1
|
Ren L, Wang Y, Ren Y, Li G, Sang N. Phenanthrene perturbs hematopoietic development and causes hematopoietic defects in zebrafish. J Environ Sci (China) 2025; 151:573-581. [PMID: 39481963 DOI: 10.1016/j.jes.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/03/2024]
Abstract
Phenanthrene (Phe) is one of the common polycyclic aromatic hydrocarbons in the environment, and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity. However, it is still unknown whether it can affect the hematopoietic development in aquatic organisms. To address this question, zebrafish (Danio rerio) were chronically exposed to Phe at different concentrations. We found that Phe caused structural damage to the renal tubules in the kidney, induced malformed erythrocytes in peripheral blood, and decreased the proportion of myeloid cells in adult zebrafish, suggesting possible negative impacts that Phe posed to hematopoietic development. Then, using in situ hybridization technology, we found that Phe decreased the expression of primitive hematopoietic marker genes, specifically gata1 and pu.1, accompanied by an obstruction of primitive erythrocyte circulation. Furthermore, Phe impaired definitive hematopoiesis, increased aberrations of the transient hematopoietic site (PBI), and reduced the generation of hematopoietic stem cells, ultimately influencing the number of erythrocytes and myeloid cells. The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.
Collapse
Affiliation(s)
- Lingyu Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yue Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Ying Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Farhadian S, Fatahian-Dehkordi RA, Javad-Yadanpanah M, Farokhvand N. Assessment of exposure to Phenanthrene: Insight in to the in vivo, in vitro, and in silico techniques. CHEMOSPHERE 2025; 374:144207. [PMID: 39965280 DOI: 10.1016/j.chemosphere.2025.144207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Organic pollutants have become a serious environmental concern due to improper use of agricultural chemicals, mining activities, and large volumes of urban waste discharge. Organic pollutants have emerged as a significant ecological issue because of the misuse of agricultural chemicals, mining operations, and the substantial discharge of urban waste. Phenanthrene (PHE), a polycyclic aromatic hydrocarbon (PAH), has various industrial applications such as dyes, plastics, pesticides, explosives, and drugs. In this study, to estimate the Human serum albumin (HAS) binding and liver cytotoxicity of PHE, the in vivo, in vitro, and in silico investigation was applied. The results show that the interaction between PHE and HSA can be done, spontaneously. The in vivo study demonstrated that both low- and high doses of PAH led to a decrease in hepatocytes and sinusoid volumes and an upward trend in blood vessels compared to the control group. The total measured biochemical factors except for HDL showed an increase in both doses of PAH compared to controls. The serum level of HDL in Phe-treated rats was markedly decreased compared to control rats.
Collapse
Affiliation(s)
- Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Rahmat-Allah Fatahian-Dehkordi
- Central Laboratory, Shahrekord University, Shahrekord, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
| | - Mohammad Javad-Yadanpanah
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Najimeh Farokhvand
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
3
|
Kurowska P, Berthet L, Ramé C, Węgiel M, Maślanka A, Guérif F, Froment P, Rak A, Dupont J. Polycyclic aromatic hydrocarbons in human granulosa cells: first in vivo presence and positive correlation with body mass index and in vitro ovarian cell steroidogenesis regulation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104611. [PMID: 39674531 DOI: 10.1016/j.etap.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) exposure leads to disorders reported in female infertility patients. Our hypothesis is that PAHs accumulate in granulosa cells (Gc) according to body mass index (BMI) and directly affects its functions. All 16 high-priority PAHs were in human FF, Gc and blood plasma with the highest concentration in Gc (GC-MS/MS). Their highest concentration was in obese Gc, except for acenaphthene and acenaphthylene, and positively correlated with BMI. In FF, we noted only positive correlation between naphthalene and BMI, whereas in blood plasma positive correlation between naphthalene, acenaphthene, pyrene and BMI. Phenanthrene and naphthalene but not fluoranthene inhibited totally steroidogenesis (ELISA), CYP19A1 mRNA expression (real-time PCR) and increased oxidative stress index and catalase expression in Gc independently on BMI. While all studied PAHs decreased Gc proliferation (BrdU assay) and viability (Cell Count kit-8 assay). Thus, Gc PAHs concentrations are positively correlated with BMI and alter ovarian functions.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Lucille Berthet
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Małgorzata Węgiel
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Anna Maślanka
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Fabrice Guérif
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France.
