cake layer looser. Moreover, the organic foulants of proteins, polysaccharides, and humic-like organics were removed. Cake formation was the major fouling mechanism when EOM was treated with/without separated heat-activated PMS treatment, whereas the membrane fouling mechanism was changed from cake layer formation to pore blocking after combined heat-activated PMS and PACI treatment. Overall, this research provided a feasible method in membrane fouling control during Chlorella -laden water treatment.
Collapse
Affiliation(s)
- Weiwei Huang
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Weiwei Lv
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Tian Li
- Key Laboratory of Yangtze River Water Environment, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hang Yang
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Quan Yuan
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Wenzong Zhou
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China.
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Du Y, Zhang L, Yang F, Zhou W, He X. Effects of algal organic matters on microporous ceramic emitters clogging in agricultural water distribution systems: Experiment and molecular simulation investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175709. [PMID: 39179047 DOI: 10.1016/j.scitotenv.2024.175709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The mechanism by which algal organic matter (AOM) affects the clogging of ceramic emitters remains unclear, which partially reduces the operational life of agricultural water distribution systems. This paper systematically investigated the clogging phenomenon of ceramic emitters under three different AOM concentrations. The results of irrigation tests revealed that the AOM significantly affects the degree of clogging of ceramic emitters, with higher AOM concentrations leading to faster flow reduction. By analyzing the original irrigation water and effluent and characterizing the clogged emitter surface, it was demonstrated that AOM was intercepted by the ceramic emitter, forming a dense biofilm. Infrared spectroscopy analysis revealed that polysaccharides and humic substances were the main clogging components. The clogging kinetics showed that as the AOM concentration increased, the clogging of the filter cake layer gradually become dominant. Further, the mechanism of interaction between AOM and silica ceramic emitters was explored from a microscopic perspective using molecular dynamics (MD) simulation with bovine serum albumin (BSA), sodium alginate (SA), and humic acid (HA) as model clogging substances in AOM. The simulation results indicated a strong interaction between AOM molecules and silica molecules dominated by electrostatic attraction, with the strength of the interaction as SA > HA > BSA. It was hypothesized that early clogging was mainly formed by polysaccharides and humic substances combining with silica molecules, while BSA was retained later by combining with organics on the clogging layer or through size exclusion. This study provides insights into bio-clogging in microporous ceramic emitters and may offer a theoretical basis for developing measures to control emitter clogging.
Collapse
Affiliation(s)
- Yaqing Du
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lin Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Fuhui Yang
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wei Zhou
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuefei He
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
6
|
An M, Cheng X, Luo X, Yang T, Sun X, Xu J, Xiao D, Wu D, Liang H. Role of reactive manganese and oxygen species in the KMnO 4/Na 2SO 3 process for purification of algal-rich water and membrane fouling alleviation. ENVIRONMENTAL RESEARCH 2024; 260:119662. [PMID: 39043355 DOI: 10.1016/j.envres.2024.119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/29/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Ultrafiltration (UF) is a highly efficient technique for algal-rich water purification, but it is heavily contaminated due to the complex water characteristics. To solve this problem, potassium permanganate (KMnO4) oxidation enhanced with sodium sulfite (Na2SO3) was proposed as a pretreatment means. The results showed that the end-normalized flux was elevated from 0.10 to 0.91, and the reversible fouling resistance was reduced by 99.95%. The membrane fouling mechanism also changed obviously, without the generation of cake filtration. Regarding the properties of algal-rich water, the zeta potential was decreased from -29.50 to -5.87 mV after KMnO4/Na2SO3 pretreatment, suggesting that the electrostatic repulsion was significantly reduced. Meanwhile, the fluorescent components in algal-rich water were significantly eliminated, and the removal of dissolved organic carbon was increased to 67.46%. In the KMnO4/Na2SO3 process, reactive manganese species (i.e., Mn(V), Mn(III) and MnO2) and reactive oxygen species (i.e., SO4•- and •OH) played major roles in purifying algal-rich water. Specifically, SO4•-, •OH, Mn(V) and Mn(III) could effectively oxidize algal pollutants. Simultaneously, the in-situ adsorption and coagulation of MnO2 could accelerate the formation of flocs by decreasing the electrostatic repulsion between cells, and protect the algal cells from being excessive oxidized. Overall, the KMnO4/Na2SO3 process showed significant potential for membrane fouling alleviation in purifying algal-rich water.
Collapse
Affiliation(s)
- Mei An
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Tao Yang
- Institute of Carbon Peaking and Carbon Neutralization, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529020, PR China.
| | - Xianpeng Sun
- Qingdao Drainage Operation Service Center, Qingdao, 266000, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Dao Xiao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
7
|
Chen S, Zhao Z, Wang C, Cui F. VUV coupled with low-dose H 2O 2 as pretreatment prior to UF: Performance, mechanisms, DBPs formation and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134966. [PMID: 38901255 DOI: 10.1016/j.jhazmat.2024.134966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Ultrafiltration (UF) is widely used in drinking water plants; however, membrane fouling is unavoidable. Natural organic matter (NOM) is commonly considered as an important pollutant that causes membrane fouling. Herein, we proposed VUV/H2O2 as a UF pretreatment and used UV/H2O2 for comparison. Compared to UV/H2O2, the VUV/H2O2 system presented superior NOM removal. In the VUV/H2O2 system, the steady-state concentration of HO• was approximately twice that in the UV/H2O2 system, which was ascribed to the promoting effect of the 185 nm photons. Specifically, 185 nm photons promoted HO• generation by decomposing mainly H2O at a low H2O2 dose or by decomposing mainly H2O2 at a high H2O2 dose. The VUV/H2O2 pretreatment also demonstrated better membrane fouling mitigation performance than did UV/H2O2. An increase in the H2O2 dose promoted HO• generation, thereby enhancing the performance of NOM degradation and membrane fouling alleviation and shifting the major membrane fouling mechanism from cake filtration to standard blocking. The VUV/H2O2 (0.60 mM) pretreatment effectively reduced disinfection byproducts (DBPs) formation during chlorine disinfection. Additionally, the oxidant H2O2 affected the membrane surface morphology and performance but had no evident effect on the mechanical properties. In actual water treatment, the VUV/H2O2 pretreatment exhibited better performance than the UV/H2O2 pretreatment in easing membrane fouling, ameliorating water quality, and reducing DBPs formation and acute toxicity.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
8
|
Mao X, Wang Q, Chang H, Liu B, Zhou S, Deng L, Zhang B, Qu F. Moderate oxidation of algae-laden water: Principals and challenges. WATER RESEARCH 2024; 257:121674. [PMID: 38678835 DOI: 10.1016/j.watres.2024.121674] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The occurrence of seasonal algae blooms represents a huge dilemma for water resource management and has garnered widespread attention. Therefore, finding methods to control algae pollution and improve water quality is urgently needed. Moderate oxidation has emerged as a feasible way of algae-laden water treatment and is an economical and prospective strategy for controlling algae and endogenous and exogenous pollutants. Despite this, a comprehensive understanding of algae-laden water treatment by moderate oxidation, particularly principles and summary of advanced strategies, as well as challenges in moderate oxidation application, is still lacking. This review outlines the properties and characterization of algae-laden water, which serve as a prerequisite for assessing the treatment efficiency of moderate oxidation. Biomass, cell viability, and organic matter are key components to assessing moderate oxidation performance. More importantly, the recent advancements in employing moderate oxidation as a treatment or pretreatment procedure were examined, and the suitability of different techniques was evaluated. Generally, moderate oxidation is more promising for improving the solid-liquid separation process by the reduction of cell surface charge (stability) and removal/degradation of the soluble algae secretions. Furthermore, this review presents an outlook on future research directions aimed at overcoming the challenges encountered by existing moderate oxidation technologies. This comprehensive examination aims to provide new and valuable insights into the moderate oxidation process.