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Joelle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| |
Collapse
|
4
|
Xu N, Jiang X, Liu Y, Junaid M, Ahmad M, Bi C, Guo W, Jiang C, Liu S. Chronic environmental level exposure to perfluorooctane sulfonate overshadows graphene oxide to induce apoptosis through activation of the ROS-p53-caspase pathway in marine medaka Oryzias melastigma. CHEMOSPHERE 2024; 365:143374. [PMID: 39306112 DOI: 10.1016/j.chemosphere.2024.143374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The widespread occurrence of perfluorooctane sulfonate (PFOS) and the mass production and application of graphene oxide (GO) lead to their inevitable release and interaction in the environment, which may enhance associated toxic impacts on aquatic organisms. This study elucidates the induction of apoptosis by 60-day chronic single and mixture exposures to environmentally relevant levels of PFOS (0.5 μg/L and 5 μg/L) and GO (1 mg/L) in adult marine medaka Oryzias melastigma. Results showed a significant increase (p < 0.05) in reactive oxygen species (ROS) levels, the apoptotic positive rate in livers, and activities of caspases 3, 8, and 9 in all treated groups compared to the control. PFOS individual and PFOS-GO combined exposures significantly impacted fish growth, upregulated expressions of six apoptosis-related genes including p53, apaf1, il1b, tnfa, bcl2l1, bax, as well as enriched cell cycle and p53 signaling pathways (transcriptomic analysis) related to apoptosis compared to control group. Besides higher ROS production, GO also had a higher binding affinity to proteins than PFOS, especially to caspase 8 as revealed by molecular docking. Overall, PFOS induced ROS-p53-caspase apoptosis pathway through multi-gene regulation during single or mixture exposure, while GO single exposure induced apoptosis through tissue damage and ROS-caspase pathway activation and direct docking with caspase 8 to activate the caspase cascade. Under co-exposure, the PFOS-induced apoptotic pathway overshadowed the GO-induced pathway, due to competition for limited active sites on caspases. These findings will contribute to a better understanding of the apoptosis mechanism and ecological risks of nanomaterials and per- and polyfluoroalkyl substances in marine ecosystems.
Collapse
Affiliation(s)
- Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xilin Jiang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yan Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Manzoor Ahmad
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chunqing Bi
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjing Guo
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chen'ao Jiang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shulin Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
5
|
Teng T, Yang Y, Li H, Song J, Ren J, Liu F. Mechanisms of intestinal injury in polychaete Perinereis aibuhitensis caused by low-concentration fluorene pollution: Microbiome and metabonomic analyses. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134925. [PMID: 38889458 DOI: 10.1016/j.jhazmat.2024.134925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The polychaete Perinereis aibuhitensis is used for bioremediation; however, its ability to remove fluorene, a common environmental pollutant, from sediments remains unclear, especially at low concentrations of fluorene (10 mg/kg). In this study, we explored the mechanism of intestinal injury induced by low concentrations of fluorene and the reason intestinal injury is alleviated in high fluorene concentration groups (100 and 1000 mg/kg) using histology, ecological biomarkers, gut microbiome, and metabolic response analyses. The results show that P. aibuhitensis showed high tolerance to fluorene in sediments, with clearance rates ranging 25-50 %. However, the remediation effect at low fluorene concentrations (10 mg/kg) was poor. This is attributed to promoting the growth of harmful microorganisms such as Microvirga, which can cause metabolic disorders, intestinal flora imbalances, and the generation of harmful substances such as 2-hydroxyfluorene. These can result in severe intestinal injury in P. aibuhitensis, reducing its fluorene clearance rate. However, high fluorene concentrations (100 and 1000 mg/kg) may promote the growth of beneficial microorganisms such as Faecalibacterium, which can replace the dominant harmful microorganisms and improve metabolism to reverse the intestinal injury caused by low fluorene concentrations, ultimately restoring the fluorene-removal ability of P. aibuhitensis. This study demonstrates an effective method for evaluating the potential ecological risks of fluorene pollution in marine sediments and provides guidance for using P. aibuhitensis for remediation.
Collapse
Affiliation(s)
- Teng Teng
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Yuting Yang
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Huihong Li
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Jie Song
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Junning Ren
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Feng Liu
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China.
| |
Collapse
|
6
|
Teng T, Yang Y, Li H, Liu F. Toxic effect of fluorene on Perinereis aibuhitensis body wall and its corresponding defense mechanisms: A metabolomics perspective. MARINE POLLUTION BULLETIN 2024; 205:116674. [PMID: 38981191 DOI: 10.1016/j.marpolbul.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Fluorene is a coastal sediment pollutant with high ecological risk. Perinereis aibuhitensis is an ecotoxicological model used for polycyclic aromatic hydrocarbon bioremediation; however, the effects of fluorene on the physiological metabolism of P. aibuhitensis and its corresponding responses remain unclear. This study explored the tolerance and defense responses of P. aibuhitensis in sediments with different fluorene concentrations using histology, ecological biomarkers, and metabolic responses. Metabolomics analyses revealed that P. aibuhitensis has high tolerance to fluorene in sediments. Fluorene stress disrupted the normal metabolism of the P. aibuhitensis body wall, resulting in excessive glycosphospholipid and stearamide accumulation and elevated oxygen consumption rates. To mitigate this, P. aibuhitensis has adopted tail cutting, yellowing, and modulation of metabolite contents in the body wall. This study provides novel insights into the potential ecological risk of fluorene pollution in marine sediments and proposes the use of P. aibuhitensis in the bioremediation of fluorene-contaminated sediments.