Collapse
Affiliation(s)
- Xin Mao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Qingnan Wang
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Deng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
9
|
Zheng H, Zheng Y, Yuan L, Li S, Niu J, Dong X, Kit Leong Y, Lee DJ, Chang JS. Oxidation effects on Microcystis aeruginosa inactivation through various reactive oxygen species: Degradation efficiency, mechanisms, and physiological properties. BIORESOURCE TECHNOLOGY 2024; 402:130806. [PMID: 38718906 DOI: 10.1016/j.biortech.2024.130806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The study investigated the inactivation of Microcystis aeruginosa using a combined approach involving thermally activated peroxyacetic acid (Heat/PAA) and thermally activated persulfate (Heat/PDS). The Heat/PDS algal inactivation process conforms to first-order reaction kinetics. Both hydroxyl radical (•OH) and sulfate radical (SO4-•) significantly impact the disruption of cell integrity, with SO4-• assuming a predominant role. PAA appears to activate organic radicals (RO•), hydroxyl (•OH), and a minimal amount of singlet oxygen (1O2). A thorough analysis underscores persulfate's superior ability to disrupt algal cell membranes. Additionally, SO4-• can convert small-molecule proteins into aromatic hydrocarbons, accelerating cell lysis. PAA can accelerate cell death by diffusing into the cell membrane and triggering advanced oxidative reactions within the cell. This study validates the effectiveness of the thermally activated persulfate process and the thermally activated peroxyacetic acid as strategies for algae inactivation.
Collapse
Affiliation(s)
- Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yongjie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Le Yuan
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong, China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
10
|
Chen Y, Nan J. Magnetic nanoparticle loading and application of weak magnetic field to reconstruct the cake layer of coagulation-ultrafiltration process to achieve efficient antifouling: Performance and mechanism analysis. WATER RESEARCH 2024; 254:121435. [PMID: 38461605 DOI: 10.1016/j.watres.2024.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Abandoning the costly development of new membrane materials and instead directly remodeling the naturally occurring cake layer constitutes a dynamic, low-cost, long-lasting, and proactive strategy to "fight fouling with fouling". Several optimization strategies, including coagulation/modified magnetic seed loading and applying a weak magnetic force (0.01T) at the ultrafiltration end, improved the anti-fouling, retention, and sieving performances of conventional ultrafiltration process during the treatment of source water having complex natural organic matter (NOMs) and small molecule micropollutants. Two modified magnetic seeds we prepared were composite nano-seed particles (Fe3O4@SiO2-NH2 (FS) and Fe3O4@SiO2@PAMAM-NH2 (FSP)). Aim of the study was to regulate the formation of cake layer via comprehensive testing of the antifouling properties of optimized processes and related mechanistic studies. It was found to be essential to enhance the interception of xanthate and tryptophan proteins in the cake layer for improving the anti-fouling performance based on the correlation and redundancy analyses, while the use of modified magnetic seeds and magnetic field showed a significant positive impact on water production. Blockage modeling demonstrated the ability to form a mature cake layer during the initial filtration stage swiftly. This mitigated the risk of irreversible fouling caused by pore blockage during the early stage of coagulation-ultrafiltration. Morphologically, the reconstructed cake layer exhibited elevated surface porosity, an internal cavity channel structure, and enhanced roughness that can promote increased water flux and retention of water impurities. These optimized the maturity of the cake layer in both time and space. Density Functional Theory (DFT), Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and Modified Extended Derjaguin-Landau-Verwey-Overbeek (MDLVO) calculations indicated aggregation behavior of matter on the cake layer to be enhanced effectively due to magnetic seed loading. This is mainly due to the strengthening of polar interactions, including hydrogen bonding, π-π* conjugation, etc., which can happen between the cake layer loaded with FSP and the organic matter. Under the influence of a magnetic field, magnetic force energy (VMF) significantly impacts the system by eliminating energy barriers. This research will provide innovative strategies for effectively purifying intricate source water through ultrafiltration while controlling membrane fouling.
Collapse
Affiliation(s)
- Yunxuan Chen
- Skate Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- Skate Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
11
|
Zeng W, Zhang H, Zhao J, Wang J, Bai L, Li G, Liang H. Synergistic roles of oxidation and self-aggregation in efficient ultrafiltration membrane fouling alleviation using a flow-through Sb-SnO 2 anode during wastewater reclamation. WATER RESEARCH 2024; 249:121003. [PMID: 38086205 DOI: 10.1016/j.watres.2023.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
The application of ultrafiltration (UF) in wastewater reclamation alleviates the demand for limited water supplies. However, the membrane fouling caused by the effluent organic matter (EfOM) becomes a major obstacle for UF application. In this study, a pre-oxidation strategy for UF using a Sb-SnO2 (ATO) anode in flow-through mode was proposed with the hopes to improve the performance of UF during wastewater reclamation. The results indicated that this flow-through ATO (FA) anode significantly outperformed a boron-doped diamond (BDD) anode in terms of EfOM degradation and membrane fouling control. It is noteworthy that apart from oxidation, the self-aggregation behavior of foulants was also involved in the mechanisms of membrane fouling mitigation. On the one hand, FA pre-oxidation relieved the burden of membrane fouling by decomposing the macromolecular EfOM into small molecular organic matter, and even mineralizing it. The effective destruction of unsaturated EfOM by FA pre-oxidation made a remarkable contribution to fouling mitigation due to the strong correlation between the total fouling index and UV254. On the other hand, the surface morphology of membrane and interface properties of foulants revealed the self-aggregation behavior of foulants. FA pre-oxidation made the foulants aggregate spontaneously and reduced the potential of forming a dense cake layer on the membrane surface, which was conductive for water permeation. Overall, FA pre-oxidation proved to be a feasible and chemical-free option for UF pretreatment to simultaneously produce high-quality reused water and alleviate membrane fouling during wastewater reclamation.
Collapse
Affiliation(s)
- Weichen Zeng
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han Zhang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Zhao
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinlong Wang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Langming Bai
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guibai Li
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Zhou Y, Peng H, Jiang L, Wang X, Tang Y, Xiao L. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electro-oxidation-coagulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132729. [PMID: 37839377 DOI: 10.1016/j.jhazmat.2023.132729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The outbreaks of cyanobacterial blooms have caused severe threat to aquatic ecosystem and public health. In this work, electrochemical technology with RuO2/IrO2/Ti (RIT) or/and Al as anode for cyanobacterial bloom control and simultaneous water purification were studied. Compared with RIT-Al and Al electrodes, RIT exhibited the highest effects on bloom algae inactivation and inhibition of algae regrowth. Live/dead analysis, SEM, intracellular reactive oxygen species (ROS) and antioxidant system activities revealed that RIT could disintegrate bloom flocs and damage embedded algal cells due to high intensity of oxidation. With the lysis of cyanobacterial bloom, high content of intracellular compounds containing organic carbon, nitrogen and phosphorus released, necessitating water quality restoration. In the subsequent water purification process, RIT-Al overtook RIT and Al in removal of organic and nutrient pollutants due to the complex effects of electro-oxidation, coagulation, co-precipitation, electro-nitrification and electro-denitrification. Therefore, sequential electro-oxidation and electro-oxidation-coagulation process was an effective method for control cyanobacteria bloom and simultaneous removal of DOM, microcystin-LR (MC-LR), nitrogen and phosphorus, which is a promising technology.
Collapse
Affiliation(s)
- Yingping Zhou
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Huijun Peng
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lijuan Jiang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Xiaolin Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Yuqiong Tang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China.
| |
Collapse
|
13
|
Yu B, Zhang Y, Wu H, Yan W, Meng Y, Hu C, Liu Z, Ding J, Zhang H. Advanced oxidation processes for synchronizing harmful microcystis blooms control with algal metabolites removal: From the laboratory to practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167650. [PMID: 37806585 DOI: 10.1016/j.scitotenv.2023.167650] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Harmful algal blooms (HABs) in freshwater systems have become a global epidemic, leading to a series of problems related to cyanobacterial outbreaks and toxicity. Studies are needed to improve the technology used for the simultaneous removal of harmful cyanobacteria and algal metabolites. In this review, widely reported advanced oxidation processes (AOPs) strategies for removing major species Microcystis aeruginosa (M. aeruginosa) and microcystins (MCs) were screened through bibliometrics, such as photocatalysis, activated persulfate, H2O2, Ozone oxidation, ultrasonic oxidation, and electrochemical oxidation, etc. AOPs generate kinds of reactive oxygen species (ROS) to inactivate cyanobacteria and degrade cyanotoxins. A series of responses occurs in algal cells to resist the damaging effects of ROS generated by AOPs. Specifically, we reviewed laboratory research, mechanisms, practical applications, and challenges of HABs treatments in AOPs. Problems common to these technologies include the impact of algal response and metabolites, and environmental factors. This information provides guidance for future research on the removal of harmful cyanobacteria and treatment of algal metabolites using AOPs.
Collapse
Affiliation(s)
- Bingzhi Yu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Huazhen Wu
- Hangzhou Huanke Environmental Consulting Co. LTD, 310010 Hangzhou, Zhejiang, China
| | - Wen Yan
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yunjuan Meng
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China.
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Cao L, Wang Z, Cheng Y, Chen Y, Liu Z, Yue S, Ma J, Xie P. Reinvestigation on the Mechanism for Algae Inactivation by the Ultraviolet/Peracetic Acid Process: Role of Reactive Species and Performance in Natural Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17629-17639. [PMID: 37906720 DOI: 10.1021/acs.est.3c05694] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This study provided an in-depth understanding of enhanced algae inactivation by combining ultraviolet and peracetic acid (UV/PAA) and selecting Microcystis aeruginosa as the target algae species. The electron paramagnetic resonance (EPR) tests and scavenging experiments provided direct evidence on the formed reactive species (RSs) and indicated the dominant role of RSs including singlet oxygen (1O2) and hydroxyl (HO•) and organic (RO•) radicals in algae inactivation. Based on the algae inactivation kinetic model and the determined steady-state concentration of RSs, the contribution of RSs was quantitatively assessed with the second-order rate constants for the inactivation of algae by HO•, RO•, and 1O2 of 2.67 × 109, 3.44 × 1010, and 1.72 × 109 M-1 s-1, respectively. Afterward, the coexisting bi/carbonate, acting as a shuttle, that promotes the transformation from HO• to RO• was evidenced to account for the better performance of the UV/PAA system in algae inactivation under the natural water background. Subsequently, along with the evaluation of the UV/PAA preoxidation to modify coagulation-sedimentation, the possible application of the UV/PAA process for algae removal was advanced.
Collapse
Affiliation(s)
- Lisan Cao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Siyang Yue
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Yu H, Huang H, Zhong L, Wu S, Yang H, Rong H, Liang H, Qu F, Ma J. Evaluation of Front-Face Fluorescence for Assessing Cyanobacteria Fouling in Ultrafiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17649-17658. [PMID: 37910031 DOI: 10.1021/acs.est.3c07397] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cyanobacteria fouling in ultrafiltration (UF) drinking water treatment poses a significant threat to the stability and sustainability of the process. Both phycocyanin found in cyanobacteria and the polymer membrane exhibit strong fluorescence, which could be readily detected using front-face excitation-emission matrix (FF-EEM) spectroscopy. In this study, FF-EEM was employed for the nondestructive and in situ characterization of algae fouling evolution in UF, while also analyzing fouling mechanisms and reversibility. The results indicated that phycocyanin fluorescence on the membrane surface showed a linear correlation with the specific algal cell count on the membrane surface before reaching saturation. As fouling progressed, membrane fluorescence decreased, which was associated with the extent of the surface coverage on the membrane. The plateau in membrane fluorescence indicated full coverage, coinciding with the cake filtration mechanism, cake compression, and deterioration of fouling reversibility. These findings highlight the promise of FF-EEM as a valuable tool for monitoring and evaluating fouling of cyanobacteria in UF systems.
Collapse
Affiliation(s)
- Huarong Yu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Huan Huang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lin Zhong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shihua Wu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haiyang Yang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| |
Collapse
|
16
|
Du Y, Zhou W, Zhang L, Liu X. Gravity-driven membrane coupled with oxidation technology to modify the surface properties and biofilm formation: Biofouling mitigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118444. [PMID: 37385200 DOI: 10.1016/j.jenvman.2023.118444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Biofilms caused by biological fouling play an essential role in gravity-driven membranes' (GDMs) flux decline and rejection rate. The effects of ozone, permanganate, and ferrate (VI) in-situ pretreatment on membrane properties and biofilm formation were systematically studied. Due to the selective retention and adsorption of algal organic matter by biofilms and oxidative degradation, the rejection efficiency of dissolved organic carbon (DOC) in algae-laden water pretreated with permanganate by GDM was up to 23.63%. Pre-oxidation extraordinarily postponed flux decline and biofilm formation of GDM and reduced membrane fouling. The total membrane resistance decreased by 87.22%-90.30% within 72 h after pre-ozonation. Permanganate was more effective than ozone and ferrate (VI) in alleviating secondary membrane fouling caused by algal cells destroyed by pre-oxidation. Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory revealed that the distribution of electrostatic force (EL), acid-base (AB), and Lifshitz-van der Waals forces (LW) interactions between M. aeruginosa and the released intracellular algogenic organic matter (IOM) and ceramic membrane surface was similar. The membrane and foulants are always attracted to each other by LW interaction at different separation distances. The dominant fouling mechanism of GDM combined with pre-oxidation technology shifts from complete pore blocking to cake layer filtration during operation. After pre-oxidation of algae-laden water by ozone, permanganate, and ferrate (VI), GDM can treat at least 131.8%, 37.0%, and 61.5% more feed solution before forming a complete cake layer. This study provides new insights into the biological fouling control strategies and mechanisms for GDM coupled with oxidation technology, which is expected to alleviate membrane fouling and optimize the feed liquid pretreatment procedure.
Collapse
Affiliation(s)
- Yaqing Du
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wei Zhou
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lin Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xufei Liu
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
17
|
Li Y, Zhang Z, Zhao Y, Han Y, Ren L, Sun Y. A comparison of micro-flocculation and ozonation as pretreatments for ultrafiltration: organic removal and membrane fouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112267-112276. [PMID: 37831270 DOI: 10.1007/s11356-023-30322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Micro-flocculation and ozone were applied as pretreatments of ultrafiltration to treat sodium alginate (SA) and humic acid (HA) simulated water, respectively, to investigate the effects of different pretreatments of ultrafiltration (UF) on filtration flux and removal of organic matters. Regarding the SA simulated water, micro-flocculation helped to improve the dissolved organic carbon (DOC) removal efficiency highly, maximum DOC removal efficiency reached to 79.77%, due to the rejection of gel layer introduced by the alginate-aluminum complexes, but the gel layer had a negative impact on membrane flux. Compared with micro-flocculation, ozone as pretreatments had better ability to enhance the membrane specific flux, the maximum final specific flux remained as 0.786, larger than that of MF-UF process (0.574). Ozonation oxidizing SA into small organic molecules significantly reduced membrane fouling and filtration resistance, but also produced some dissolved organic matters hindering DOC removal of effluent. As for HA simulated water, both the micro-flocculation and ozone could effectively improve the specific flux, the final specific flux of MF-UF and ozone-UF were about 0.930, but MF-UF exhibited better DOC removal than ozone-UF, which avoided the introduction of additional dissolved organic matters.
Collapse
Affiliation(s)
- Yujiao Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhaoheng Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yikan Zhao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuting Han
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Lanxin Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
18
|
Zhao C, Liu B, Zhu T, Zhu X, Cheng X. Mechanistic insight into single-atom Fe loaded catalytic membrane with peracetic acid and visible light activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132506. [PMID: 37696210 DOI: 10.1016/j.jhazmat.2023.132506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Advanced oxidation is an effective method for removing hard-to-degrade organic pollutants from water. In this paper, a novel structure of a single atom Fe anchored g-C3N4 (FeCN) membrane was proposed to remove pollutants from water by coupling membrane technology with photocatalytic and peroxyacetic acid oxidation. The presence of zero-dimensional Fe atoms in FeCN membranes allows for the removal of acetaminophen (APAP) in mobile membrane filtration systems without compromising permeation performance by simultaneously possessing visible photocatalytic capability and peroxyacetic acid (PAA) activation. Existence of inter-membrane domain-limiting conditions led to 100 % degradation of APAP within 10.5 ms, which is 5 orders of magnitude faster than conventional catalytic systems. Notably, photo-generated electrons/holes generated by light and HClO generated by Cl- promote the conversion of Fe(V) and the removal of pollutants during the catalytic process. The spatial separation ability of the membrane catalytic layer surface mitigates the catalyst's passivation by macromolecular organics. Furthermore, surface photocatalysis of the membrane and interlayer catalysis generated by PAA mitigate the surface and interlayer pollutants of the membrane, respectively. This study explores a novel approach for the development of highly efficient atom-catalyzed membrane systems with multiple purposes.