Collapse
Affiliation(s)
- Teng Teng
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Yuting Yang
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Huihong Li
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Feng Liu
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China.
| |
Collapse
|
7
|
England E, Morris JW, Bussy C, Hancox JC, Shiels HA. The key characteristics of cardiotoxicity for the pervasive pollutant phenanthrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133853. [PMID: 38503207 DOI: 10.1016/j.jhazmat.2024.133853] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The key characteristic (KCs) framework has been used previously to assess the carcinogenicity and cardiotoxicity of various chemical and pharmacological agents. Here, the 12 KCs of cardiotoxicity are used to evaluate the previously reported cardiotoxicity of phenanthrene (Phe), a tricyclic polycyclic aromatic hydrocarbon (PAH), and major component of fossil fuel-derived air pollution. Phe is a semi-volatile pollutant existing in both the gas phase and particle phase through adsorption onto or into particulate matter (PM). Phe can translocate across the airways and gastrointestinal tract into the systemic circulation, enabling body-wide effects. Our evaluation based on a comprehensive literature review, indicates Phe exhibits 11 of the 12 KCs for cardiotoxicity. These include adverse effects on cardiac electromechanical performance, the vasculature and endothelium, immunomodulation and oxidative stress, and neuronal and endocrine control. Environmental agents that have similarly damaging effects on the cardiovascular system are heavily regulated and monitored, yet globally there is no air quality regulation specific for PAHs like Phe. Environmental monitoring of Phe is not the international standard with benzo[a]pyrene being frequently used as a proxy despite the two PAH species exhibiting significant differences in sources, concentration variations and toxic effects. The evidence summarised in this evaluation highlights the need to move away from proxied PAH measurements and develop a monitoring network capable of measuring Phe concentration. It also stresses the need to raise awareness amongst the medical community of the potential cardiovascular impact of PAH exposure. This will allow the production of mitigation strategies and possibly the development of new policies for the protection of the societal groups most vulnerable to cardiovascular disease.
Collapse
Affiliation(s)
- E England
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - J W Morris
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - C Bussy
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - J C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - H A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
He F, Hu S, Liu R, Li X, Guo S, Wang H, Tian G, Qi Y, Wang T. Decoding the biological toxicity of phenanthrene on intestinal cells of Eisenia fetida: Effects, toxicity pathways and corresponding mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166903. [PMID: 37683861 DOI: 10.1016/j.scitotenv.2023.166903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/13/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Phenanthrene is frequently detected and exists extensively in the soil environment, and its residues inevitably impose a significant threat to soil organisms. Exposure to and toxicity of phenanthrene on earthworms has been extensively studied before, however, the possible mechanisms and related pathways associated with phenanthrene-triggered toxicity at the intestinal cell level remain unclear. Herein, primary intestinal cells isolated from Eisenia fetida (Annelida, Oligochaeta) intestine were used as targeted receptors to probe the molecular mechanisms involved in ROS-mediated damaging effects and the potential pathways of phenanthrene-induced toxicity at cellular and sub-cellular levels. Results indicated that phenanthrene exposure induced oxidative stress by activating intracellular ROS (elevated O2-, H2O2, and OH- content) bursts in E. fetida intestinal cells, causing various oxidative damage effects, including lipid peroxidation (increased MDA content), protein oxidation (enhanced PCO levels), and DNA damage (enhanced 8-OHdG levels). The enzymatic and non-enzymatic strategies in earthworm cells were activated to mitigate these detrimental effects by regulating ROS-mediated pathways involving defense regulation. Also, phenanthrene stress destroyed the cell membrane of E. fetida intestinal cells, resulting in cellular calcium homeostasis disruption and cellular energetic alteration, ultimately causing cytotoxicity and cell apoptosis/death. More importantly, the mitochondrial dysfunction in E. fetida cells was induced by phenanthrene-caused mitochondrial membrane depolarization, which in turn caused un-controlled ROS burst and induced apoptosis through mitochondria-mediated caspase-3 activation and ROS-mediated mitochondrial-dependent pathway. Furthermore, exposure to phenanthrene activated an abnormal mRNA expression profile associated with defense regulation (e.g., Hsp70, MT, CRT, SOD, CAT, and GST genes) in E. fetida intestinal cells, resulting in various cellular dysfunctions and pathological conditions, eventually, apoptotic cell death. Taken together, this study offers valuable insights for probing the toxic effects and underlying mechanisms posed by phenanthrene at the intestinal cell level, and is of great significance to estimate the detrimental side effects of phenanthrene on soil ecological health.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
9
|