Collapse
Affiliation(s)
- Changrong Zhao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Tingting Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| |
Collapse
|
19
|
Ye C, Chen C, Zhang K, Wu X, Cai WF, Feng M, Yu X. Solar/periodate-triggered rapid inactivation of Microcystis aeruginosa by interrupting the Calvin-Benson cycle. ENVIRONMENT INTERNATIONAL 2023; 180:108204. [PMID: 37776621 DOI: 10.1016/j.envint.2023.108204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Frequent outbreak of cyanobacteria is a serious problem for drinking water treatment. The microcystins released from Microcystis aeruginosa (M. aeruginosa) could cause irreversible damage to human health. Catalyst-free solar/periodate (PI) system has recently presented great potential for bacterial inactivation, whereas the application potential and underlying mechanisms of the effective M. aeruginosa control remain unclear. Our work delineated the key role of ROS that inactivating/harmless disposing M. aeruginosa in the simulated sunlight (SSL)/PI system. Singlet oxygen may specifically cause DNA damage but maintain membrane integrity, preventing the risk of microcystins leakage. The SSL/PI 300 μM system could also effectively inhibit M. aeruginosa recovery for >7 days and completely degrade microcystin-LR (50.0 μg/L) within 30 min. Non-targeted metabolomic analysis suggested that the SSL/PI system inactivated M. aeruginosa mainly by interrupting the Calvin-Benson cycle, which damaged the metabolic flux of glycolysis and its downstream pathways such as the oxidative PPP pathway and glutathione metabolism. Furthermore, the activated PI system exhibited an even better algal inhibition under natural sunlight irradiation, evidenced by the seriously damaged cell membrane of M. aeruginosa. Overall, this study reported the comprehensive mechanisms of algal control and application potentials of solar/PI systems. The findings facilitated the development of emerging algicidal technology and its application in controlling environmental harmful algae.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Chenlan Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kaiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xu Wu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Feng Cai
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian 361103. China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
20
|
Han Y, Wang J, Xu D, Song J, Wang H, Zhu X, Luo X, Yang L, Li G, Liang H. Synergistic effect of potassium ferrate and ferrous iron for improving ultrafiltration performance in algae-laden water treatment. WATER RESEARCH 2023; 243:120362. [PMID: 37517148 DOI: 10.1016/j.watres.2023.120362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
The application of ultrafiltration (UF) technology in algae-laden water is limited due to the serious membrane fouling caused by algal foulants. Herein, a Ferrate/FeSO4(Fe(VI)/Fe(II)) pretreatment was proposed aiming to improve the performance of UF. The results showed that the synergistic of Fe(VI) and Fe(II) significantly increased the zeta potential of Microcystis aeruginosa, which enhanced the agglomerative tendency of algal foulants, and the particle size of flocs remarkably increased due to the in-situ generated Fe(III). Results from dissolved organic carbon (DOC), UV254, K+, and fluorescent spectra indicated that the introduction of Fe(II) avoided the excessive oxidation of Fe(VI) to algal cells and reduced the production of intracellular organic matter (IOM), while the strong coagulation efficiency of in-situ Fe(III) further enhanced the removal effect of algal organics. Meanwhile, the molecular weight distribution showed that macromolecular organics were decomposed into low molecular matters under Fe(VI) oxidation, while the Fe(VI)/Fe(II) process reduced the formation of small molecular matters compared with single Fe(VI) pretreatment. The algal-source fouling was efficaciously mitigated under the optimal experimental condition, the terminal membrane flux could be increased from 0.16 to 0.62, while reversible and irreversible fouling decreased by 67.1% and 64.1%, respectively. Modeling analysis demonstrated that the Fe(VI)/Fe(II) process altered the fouling mechanism by delaying the formation of cake filtration. Membrane interface characterization further indicated that large size algal flocs form a loose cake layer and reduce the deposition of algal pollutants on the membrane surface. The Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory confirmed that the hydrophobic adsorption between the algal foulant and the membrane was weakened, thus relieving the membrane fouling. Overall, this strategy can be considered for application in improving the UF performance and mitigating algal-source membrane fouling.
Collapse
Affiliation(s)
- Yonghui Han
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinlong Wang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Daliang Xu
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jialin Song
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hesong Wang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Liu Yang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guibai Li
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
21
|
Song W, Gao Z, Tan F, Cheng X, Yang T, Wu D, Yang J, Liang H. Calcium sulfite oxidation activated by ferrous iron integrated with membrane filtration for removal of typical algal contaminants. CHEMOSPHERE 2023; 333:138956. [PMID: 37209855 DOI: 10.1016/j.chemosphere.2023.138956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Oxidation treatment of algae-laden water may cause cells rupture and emission of intracellular organics, thus restricting its further popularization. As a moderate oxidant, calcium sulfite could be slowly released in the liquid phase, thus exhibiting a potential to maintain the cells integrity. To this end, calcium sulfite oxidation activated by ferrous iron was proposed integrated with ultrafiltration (UF) for removal of Microcystis aeruginosa, Chlorella vulgaris and Scenedesmus quadricauda. The organic pollutants were significantly eliminated, and the repulsion between algal cells was obviously weakened. Through fluorescent components extraction and molecular weights distribution analyses, the degradation of fluorescent substances and the generation of micromolecular organics were verified. Moreover, the algal cells were dramatically agglomerated and formed larger flocs under the premise of maintaining high cell integrity. The terminal normalized flux was ascended from 0.048 to 0.072 to 0.711-0.956, and the fouling resistances were extraordinarily decreased. Due to the distinctive spiny structure and minimal electrostatic repulsion, Scenedesmus quadricauda was easier to form flocs, and its fouling was more readily mitigated. The fouling mechanism was remarkably altered through postponing the formation of cake filtration. The membrane interface characteristics including microstructures and functional groups firmly proved the fouling control efficiency. The reactive oxygen species (i.e., SO4•- and 1O2) generated through the principal reactions and Fe-Ca composite flocs played dominant roles in alleviating membrane fouling. Overall, the proposed pretreatment exhibits a brilliant application potential for enhancing UF in algal removal.
Collapse
Affiliation(s)
- Wenxin Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Zhimin Gao
- Design & Research Institute, The First Company of China Eighth Engineering Bureau Ltd, Jinan, 250100, PR China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jingxin Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
22
|
Yu H, Yang H, Wei G, Mameda N, Qu F, Rong H. UV/Fe(II)/S(IV) Pretreatment for Ultrafiltration of Microcystis aeruginosa-Laden Water: Fe(II)/Fe(III) Triggered Synergistic Oxidation and Coagulation. MEMBRANES 2023; 13:membranes13050463. [PMID: 37233524 DOI: 10.3390/membranes13050463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Ultrafiltration (UF) has been proven effective in removing algae during seasonal algal blooms, but the algal cells and the metabolites can induce severe membrane fouling, which undermines the performance and stability of the UF. Ultraviolet-activated sulfite with iron (UV/Fe(II)/S(IV)) could enable an oxidation-reduction coupling circulation and exert synergistic effects of moderate oxidation and coagulation, which would be highly preferred in fouling control. For the first time, the UV/Fe(II)/S(IV) was systematically investigated as a pretreatment of UF for treating Microcystis aeruginosa-laden water. The results showed that the UV/Fe(II)/S(IV) pretreatment significantly improved the removal of organic matter and alleviated membrane fouling. Specifically, the organic matter removal increased by 32.1% and 66.6% with UV/Fe(II)/S(IV) pretreatment for UF of extracellular organic matter (EOM) solution and algae-laden water, respectively, while the final normalized flux increased by 12.0-29.0%, and reversible fouling was mitigated by 35.3-72.5%. The oxysulfur radicals generated in the UV/S(IV) degraded the organic matter and ruptured the algal cells, and the low-molecular-weight organic matter generated in the oxidation penetrated the UF and deteriorated the effluent. The over-oxidation did not happen in the UV/Fe(II)/S(IV) pretreatment, which may be attributed to the cyclic redox Fe(II)/Fe(III) coagulation triggered by the Fe(II). The UV-activated sulfate radicals in the UV/Fe(II)/S(IV) enabled satisfactory organic removal and fouling control without over-oxidation and effluent deterioration. The UV/Fe(II)/S(IV) promoted the aggregation of algal foulants and postponed the shift of the fouling mechanisms from standard pore blocking to cake filtration. The UV/Fe(II)/S(IV) pretreatment proved effective in enhancing the UF for algae-laden water treatment.
Collapse
Affiliation(s)
- Huarong Yu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Haiyang Yang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guangmei Wei
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Naresh Mameda
- Department of Engineering Chemistry, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522303, India
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
23
|
Cao L, Wang J, Wang Z, Cheng Y, Dai J, Ma J, Chen Y, Liu Z, Xie P. Comparison of peracetic acid and sodium hypochlorite enhanced Fe(Ⅱ) coagulation on algae-laden water treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130571. [PMID: 37055977 DOI: 10.1016/j.jhazmat.2022.130571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 06/19/2023]
Abstract
In this study, Fe(Ⅱ)/peracetic acid (PAA) and Fe(Ⅱ)/sodium hypochlorite (NaClO) systems were applied as the combined preoxidation and coagulation process to enhance algae removal. A high removal rate of algae and turbidity could be achieved, with most algal cells keeping intact when adding reasonable concentrations of PAA and NaClO to enhance Fe(Ⅱ) coagulation. The variations of chlorophyll a, malondialdehyde, and intracellular reactive oxygen species suggested that moderate oxidation with only destroying surface-adsorbed organic matter rather than cell integrity was realized. The generated organic radicals, Fe(Ⅳ), and hydroxy radical played the major roles in the Fe(Ⅱ)/PAA system for the moderate oxidation of algal cells, but direct oxidation by NaClO rather than producing reactive species in the Fe(Ⅱ)/NaClO process contributed to the preoxidation. Concurrently, the in-situ formed Fe(Ⅲ) greatly promoted the agglomerating and settling of algae. The analysis of cell integrity, biochemical compositions, and fluorescence excitation-emission matrices spectra demonstrated that excess NaClO but not PAA would seriously damage the algal cells. This might be because that NaClO would directly oxidize the cell wall/membrane, while PAA mainly permeates into the cell to inactivate algae. These results suggest that Fe(Ⅱ)/PAA is an efficient strategy for algae-laden water treatment without serious algae lysis.
Collapse
Affiliation(s)
- Lisan Cao
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingwen Wang
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Cheng
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiayue Dai
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Pengchao Xie
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
24
|
Application of heat-activated peroxydisulfate process for the chemical cleaning of fouled ultrafiltration membranes. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
25
|
Lian J, Cheng X, Zhu X, Luo X, Xu J, Tan F, Wu D, Liang H. Mutual activation between ferrate and calcium sulfite for surface water pre-treatment and ultrafiltration membrane fouling control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159893. [PMID: 36336042 DOI: 10.1016/j.scitotenv.2022.159893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In this work, ferrate (Fe(VI)) and calcium sulfite (CaSO3) were combined to treat surface water for improving ultrafiltration (UF) performance. During the pre-treatment process, the Fe(VI) and CaSO3 activated each other and a variety of active species (Fe(V), Fe(IV), OH, SO4-, 1O2, etc.) were generated. All of the five fluorescent components were effectively eliminated to different extents. With Fe(VI)/CaSO3 = 0.05/0.15 mM, the dissolved organic carbon and UV254 reduced by 44.33 % and 50.56 %, respectively. After UF, these values were further decreased with the removal rate of 50.27 % and 70.79 %. In the UF stage, the terminal J/J0 increased to 0.42 from 0.17, with the reversible and irreversible fouling decreased by 67.08 % and 79.45 % at most. The membrane pore blocking was significantly mitigated, as well as the foulants deposition on membrane surfaces was decreased to some extent. The complete blocking was altered to standard blocking and intermediate blocking, the volume when entering cake filtration was also delayed slightly. The extended Derjaguin-Landau-Verwey-Overbeek theory was employed to judge the interface fouling behavior, and the results indicated that the foulants became more hydrophilic, as well as the adhesion trend between foulants and membrane surface was weakened. Overall, these results provide a theoretical foundation for the practical application of the combined Fe(VI)/CaSO3-UF process in surface water purification.
Collapse
Affiliation(s)
- Jinchuan Lian
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
26
|
Hou C, Cheng X, Zhang X, Zhu X, Xu J, Luo X, Wu D, Liang H. Effect of ferrous-activated calcium peroxide oxidation on forward osmosis treatment of algae-laden water: Membrane fouling mitigation and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160100. [PMID: 36370779 DOI: 10.1016/j.scitotenv.2022.160100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Forward osmosis (FO) is a high-efficiency and low-energy consumption way for algae-laden water treatment, whereas membrane fouling is still an unavoidable problem in its practical application. In this work, a strategy of ferrous-activated calcium peroxide (Fe(II)/CaO2) was proposed to control FO membrane fouling in the purification of algae-laden water. With the treatment of Fe(II)/CaO2, the aggregation of algal contaminants was promoted, the cell viability and integrity were well preserved, and the fluorescent organics were efficiently removed. With respect to the fouling of FO membrane, the flux decline was generally alleviated, and the flux recovery was promoted to varying degrees under different process conditions. It could be revealed through the extended Derjaguin-Landau-Verwey-Overbeek theory that the adhesion of contaminants and membrane surfaces was reduced by Fe(II)/CaO2 treatment. The interface morphologies and functional groups of membrane verified that Fe(II)/CaO2 could mitigate the fouling by reducing the amount of algal contaminants adhering to the FO membrane. The co-coagulation of in-situ Fe(III) together with Ca(OH)2, as well as the oxidation of •OH were the main mechanisms for fouling mitigation. In sum, the Fe(II)/CaO2 process could effectively improve the efficiency of FO for algae-laden water treatment, and has broad application prospects.
Collapse
Affiliation(s)
- Chengsi Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Xinyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
27
|
Liu W, Liu B, Li X. UV/Fe(II) synergistically activated S(IV) per-treatment on HA-enhanced Ca 2+ scaling in NF filtration: Fouling mitigation, mechanisms and correlation analysis of membrane resistance in different filtration stage. CHEMOSPHERE 2022; 308:136302. [PMID: 36064030 DOI: 10.1016/j.chemosphere.2022.136302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the feasibility and fouling mitigation mechanisms of UV/Fe(II) synergistically activated sulfite (S(IV)) (UFS) pretreatment to alleviate membrane fouling caused by HA-enhanced Ca2+ scaling. After UFS treatment, hydrophobic substances and carboxyl groups structure were destroyed by the in-situ-generated SO•-4, resulted in a significant reduction of hydrophobic substances ratio and carboxyl group concentration. Due to the formation of more electropositive in-situ-generated Fe(III), the complexation between Ca2+ and carboxyl groups was weakened so that the bulk crystallization size on the membrane surface was greatly reduced. The filter cake enhanced osmotic pressure effect (CEOP) and concentration polarization effect were hence alleviated, as well as the surface roughness. At the microcosmic perspective, as the energy barrier between the membrane and foulants was increased significantly after pretreatment, the anti-foulants adsorption ability of the membrane was enhanced. Correlation analysis showed that the carboxyl concentration and density, HPO ratio, larger particle size (>100 nm) ratio, the Ca2+ concentration in the scaling layer and energy barrier all had a good correlation with the membrane resistance. This research not only provides an advanced oxidation technology that can effectively alleviate the synergistically-fouling effect of HA and Ca2+ of nanofiltration process, but also proposes a guidance for the UV/Fe(II) synergistically activated sulfite.
Collapse
Affiliation(s)
- Wenkai Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China.
| | - Xin Li
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
28
|
Lian J, Zhang L, Tan F, Xu J, Mu R, Wu D, Liang H, Cheng X. Enhancing ultrafiltration of algal-rich water using ferrate activated with sodium percarbonate: Foulants variation, membrane fouling alleviation, and collaborative mechanism. CHEMOSPHERE 2022; 308:136377. [PMID: 36088980 DOI: 10.1016/j.chemosphere.2022.136377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Ultrafiltration (UF) is a reliable method to treat algal-rich water, whereas severe membrane fouling has impeded its actual application. To improve UF performance and alleviate membrane fouling resulted by algal foulants, a novel strategy coupling ferrate (Fe(VI)) and sodium percarbonate (SPC) was proposed. During the coupling process, Fe(VI) was activated by SPC to generate high-valent Fe intermediates (Fe(V) and Fe(IV)), which played a crucial role in high-efficiency oxidation for algal foulants, and the in-situ formed Fe(III) particles decomposed by Fe(VI) also enhanced the coagulation and adsorption capacity to the coupling system. Under the triple effects of coagulation, adsorption and oxidation, the algal foulants were efficiently eliminated. The zeta potential increased from -32.70 mV to -6.56 mV at most, the particle size was significantly enlarged, and the generated flocs possessed a great settleability. The morphology, viability, and integrity of algae cells were effectively maintained. The dissolved organic matters and fluorescent organics were efficiently removed, as well as macromolecular organics were reduced into lower molecular weight components. With the collaborative effect of Fe(VI) and SPC, the terminal specific flux was increased from 0.29 to 0.92, and the reversible and irreversible fouling resistances were reduced by 98.5% and 69.4%, individually. The surface functional groups were changed, and the dominant mechanisms were also converted to pore blocking from cake layer filtration. Overall, the experimental results would provide some new thoughts in actual production for algal-rich water treatment and UF membrane fouling alleviation.