He F, Liu R. Mechanistic insights into phenanthrene-triggered oxidative stress-associated neurotoxicity, genotoxicity, and behavioral disturbances toward the brandling worm (Eisenia fetida) brain: The need for an ecotoxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131072. [PMID: 36857826 DOI: 10.1016/j.jhazmat.2023.131072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, earthworm (Eisenia fetida) brain was chosen as targeted receptors to probe the mechanisms of oxidative stress-related neurotoxicity, genotoxicity, and behavioral disturbances triggered by PHE. Results showed that PHE stress can initiate significant amounts of ROS, thus triggering oxidative stress in E. fetida brain. These effects were accompanied by a significant increase of damage to macromolecules DNA and lipids, resulting in severe oxidative effects. PHE exposure can induce AChE inhibition by ROS-induced injury and the accumulation of excess ACh at the nicotinic post-synaptic membrane, thus inducing aggravated neurological dysfunction and neurotoxicity of E. fetida through an oxidative stress pathway. Moreover, the burrowing behavior of earthworms was disturbed by oxidative stress-induced neurotoxicity after exposure to PHE. Furthermore, the abnormal mRNA expression profiles of oxidative stress- and neurotoxicity-related genes in worm brain were induced by PHE stress. The IBR results suggested that E. fetida brain was suffered more serious damage caused by PHE under higher doses and long-term exposure. Taken together, PHE exposure can trigger oxidative stress-mediated neurotoxicity and genotoxicity in worm brain and behavioral disorder through ROS-induced damage. This study is of great significance to evaluate the harmful effects of PHE and its mechanisms on soil ecological health.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
10
|
He F, Liu R, Tian G, Qi Y, Wang T. Ecotoxicological evaluation of oxidative stress-mediated neurotoxic effects, genetic toxicity, behavioral disorders, and the corresponding mechanisms induced by fluorene-contaminated soil targeted to earthworm (Eisenia fetida) brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162014. [PMID: 36740067 DOI: 10.1016/j.scitotenv.2023.162014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Fluorene is a commonly identified PAH pollutant in soil and exhibits various worrisome hazardous effects to soil organisms. Currently, the toxicity profiles of fluorene on earthworm brain are rare, and the mechanisms and their corresponding pathways involved in fluorene-triggered neurotoxicity, genotoxicity, and behavior changes have not been reported hitherto. Herein, earthworm (Eisenia fetida) brain was chosen as targeted receptor to explore the neurotoxic effects, genetic toxicity, behavioral disorders, and related mechanisms caused by fluorene-induced oxidative stress pathways. The results showed excess fluorene initiated the release of excessive quantities of ROS in earthworm brain, which have caused oxidative stress and accompanied by serious oxidative effects, including LPO (lipid peroxidation) and DNA injury. To minimize the damage effects, the antioxidant defense mechanisms (antioxidant enzymes and non-enzymatic antioxidants) were activated, and entailed a decrease of the antioxidant capacity in E. fetida brain, which, in turn, causes further ROS-induced ROS release. Exposure of fluorene induced the abnormal mRNA expression of genes relevant to oxidative stress (e.g., GST, SOD, CAT, GPx, MT, and Hsp70) and neurotoxicity (e.g., H02, C04, D06, and E08) in E. fetida brain. Specifically, fluorene can bind directly to AChE, destroying the conformation of this protein, and even affecting its physiological functions. This occurrence caused the inhibition of AChE activity and excess ACh accumulation at the nicotinic post-synaptic membrane, finally triggering neurotoxicity by activation of pathways related to oxidative stress. Moreover, the avoidance responses and burrowing behavior were obviously disturbed by oxidative stress-induced neurotoxicity after exposure to fluorene. The results form IBR suggested more severe poisoning effects to E. fetida brain initiated by high-dose and long-term exposure of fluorene. Among, oxidative stress injury and genotoxic potential are more sensitive endpoint than others. Collectively, fluorene stress can provoke potential neurotoxicity, genotoxicity, and behavioral disturbances targeted to E. fetida brain through the ROS-mediated pathways involving oxidative stress. These findings are of great significance to estimate the detrimental effects of fluorene and the corresponding mechanisms on soil eco-safety.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
11
|
Ye L, Ding X, Liu C, Ruan F, Zhong H, Lv R, Yu Y, He C, Zuo Z, Huang J. The hepatoprotective effects of Herbt Tea Essences on phenanthrene-induced liver damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114899. [PMID: 37060801 DOI: 10.1016/j.ecoenv.2023.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Phenanthrene (Phe), one of the most frequently occurring pollutants in nature, can cause substantial damage to the human liver. Herbt Tea Essences (HTE), a kind of black tea extract with strong anti-inflammatory activity, can protect humans against disease. Currently, whether HTE can protect the liver from Phe-induced hepatotoxicity remains unclear. Herein, we explore the protective effects of HTE against Phe-induced hepatotoxicity. Our results showed that Phe exposure could significantly induce liver damage and increase serum hepatic enzyme levels in mice. HTE could prevent liver damage and recover the expression levels of inflammatory factors. Furthermore, we found that HTE suppressed the excessive activation of the nuclear transcription factor kappa-B and transforming growth factor-β/SMAD signaling pathways to alleviate Phe-induced liver inflammation and fibrosis. Overall, our data showed that HTE treatment could be a new preventive means for Phe-induced liver disease.