Collapse
Affiliation(s)
- Jinchuan Lian
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| |
Collapse
|
29
|
Li K, Xu W, Wen G, Zhou Z, Han M, Zhang S, Huang T. Aging of polyvinylidene fluoride (PVDF) ultrafiltration membrane due to ozone exposure in water treatment: Evolution of membrane properties and performance. CHEMOSPHERE 2022; 308:136520. [PMID: 36152832 DOI: 10.1016/j.chemosphere.2022.136520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Pre-ozonation is an effective pretreatment tactic for mitigating fouling of ultrafiltration (UF) membrane in water and wastewater treatment, but the compatibility of polymeric UF membranes with residual ozone remains unclear. In this study, effects of long-term ozone exposure on properties and performance of polyvinylidene fluoride (PVDF) UF membrane reinforced by polyethylene terephthalate (PET) layer were systematically investigated. The exposure intensities were designed to simulate ozone exposure at 0.1 mg/L for 0.5-5 years. Chemical composition analysis suggested that the hydrophilic additives, such as possibly polyvinyl pyrrolidone (PVP), was gradually degraded and released from the membrane, whereas the PVDF matrix exhibited fairly good ozone resistance. Ozonation resulted in increase of pore size and decrease of surface hydrophilicity, which can be attributed to oxidation and dislodgement of hydrophilic additives. Accordingly, long-term ozonation led to moderate changes in performance factors, including increase of membrane permeability by 34%, decrease of retention ability by 21.8%, increase of organic fouling propensity. It is worth noting that membrane tensile strength suffered substantial decrease after ozonation, probably due to ozonation of the PET support layer. Overall, it seems that the PVDF functional layer exhibited good ozone resistance, but the PET support layer was the Achilles' heel of the reinforced PVDF membrane for integrating with pre-ozonation.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Weihua Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhipeng Zhou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Min Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Shujia Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
30
|
Zhu T, Liu B. Mechanism study on the effect of peracetic acid (PAA), UV/PAA and ultrasonic/PAA oxidation on ultrafiltration performance during algae-laden water treatment. WATER RESEARCH 2022; 220:118705. [PMID: 35667168 DOI: 10.1016/j.watres.2022.118705] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, peracetic acid (PAA), ultraviolet (UV)/PAA and ultrasonic (US)/PAA pre-oxidation were applied to enhance ultrafiltration (UF) performance during algae-laden water treatment. The results showed that 10 mg/L PAA, exhibiting an optimal performance with membrane fouling resistance reduced by 76.26%. Low dosage of UV/PAA can effectively control fouling by enhancing the degradation of dissolved organics. Though more radicals were generated with the increasing dosage of PAA during the UV/PAA process, flux deterioration was occurred when PAA dosage over 10 mg/L, owing to a negative correlation between fouling resistance and algal integrity loss. Compared with UV, US exhibited a worse activation effect on PAA with less reactive radicals produced. Even worse, US can stimulate the stress metabolism of algal cells with slightly integrity loss, which then resulted in an exacerbation of permeate quality. Fouling mechanism analysis revealed that the delay formation of cake layer with membrane fouling alleviation mainly through efficient degradation of macromolecular organics. The investigation of synergistic and individual effect of EOM degradation, algae rupture and IOM release on the filtration performance revealed that EOM degradation was the primary mechanism for fouling control while algae rupture rather than IOM release was crucial for membrane fouling aggravation. This indicates that moderate oxidation, with property of high organic degradation and low cell rupture, was the working principal and objectives for algae-laden water treatment. Additionally, it was found that the ·OH radicals produced during UV/PAA process can efficiently degrade representative odors. In general, pretreatments of PAA and low dosages of UV/PAA showed promising prospects in improving the UF performance of algae-laden water and treating algal secretions.
Collapse
Affiliation(s)
- Tingting Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
31
|
Jiang T, Tian T, Guan YF, Yu HQ. Contrasting behaviors of pre-ozonation on ceramic membrane biofouling: Early stage vs late stage. WATER RESEARCH 2022; 220:118702. [PMID: 35665674 DOI: 10.1016/j.watres.2022.118702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Pre-ozonation coupled with ceramic membrane filtration has been widely used to alleviate membrane fouling. However, information on the efficiency and underlying mechanism of pre-ozonation in the evolution of ceramic membrane biofouling is limited. Herein, filtration experiments with a synthesis wastewater containing activated sludge were conducted in a cross-flow system to evaluate the effects of pre-ozonation on ceramic membrane biofouling. Results of flux tests show that pre-ozonation aggravated biofouling at the early stage, but alleviated the biofouling at the late stage. In situ FTIR spectra show that the aggravated biofouling with pre-ozonation was mainly caused by the enhanced complexation between phosphate group from DNA and Al2O3 surface and the increased rigid of proteins' structure. At the early stage, more severe pore blockage further substantiated the higher permeate resistance. By contrast, more dead cells were observed on membrane surface at the late stage, indicating the prevention of biofouling development after long-term pre-ozonation. Additionally, the structures and compositions of cake layers at the early and late stages exhibited considerable differences accompanied by the variation in microbial community with the evolution of biofouling. Therefore, this work demonstrates the effectiveness of pre-ozonation in biofouling in long-term operation and provides mechanistic insights into the evolution of biofouling on ceramic membrane.
Collapse
Affiliation(s)
- Ting Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Fang Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
32
|
Energy-efficient Membranes for Microalgae Dewatering: Fouling Challenges and Mitigation Strategies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Yang H, Tang X, Bai L, Yang L, Ding J, Chen R, Du X, Li G, Liang H. Synergistic effects of prokaryotes and oxidants in rapid sand filters treatment of groundwater versus surface water: Purification efficacy, stability and associated mechanisms. CHEMOSPHERE 2022; 295:133804. [PMID: 35114257 DOI: 10.1016/j.chemosphere.2022.133804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Effective elimination of manganese (Mn) and ammonium (NH4+-N) from drinking water is still challenging. Utilizing oxidants to improve the simultaneous removals of Mn and NH4+-N from rapid sand filter (RSF) systems has been extensively studied. However, the prokaryotes containing in the water geochemical properties greatly affected the RSF performance. In this study, groundwater and micro-polluted surface water were used to compare with/without potassium permanganate (KMnO4) assistant on the contaminants removals and system stability. Results showed that KMnO4 reduced the start-up period of RSF for treating groundwater and surface water to 20 and 41 days, respectively, with excellent Mn removal rates (>97%). The relative abundance of efficient ammonia-oxidizing bacteria (Nitrospira) in RSF treated groundwater without KMnO4 was higher than that in RSFs treated micro-polluted surface water or with KMnO4, resulting in a higher NH4+-N removal rate of the former (∼57%). Notably, KMnO4 and prokaryotes synergistically contributed to the amorphous structure, mixed phases (buserite, MnO2 and birnessite) and mixed-valence Mn system of active manganese oxides (MnOx), whose abundant oxygen vacancies and highly reactive Mn(III) favored the autocatalytic oxidation of Mn, while NH4+-N removal relied more on bacteria actions. Additionally, prokaryotes enriched the bacterial community diversity, leading to a more stable RSF system when facing hydraulic loading shock. This paper provided new insight into the synergistic effect of KMnO4 and prokaryotes on Mn and NH4+-N eliminations in RSFs and was helpful for practical applications.