Collapse
Affiliation(s)
- Lingxiao Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongbin Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Rongfu Lv
- Xiamen Herbt Biotechnology Company Limited, Xiamen, Fujian 361005, China
| | - Yi Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
12
|
Wang Y, Li S, Yang S, Li X, Liu L, Ma X, Niu D, Duan X. Exposure to phenanthrene affects oocyte meiosis by inducing mitochondrial dysfunction and endoplasmic reticulum stress. Cell Prolif 2022; 56:e13335. [PMID: 36125441 PMCID: PMC9816937 DOI: 10.1111/cpr.13335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Phenanthrene (PHE) is one of the most abundant polycyclic aromatic hydrocarbons (PAHs), which is a widespread environmental contaminant. Various studies showed that PHE has adverse impacts on animals and human health. It has been shown that PHE exposure induced follicular atresia and endocrine dyscrasia in female mice. However, the potential mechanism regarding how PHE affects female reproductive system especially the oocyte quality has not been elucidated. METHODS AND RESULTS In this study, we set up PHE exposure model and found that PHE exposure compromised oocytes maturation competence by inhibiting spindle assembly and chromosomes alignment. Moreover, PHE exposure induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, leading to increased reactive oxygen species (ROS) and aberrant calcium levels in cytoplasm, eventually induced oxidative stress and DNA damage in oocytes. Furthermore, we found that oral administration of PHE caused the occurrence of oxidative stress and apoptosis in female ovary. In addition, the oocyte exhibited aberrant spindle morphology and failure of actin cap formation in metaphase II oocytes. CONCLUSIONS Taken together, our study demonstrated that mitochondrial dysfunction and ER stress-induced oxidative stress and DNA damage are the major cause of poor oocyte quality after PHE exposure.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Si‐Hong Li
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Shu‐Jie Yang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Xiao‐Qing Li
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Lu Liu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Dong Niu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Xing Duan
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
13
|
Malar DS, Prasanth MI, Verma K, Prasansuklab A, Tencomnao T. Hibiscus sabdariffa Extract Protects HaCaT Cells against Phenanthrene-Induced Toxicity through the Regulation of Constitutive Androstane Receptor/Pregnane X Receptor Pathway. Nutrients 2022; 14:nu14183829. [PMID: 36145217 PMCID: PMC9502750 DOI: 10.3390/nu14183829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Phenanthrene (Phe) exposure is associated with skin ageing, cardiotoxicity and developmental defects. Here, we investigated the mode of Phe toxicity in human keratinocytes (HaCaT cells) and the attenuation of toxicity on pre-treatment (6 h) with ethanol extract of Hibiscus sabdariffa calyxes (HS). Cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm) alteration, changes in the transcriptional activity of selected genes involved in phase I and II metabolism, antioxidant response and gluconeogenesis, western blot and docking studies were performed to determine the protective effect of HS against Phe. Phe (250 μM) induced cytotoxicity in HaCaT cells through AhR-independent, CAR/PXR/RXR-mediated activation of CYP1A1 and the subsequent alterations in phase I and II metabolism genes. Further, CYP1A1 activation by Phe induced ROS generation, reduced ΔΨm and modulated antioxidant response, phase II metabolism and gluconeogenesis-related gene expression. However, pre-treatment with HS extract restored the pathological changes observed upon Phe exposure through CYP1A1 inhibition. Docking studies showed the site-specific activation of PXR and CAR by Phe and inhibition of CYP1A1 and CYP3A4 by the bioactive compounds of HS similar to that of the positive controls tested. Our results conclude that HS extract can attenuate Phe-induced toxicity in HaCaT cells through CAR/PXR/RXR mediated inhibition of CYP1A1.
Collapse
Affiliation(s)
- Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Department of Parasite-Host Biology, ICMR-National Institute of Malaria Research (NIMR), New Delhi 110077, India
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-2-218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-2-218-1533 (T.T.)
| |
Collapse
|
14
|
Hong X, Chen R, Zhang L, Yan L, Xin J, Li J, Zha J. Long-Term Exposure to SSRI Citalopram Induces Neurotoxic Effects in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12380-12390. [PMID: 35985052 DOI: 10.1021/acs.est.2c01514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Residual antidepressants are of increasing concern worldwide, yet critical information on their long-term neurotoxic impacts on nontarget aquatic animals is lacking. Here, we investigated the long-term effects (from 0 to 150 days postfertilization) of the selective serotonin reuptake inhibitor citalopram (0.1-100 μg/L) on motor function, learning, and memory in zebrafish over two generations and explored the reversibility of the effect in F1 larvae. Unlike F0+ larvae, we found that F1+ larvae displayed decreased sensorimotor performance when continuously exposed to citalopram at 100 μg/L. No adverse effects were found in F1- larvae after they were transferred to a clean medium. Whole-mount immunofluorescence assays suggested that the motor impairments were related to axonal projections of the spinal motor neurons (MNs). For F0+ adults, long-term citalopram exposure mainly caused male-specific declines in motor, learning, and memory performance. Analysis of serotonergic and cholinergic MNs revealed no significant changes in the male zebrafish spinal cord. In contrast, the number of glutamatergic spinal MNs decreased, likely associated with the impairment of motor function. Additionally, treatment with 100 μg/L citalopram significantly reduced the number of dopaminergic neurons, but no significant neuronal apoptosis was observed in the adult telencephalon. Overall, this study provides neurobehavioral evidence and novel insights into the neurotoxic mechanisms of long-term citalopram exposure and may facilitate the assessment of the environmental and health risks posed by citalopram-containing antidepressant drugs.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Le Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajing Xin
- Department of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Jiasu Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
He F, Li X, Huo C, Chu S, Cui Z, Li Y, Wan J, Liu R. Evaluation of fluorene-caused ecotoxicological responses and the mechanism underlying its toxicity in Eisenia fetida: Multi-level analysis of biological organization. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129342. [PMID: 35716570 DOI: 10.1016/j.jhazmat.2022.129342] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Fluorene is an important toxic chemical that exists ubiquitously in the environment, and it has also been suggested to exert potential deleterious effects on soil invertebrates. However, knowledge about the toxic effects of fluorene and its underlying mechanisms of the effects on key soil organism earthworms remains limited. From this view point, this study was undertaken to explore the potential effects of fluorene and its underlying mechanisms in Eisenia fetida at the level of experimental animals, tissue, cell, and molecule. It was concluded that fluorene exerted lethal activity to adult E. fetida on day 14 with the LC50 determined to be 88.61 mg/kg. Fluorene-induced ROS caused oxidative stress in E. fetida, resulting in DNA damage, protein carbonylation, and lipid peroxidation. Moreover, changed antioxidative enzymatic activities, non-enzymatic antioxidative activities, and total antioxidative capacity in E. fetida by fluorene stress are associated with antioxidative and protective effects. High-dose fluorene (> 2.5 mg/kg) exposure significantly caused histopathological lesions including the microstructure of body wall, intestine, and seminal vesicle of earthworms. Also, the reproductive system of E. fetida was clearly disrupted by fluorene stress, leading to poor reproduction ability (decreased cocoon and juvenile production) in earthworms. It is found that E. fetida growth was significantly inhibited when treated with high-dose fluorene, thereby causing normal growth disorders. Additionally, fluorene stress triggered the abnormal mRNA expression related to oxidative stress (e.g., metallothionein and heat shock protein 70), growth (translationally controlled tumour protein), reproduction (annetocin precursor) in E. fetida. Together, both high-dose and long-term exposure elicited more severe poisoning effects on earthworms using the Integrated Biological Response (IBR) index, and E. fetida coelomocyte DNA was the most negatively affected by fluorene stress. This study comprehensively evaluated fluorene-induced toxicity in E. fetida, and its underlying molecular mechanisms mediating the toxic responses have been elucidated. These findings provide valuable data for assessing potential ecological risks posed by fluorene-contaminated soil.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
16
|
Hong X, Zhang L, Zha J. Toxicity of waterborne vortioxetine, a new antidepressant, in non-target aquatic organisms: From wonder to concern drugs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119175. [PMID: 35337889 DOI: 10.1016/j.envpol.2022.119175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Vortioxetine is increasing in popularity as a treatment for major depressive disorder and has been detected in wastewater effluent. However, information on the toxicity and environmental risk of vortioxetine in non-target organisms is scarce. Here, embryonic and juvenile zebrafish (Danio rerio) were used to assess the toxicity of vortioxetine (0, 1, 10, 30, 100, 300, and 1000 μg/L) after 120 h and 7 d of exposure, respectively. Vortioxetine induced significant toxicity during embryonic development, including effects on survival, hatching, basal heart rate, spontaneous tail coiling and developmental abnormalities, and inhibited larval locomotor activity at concentrations higher than 30 μg/L. Additionally, vortioxetine evoked anxiolytic-like behavior and caused histopathological changes to multiple organs (gills, heart, liver and intestine) in juvenile zebrafish. Significant increase in 5-HT content was observed in whole zebrafish larvae and juvenile brain tissues from animals treated with 1 or 100 μg/L vortioxetine. Notably, the lowest effective concentrations of vortioxetine for zebrafish were mainly in the range of 10-30 μg/L, which were slightly lower than the vortioxetine therapeutic concentrations. Risk quotients assuming conservative exposure assessments were above one in European countries indicating moderate risk for the behavioral endpoints assessed. We believe that these results highlight the adverse effects of vortioxetine on non-target organisms and that further investigations will be required to provide a higher confidence.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Le Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Tang J, Zhang Z, Miao J, Tian Y, Pan L. Effects of benzo[a]pyrene exposure on oxidative stress and apoptosis of gill cells of Chlamys farreri in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103867. [PMID: 35483583 DOI: 10.1016/j.etap.2022.103867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
As a common pollutant in marine environment, benzo[a]pyrene (B[a]P) has high toxicity to economic shellfish. In order to explore the mechanism of oxidative stress and apoptosis, the effects of 0, 2, 4, 8 μg/mL B[a]P on gill cells of C. farreri at 12 and 24 h were studied. The results showed that B[a]P decreased the activity of gill cells, increased the content of reactive oxygen species (ROS) and the expression of antioxidant defense genes. Besides, B[a]P could induce oxidative damage to nucleus and mitochondria. The gene expression and enzyme activity of apoptosis pathway related factors were changed. In conclusion, these results showed that B[a]P could cause oxidative stress and oxidative damage in gill cells of C. farreri, and mediate gill cell apoptosis through mitochondrial pathway and death receptor pathway. This article provides a theoretical basis for clarifying the molecular mechanism of PAHs-included oxidative stress and apoptosis in bivalves.