Collapse
Affiliation(s)
- Haiyang Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
34
|
Yang Z, Yu H, Wei G, Ye L, Fan G, Fang Q, Rong H, Qu F. Oxidation-enhanced ferric coagulation for alleviating ultrafiltration membrane fouling by algal organic matter: A comparison of moderate and strong oxidation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
35
|
Zhu T, Qu F, Liu B, Liang H. The influence of environmental factor on the coagulation enhanced ultrafiltration of algae-laden water: Role of two anionic surfactants to the separation performance. CHEMOSPHERE 2022; 291:132745. [PMID: 34743800 DOI: 10.1016/j.chemosphere.2021.132745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
With the acceleration of urbanization and the improvement of people's living standards, more chemicals that humans rely on are entering the city and surrounding water bodies. Anionic surfactants are one of the essential products for human beings. It is also one of the inducements that cause the eutrophication. The algae-laden water caused by eutrophication is a headache in the traditional water treatment process. To solve the problem, ultrafitration combined process was widely investigated to treat the algae-laden water. The presence of stimuli, low concentration anionic surfactant, probably interfere the performance of ultrafiltration process during algae-laden water treatment. In this study, the influence of two typical anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (LAS), on the performance of coagulation-enhanced ultrafiltration was investigated. The aluminum sulfate hydrate and iron sulfate hydrate were respectively employed as coagulant. Based on the residual turbidity and zeta potential, 4 mg/L Al and 8 mg/L Fe were determined as the optimal coagulant dosage. The floc morphology confirmed that Al-algae flocs with lower fractal dimension (Df) were looser and more porous compared to Fe-algae flocs. More coagulant was depleted by LAS due to the better hydrophobicity of LAS. During the filtration process, LAS caused a larger flux reduction compared with SDS regardless of the coagulant that was used. More organic compounds penetrate into membrane pores and block the pores with the presence of LAS since algal cell aggregation was weakened. Finally, the rejection of organic compounds by the coagulation-enhanced ultrafiltration process was studied, and the co-existing surfactants can cause effluent deterioration. Therefore, the presence of surfactants has a negative effect to the ultrafiltration treatment of algae-laden water.
Collapse
Affiliation(s)
- Tingting Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, PR China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, PR China
| | - Bin Liu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
36
|
Zhai X, Chen B, He Y, An L, Chen S, Yan X, Zhang Y, Meng J. A novel loose nanofiltration membrane with superior anti-biofouling performance prepared from zwitterion-grafted chitosan. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Cheng X, Hou C, Gao H, Li P, Zhu X, Luo C, Zhang L, Jin Y, Wu D, Liang H. Synergistic process using calcium peroxide and ferrous iron for enhanced ultrafiltration of Microcystis aeruginosa-laden water. WATER RESEARCH 2022; 211:118067. [PMID: 35065340 DOI: 10.1016/j.watres.2022.118067] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Algal blooms and eutrophication in natural surface water not only pose a threat to human health, but also adversely affect the water purification process. Ultrafiltration (UF) has been proved to be effective for the retention of algal cells, but its further application is still restricted by the relatively limited removal of algal organics and membrane fouling. To enhance the UF performance, a synergistic process using calcium peroxide and ferrous sulfate (CaO2/FeSO4) was proposed for the treatment of Microcystis aeruginosa-laden water. The results suggested that the removal of algal cells and organics, fluorescent components were effectively increased with the synergism of CaO2 and FeSO4. The particle size distribution and morphology revealed that the size of algal pollutants apparently increased due to the formation of algal flocs. With CaO2/FeSO4 pretreatment, the terminal specific flux of polyethersulfone and polyvinylidene fluoride membranes were increased by 75.0% and 56.5%, individually. The fouling resistances were significantly reduced, and the fouling mechanism transition to cake filtration was delayed. The membrane interface properties including morphologies and functional groups were characterized, further verifying the effectiveness. The in-situ formed Fe3+ integrated with Ca(OH)2 showed excellent coagulation effect, thus promoting the agglomeration of algal foulants. Simultaneously, the generated hydroxyl radical could improve the oxidative degradation of algal organics. In conclusion, the CaO2/FeSO4 strategy has great advantages and application prospects in enhancing UF performance for Microcystis aeruginosa-laden water treatment.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Chengsi Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Hongbo Gao
- Jinan Water Group Co., Ltd., Jinan 250012, PR China
| | - Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
38
|
Liu W, Yang K, Qu F, Liu B. A moderate activated sulfite pre-oxidation on ultrafiltration treatment of algae-laden water: Fouling mitigation, organic rejection, cell integrity and cake layer property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Alleviation of Ultrafiltration Membrane Fouling by ClO2 Pre-Oxidation: Fouling Mechanism and Interface Characteristics. MEMBRANES 2022; 12:membranes12010078. [PMID: 35054604 PMCID: PMC8779104 DOI: 10.3390/membranes12010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
In order to alleviate membrane fouling and improve removal efficiency, a series of pretreatment technologies were applied to the ultrafiltration process. In this study, ClO2 was used as a pre-oxidation strategy for the ultrafiltration (UF) process. Humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA) were used as three typical organic model foulants, and the mixture of the three substances was used as a representation of simulated natural water. The dosages of ClO2 were 0.5, 1, 2, 4, and 8 mg/L, with 90 min pre-oxidation. The results showed that ClO2 pre-oxidation at low doses (1–2 mg/L) could alleviate the membrane flux decline caused by humus, polysaccharides, and simulated natural water, but had a limited alleviating effect on the irreversible resistance of the membrane. The interfacial free energy analysis showed that the interaction force between the membrane and the simulated natural water was also repulsive after the pre-oxidation, indicating that ClO2 pre-oxidation was an effective way to alleviate cake layer fouling by reducing the interaction between the foulant and the membrane. In addition, ClO2 oxidation activated the hidden functional groups in the raw water, resulting in an increase in the fluorescence value of humic analogs, but had a good removal effect on the fluorescence intensity of BSA. Furthermore, the membrane fouling fitting model showed that ClO2, at a low dose (1 mg/L), could change the mechanism of membrane fouling induced by simulated natural water from standard blocking and cake layer blocking to critical blocking. Overall, ClO2 pre-oxidation was an efficient pretreatment strategy for UF membrane fouling alleviation, especially for the fouling control of HA and SA at low dosages.
Collapse
|
40
|
Cao L, Wang J, Wang Z, Yu S, Cheng Y, Ma J, Xie P. Inactivation of Microcystis Aeruginosa by peracetic acid combined with ultraviolet: Performance and characteristics. WATER RESEARCH 2022; 208:117847. [PMID: 34794020 DOI: 10.1016/j.watres.2021.117847] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The inactivation of algae by a combined process of peracetic acid and ultraviolet irradiation (UV/PAA) was systematically investigated by choosing Microcystis aeruginosa as the reference algal species. Both hydroxyl (HO•) and organic radicals (RO•) contributed to the cell integrity loss and RO• played the dominant roles. The algae inactivation kinetics can be well fitted by the typical Hom model, showing that the inactivation kinetic curves followed a type of shoulder and exponential reduction. The initial shoulder might be induced by the protection from the cell wall. Although the results from the cell morphology, UV-vis spectra and fluorescence excitation-emission matrices analysis suggested the cell lysis and the release of algal organic matter (AOM) in the UV/PAA process, the AOM could be subsequently degraded. Humic acid (1 - 5 mg/L) inhibited the algal cell inactivation, and the presence of chloride (0.5 - 2 mM) had little effect on the cell viability reduction. However, the addition of bicarbonate (1 - 5 mM) promoted cell integrity loss. The UV/PAA process displayed better performance under the natural water background, demonstrating the extensive potential for the practical application of this approach. This study suggests that the UV/PAA process is an effective strategy for algae inactivation.
Collapse
Affiliation(s)
- Lisan Cao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingwen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiwen Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
41
|
Zhu T, Zhou Z, Qu F, Liu B, Van der Bruggen B. Separation performance of ultrafiltration during the treatment of algae-laden water in the presence of an anionic surfactant. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119894] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Saha P, Wang Y, Moradi M, Brüninghoff R, Moussavi G, Mei B, Mul G, H. M. Rijnaarts H, Bruning H. Advanced oxidation processes for removal of organics from cooling tower blowdown: Efficiencies and evaluation of chlorinated species. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Jiang H, Zhao Q, Wang P, Chen M, Wang Z, Ma J. Inhibition of algae-induced membrane fouling by in-situ formed hydrophilic micropillars on ultrafiltration membrane surface. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Hu M, Zhao L, Yu N, Tian Z, Yin Z, Yang Z, Yang W, Graham NJ. Application of ultra-low concentrations of moderately-hydrophobic chitosan for ultrafiltration membrane fouling mitigation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Wang Y, Feng M, Wang J, Chen X, Chen X, Du X, Xun F, Ngwenya BT. Algal blooms modulate organic matter remineralization in freshwater sediments: A new insight on priming effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147087. [PMID: 33894606 DOI: 10.1016/j.scitotenv.2021.147087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
This study provides a novel insight into the degradation of sediment organic matter (SOM) regulated by algae-derived organic matter (AOM) based on priming effect. We tracked the dynamics of SOM mineralization products and pathways, together with priming effects (PE) using the compound-specific stable isotope (δ13C) technique following addition of low- and high-density algal debris in sediments. We found that algal debris increased the total carbon oxidation rate, and resulted in denitrification and methanogenesis-dominated SOM mineralization. While iron reduction and sulphate reduction played important roles in the early period of algal accumulation. Total carbon oxidation rate and anaerobic rates (Ranaerobic) were higher in the amended treatments compared with that in the control. Analysis indicated that algal debris had a positive PE on SOM mineralization, which caused an intensified mineralization in the initial phase with over 80% of dissolved inorganic carbon deriving from SOM degradation. Total carbon oxidation rate of SOM deduced from priming effect (RTCOR-PE) was similar to Ranaerobic, further indicating SOM mineralization was a critical source of the end products. These findings deviate the causal focus from the decomposition of AOM, and confirm the accumulation of AOM as the facilitator of SOM mineralization. Our study offers empirical evidences to advance the traditional view on the effect of AOM on SOM mineralization.