Collapse
Affiliation(s)
- Jian Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zixian Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
18
|
He F, Yu H, Shi H, Li X, Chu S, Huo C, Liu R. Behavioral, histopathological, genetic, and organism-wide responses to phenanthrene-induced oxidative stress in Eisenia fetida earthworms in natural soil microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40012-40028. [PMID: 35113383 DOI: 10.1007/s11356-022-18990-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) contamination not only changes the quality of soil environment but also threatens to the soil organisms. There is lack of focus on the eco-toxicity potential of this contaminant in real soil in the current investigation. Here, we assessed the toxic effects of PHE on earthworms (Eisenia fetida) in natural soil matrix. PHE exhibited a relatively high toxicity to E. fetida in natural soil, with the LC50 determined to be 56.68 mg kg-1 after a 14-day exposure. Excessive ROS induced by PHE, leading to oxidative damage to biomacromolecules in E. fetida, including lipid peroxidation, protein carbonylation, and DNA damage. The antioxidant defense system (total antioxidant capacity, glutathione S-transferase, peroxidase, catalase, carboxylesterase, and superoxide dismutase) in E. fetida responded quickly to scavenge excess ROS and free radicals. Exposure to PHE resulted in earthworm avoidance responses (2.5 mg kg-1) and habitat function loss (10 mg kg-1). Histological observations indicated that the intestine, body wall, and seminal vesicle in E. fetida were severely damaged after exposure to high-dose PHE. Moreover, earthworm growth (weight change) and reproduction (cocoon production and the number of juvenile) were also inhibited after exposure to this pollutant. Furthermore, the integrated toxicity of PHE toward E. fetida at different doses and exposure times was assessed by the integrated biomarker response (IBR), which confirmed that PHE is more toxic to earthworms in the high-dose and long-term exposure groups. Our results showed that PHE exposure induced oxidative stress, disturbed antioxidant defense system, and caused oxidative damage in E. fetida. These effects can trigger behavior changes and damage histological structure, finally cause growth inhibition, genotoxicity, and reproductive toxicity in earthworms. The strength of this study is the comprehensive toxicity evaluation of PHE to earthworms and highlights the need to investigate the eco-toxicity potential of exogenous environmental pollutants in a real soil environment.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Hanmei Yu
- Yanzhou District Branch of Jining Ecological Environment Bureau, No. 159, Wenhua East Road , Yanzhou District, Jining City, Shandong Province, 272100, People's Republic of China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
19
|
Zhang L, Ji X, Ding F, Wu X, Tang N, Wu Q. Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118959. [PMID: 35134430 DOI: 10.1016/j.envpol.2022.118959] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The association between polycyclic aromatic hydrocarbons (PAHs) and male reproductive dysfunction has attracted increasing attention. The purpose of this study was to compare the male reproductive toxicity of multiple PAHs and to investigate the underlying molecular mechanisms. TM4 cells (mouse testicular Sertoli cells, SCs) were treated with benzo(a)pyrene (BaP), pyrene (Py), fluoranthene (Fl) and phenanthrene (Phe) (0, 0.1, 1, 10, 50, or 100 μM) for varying time points (4, 12, 24, or 48 h), and male C57BL/6 mice were administered BaP and Py (0, 10, 50, or 100 mg/kg body weight) for 14 days based on the cell experimental results. Histopathological examination, western blotting, ELISA, biochemical assays, RT-PCR, flow cytometry, JC-1 staining and trans-epithelium electrical resistance (TEER) measurements were used to assess apoptosis, blood-testis barrier (BTB) integrity, intracellular calcium ([Ca2+]i) concentrations and oxidative stress (OS). The results revealed that the mRNA levels and enzymatic activities of CYP450 and GST family members; levels of ROS, MDA, cleaved caspase 3 (c-caspase 3), caspase 9, Bax, and cytochrome C (CytC); and numbers of TUNEL-positive cells were significantly increased by BaP and Py, while levels of AhR, GSH, SOD, CAT, Bcl-2 and ΔΨm were decreased. Additionally, BaP and Py notably interfered with tight junctions (TJs) and adherens junctions (AJs) in the BTB. Intriguingly, BaP, but not Py, induced [Ca2+]i overload and gap junction (GJ) destruction. There was no dramatic effect of Fl and/or Phe on any of the above parameters except that slight cytotoxicity was observed with higher doses of Fl. Collectively, these findings showed that BaP and Py elicited SC apoptosis and BTB disruption involving mitochondrial dysfunction and OS, but [Ca2+]i fluctuation and GJ injury were only observed with BaP-induced reproductive toxicity. The male reproductive toxicity of the selected PAHs was ranked in the order of BaP > Py > Fl > Phe.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China; Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China
| | - Xiaoli Ji
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China; Department of Occupational Disease, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Fan Ding
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China
| | - Xuan Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China
| | - Ning Tang
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Qing Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
20
|
He F, Wan J, Chu S, Li X, Zong W, Liu R. Toxic mechanism on phenanthrene-triggered cell apoptosis, genotoxicity, immunotoxicity and activity changes of immunity protein in Eisenia fetida: Combined analysis at cellular and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153167. [PMID: 35051481 DOI: 10.1016/j.scitotenv.2022.153167] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) is a harmful organic contaminant and exists extensively in the soil environment. The accumulation of PHE would potentially threaten soil invertebrates, including earthworms, and the toxicity is also high. Currently, the possible mechanisms underlying apoptotic pathways induced by PHE and its immunotoxicity and genotoxicity in earthworms remain unclear. Thus, Eisenia fetida coelomocytes and immunity protein lysozyme (LYZ) were chosen as targeted receptors to reveal the apoptotic pathways, genotoxicity, and immunotoxicity triggered by PHE and its binding mechanism with LYZ, using cellular, biochemical, and molecular methods. Results indicated that PHE exposure can cause cell membrane damage, increase cell membrane permeability, and ultimately trigger mitochondria-mediated apoptosis. Increased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels indicated