Collapse
Affiliation(s)
- Yarui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 Beijing East Road, Nanjing 210008, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Muhua Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 Beijing East Road, Nanjing 210008, PR China.
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 Beijing East Road, Nanjing 210008, PR China
| | - Xinfang Chen
- Hydrology and Water Resources College, Hohai University, Nanjing 210098, PR China
| | - Xiangchao Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 Beijing East Road, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 Beijing East Road, Nanjing 210008, PR China
| | - Fan Xun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 Beijing East Road, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bryne Tendelo Ngwenya
- Microbial Geochemistry Laboratory, School of Geosciences, University of Edinburgh, EH9 3FE, UK
| |
Collapse
|
46
|
Chen Z, Li J, Chen M, Koh KY, Du Z, Gin KYH, He Y, Ong CN, Chen JP. Microcystis aeruginosa removal by peroxides of hydrogen peroxide, peroxymonosulfate and peroxydisulfate without additional activators. WATER RESEARCH 2021; 201:117263. [PMID: 34126472 DOI: 10.1016/j.watres.2021.117263] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal bloom (HAB) is one of the most globally severe challenges in ecological system and water safety. Hydrogen peroxide has been commonly used in the management/treatment. Solid oxidants (e.g., peroxymonosulfate (PMS) and peroxydisulfate (PDS)) may outperform liquid H2O2 due to ease in transportation, handling, and applications. However, the information on applications of PMS and PDS in algae treatment is limited. In this study, the two solid peroxides and H2O2 were investigated for the removal of the blue-green algae of Microcystis aeruginosa. H2O2 and PMS effectively removed algae in 2 d at pH 5.0, 7.0 and 9.0, while PDS was only effective at pH 5.0. The change in pH and the release of dissolved organic carbon were insignificant at 0.2 mM H2O2 and PMS. The PMS could degrade microcystin-LR and phycobiliproteins. The studies of phycobiliproteins degradation and scanning electron microscopy indicated that PMS might cause the cell inactivation mainly by damaging the chemical components in algae cell wall and membrane while H2O2 might mainly enter the cell to form oxidation pressure to kill algae. The scavenger experiments showed that radicals were not crucial in H2O2 and PDS applications. Similarly, the algae removal by PMS was obtained mainly by non-radical pathways; about 77% was direct PMS oxidation and no more than 3% was singlet oxygen-mediated process, while radical pathways of sulfate radical and hydroxyl radical accounted for 18% and 2%, respectively. For the realistic algae-contaminated natural water, the PMS effectively lasted for 60 d, while the H2O2 lasted for 12 d. This research work demonstrates that the PMS is promising in control of HAB. The findings can provide some useful design and application parameters of PMS technology for better management/treatment of algae-contaminated water.
Collapse
Affiliation(s)
- Zhihao Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore
| | - Jingyi Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge Crescent, Singapore 119260, Singapore; Sichuan Cancer Hospital & Institute, No. 55, Section 4, South Renmin Road, Chengdu, China
| | - Meiqing Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge Crescent, Singapore 119260, Singapore
| | - Kok Yuen Koh
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge Crescent, Singapore 119260, Singapore
| | - Zhongrong Du
- Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge Crescent, Singapore 119260, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge Crescent, Singapore 119260, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore; Saw Swee Hock School of Public Health, 12 Science Drive 2, National University of Singapore, Singapore, 117549, Singapore
| | - J Paul Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge Crescent, Singapore 119260, Singapore.
| |
Collapse
|
47
|
Novoa AF, Vrouwenvelder JS, Fortunato L. Membrane Fouling in Algal Separation Processes: A Review of Influencing Factors and Mechanisms. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.687422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.
Collapse
|
48
|
Qiu Y, Luo Y, Zhang T, Du X, Wang Z, Liu F, Liang H. Comparison between permanganate pre-oxidation and persulfate/iron(II) enhanced coagulation as pretreatment for ceramic membrane ultrafiltration of surface water contaminated with manganese and algae. ENVIRONMENTAL RESEARCH 2021; 196:110942. [PMID: 33711319 DOI: 10.1016/j.envres.2021.110942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Concurrent presence of algae and manganese (Mn) in water poses a significant challenge for water treatment. This study compared the treatment efficiency of Mn-containing and algae-laden water using either permanganate pre-oxidation (KMnO4) or persulfate/iron(II) (PMS/Fe2+) enhanced coagulation as pretreatment for ceramic membrane ultrafiltration. The results showed that KMnO4 pre-oxidation achieved a slightly more effective Mn removal, and was almost unaffected by the initial dissolved organic carbon (DOC) concentrations. PMS/Fe2+ removed UV254 more efficiently (above 90% at a dose of 0.25 mmol/L), compared with KMnO4 (less than 60% UV254 removal). According to X-ray photoelectron spectroscopy (XPS) analysis of aggregates, both KMnO4 and Fe2+/PMS oxidation resulted in the formation of MnO2 precipitate. Electron paramagnetic resonance(EPR) analysis demonstrated that only the reactors dosed with PMS/Fe2+ were able to generate the highly reactive hydroxyl radical(·OH). The production of ·OH caused significant rupture of algal cells and thus higher algal removal compared to the treatment with KMnO4 (whereby insignificant cell breakage was observed). The cell rupture resulted in higher amounts of organic matter released in the systems containing PMS/Fe2+, as demonstrated by excitation-emission matrix (EEM) and protein analysis. Despite the elevated level of organic matter, adding PMS/Fe2+ was found to notably mitigate membrane fouling due to the formation of large flocs (311-533 μm) as well as the elimination of major ceramic membrane foulants, i.e. humic substances.
Collapse
Affiliation(s)
- Yongting Qiu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Tianxiang Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Feng Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| |
Collapse
|
49
|
Xu M, Wang X, Zhou B, Zhou L. Pre-coagulation with cationic flocculant-composited titanium xerogel coagulant for alleviating subsequent ultrafiltration membrane fouling by algae-related pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124838. [PMID: 33352421 DOI: 10.1016/j.jhazmat.2020.124838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
In-line coagulation-ultrafiltration is reliable to achieve the safe disposal of algae-laden water with alleviated membrane fouling. Poly(diallyl dimethyl ammonium chloride) (PDADMAC)-composited titanium xerogel (TXC) coagulant (abbreviated as P-T) was reported to possess better resistance to organic matter loads, and its mitigation effect on subsequent ultrafiltration efficiency towards algae-related pollutants was investigated in this study. Results showed that P-T coagulation effectively mitigated membrane fouling over pH 5.0-9.0, whereas TXC only worked better under acidic condition. Acidic environment facilitated algae and organic matter removal by pre-coagulation, thus greatly improving ultrafiltration efficiency. Under neutral and alkaline conditions, PDADMAC portion in P-T enhanced the coagulation removal towards algae and protein constituents, and simultaneously promoted the formation of flocs with unique porous structure, which jointly contributed to its high-efficient alleviation ability. Nevertheless, PDADMAC increased adhesion force between P-T coagulated flocs and membrane surface, thus slightly reducing the recovery rate of membrane flux at pH 5.0. Pearson correlation analyses implied that removing algae cells would prevent reversible fouling-induced flux decline, whereas eliminating organic matter could greatly promote ultrafiltration efficiency via mitigating irreversible fouling. Therefore, elevating removal efficiency of organic matters is still the major objective for ultrafiltration pretreatment technologies and the optimization direction towards TXC-based coagulants.
Collapse
Affiliation(s)
- Min Xu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Bo Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
50
|
Yang K, Yin J, Zhu T, Liu B, Li G, Huang B, Shi Z, Deng L. Effect of boron-doped diamond anode electrode pretreatment on UF membrane fouling mitigation in a cross-flow filtration process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|