PHE had triggered DNA oxidative damage in cells after PHE exposure. Occurrence of detrimental effects on the immune system in E. fetida coelomocytes due to decreased phagocytic efficacy and destroyed the lysosomal membrane. The LYZ activity in coelomocytes after PHE exposure was consistent with the molecular results, in which the LYZ activity was inhibited. After PHE binding, the protein structure (secondary structure and protein skeleton) and protein environment (the micro-environment of aromatic amino acids) of LYZ were destroyed, forming a larger particle size of the PHE-LYZ complex, and causing a significant sensitization effect on LYZ fluorescence. Molecular simulation indicated the key residues Glu 35, Asp 52, and Trp 62 for protein function located in the binding pocket, suggesting PHE preferentially binds to the active center of LYZ. Additionally, the primary driving forces for the binding interaction between PHE and LYZ molecule are hydrophobicity forces and hydrogen bonds. Taken together, PHE exposure can induce apoptosis by mitochondria-mediated pathway, destroy the normal immune system, and trigger DNA oxidative damage in earthworms. Besides, this study provides a comprehensive evaluation of phenanthrene toxicity to earthworms on molecular and cellular level.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
21
|
Cheng Y, Zhang J, Gao F, Xu Y, Wang C. Protective effects of 5-aminolevulinic acid against toxicity induced by alpha-cypermethrin to the liver-gut-microbiota axis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113422. [PMID: 35305352 DOI: 10.1016/j.ecoenv.2022.113422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
To explore whether and how 5-aminolevulinic acid (ALA) can relieve the toxicity to the liver-gut-microbiota axis caused by alpha-cypermethrin (α-CP), adult zebrafish were exposed to α-CP (1.0 µg L-1) with or without 5.0 mg L-1 ALA supplementation. In the present work, the calculated LC50 of α-CP+ALA was 1.15 μg L-1, increasing about 1.16-fold compared with that of α-CP group (0.99 μg L-1), which indicated that ALA can alleviate the toxicity of α-CP. ALA also alleviated the histopathological lesions in the liver and gut induced by α-CP. Transcriptome sequencing of the liver showed that ALA rescues the differential expression of genes involved in the oxidation-reduction, heme metabolism, and complement activation pathways associated with dysfunctions induced by α-CP, and these findings were verified by RT-qPCR analysis and detection of the activities of enzymes in the liver-gut axis. The gut microbiota 16S rRNA sequencing results showed that α-CP alone induced gut microbial dysbiosis, which was efficiently antagonized by ALA due to decreasing the relative abundances of Cetobacterium and 3 major pathogens, and increasing the relative abundances of beneficial genera. Taken together, the results indicate that ALA might be a promising candidate for attenuating the adverse effects caused by pesticide-induced environmental pollution.
Collapse
Affiliation(s)
- Yi Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Fei Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Rani R, Kela A, Dhaniya G, Arya K, Tripathi AK, Ahirwar R. Circulating microRNAs as biomarkers of environmental exposure to polycyclic aromatic hydrocarbons: potential and prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54282-54298. [PMID: 34402004 DOI: 10.1007/s11356-021-15810-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) produced from various pyrogenic and petrogenic sources in the environment has been linked to a variety of toxic effects in the human body. Genome-wide analyses have shown that microRNAs (miRNAs) can function as novel and minimally invasive biomarkers of environmental exposure to PAHs. The objective of this study is to explore miRNA signatures associated with early health effects in response to chronic environmental exposure to PAHs. We systematically searched Scopus and PubMed databases for studies related to exposure of PAHs with changes in miRNA expression patterns that represent early health effects in the exposed population. Based on previous studies, we included 15 cell-based and 9 each of animal model and human population-based studies for assessment. A total of 11 differentially expressed PAH-responsive miRNAs were observed each in two or more cell-based studies (miR-181a and miR-30c-1), animal model studies (miR-291a and miR-292), and human population-based studies (miR-126, miR-142-5p, miR-150-5p, miR-24-3p, miR-27a-3p, miR-28-5p, and miR-320b). In addition, miRNAs belonging to family miR-122, miR-199, miR-203, miR-21, miR-26, miR-29, and miR-92 were found to be PAH-responsive in both animal model and cell-based studies; let-7, miR-126, miR-146, miR-30, and miR-320 in both cell-based and human population-based studies; and miR-142, miR-150, and miR-27 were found differentially expressed in both animal model and human population-based studies. The only miRNA whose expression was found to be altered in all the three groups of studies is miR-34c. Association of environmental exposure to PAHs with altered expression of specific miRNAs indicates that selective miRNAs can be used as early warning biomarkers in PAH-exposed population.
Collapse
Affiliation(s)
- Rupa Rani
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Abhidha Kela
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Geeta Dhaniya
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kamini Arya
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Amit K Tripathi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India
- Department of Biotechnology, New Delhi, 110003, India
| | - Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India.
| |
Collapse
|
23
|
Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Bliźniak R, Lamperska K. Good or not good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother 2020; 25:808-819. [PMID: 32884453 DOI: 10.1016/j.rpor.2020.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.
Collapse
Key Words
- 5-FU, 5-fluorouracyl
- ACVR2A, activin A receptor type 2A
- AKT, AKT serine/threonine kinase
- AR, androgen receptor
- ATG7, autophagy related 7
- ATM, ATM serine/threonine kinase
- BAX, BCL2 associated Xapoptosis regulator
- BCL2, BCL2 apoptosis regulator
- BCL2L10, BCL2 like 10
- BDNF, brain derived neurotrophic factor
- BLCA, bladder urothelial carcinoma
- BRCA, breast cancer
- Biomarker
- Bp, base pair
- C-myc (MYCBP), MYC binding protein
- CASC2, cancer susceptibility 2
- CD133 (PROM1), prominin 1
- CDC42, cell division cycle 42
- CDKN1, Bcyclin dependent kinase inhibitor 1B
- COAD, colon adenocarcinoma
- Cancer
- Circulating miRNA
- DDR, DNA damage repair
- E2F family (E2F1, E2F2, E2F3), E2F transcription factors
- EBV, Epstein-Barr virus
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERBB (EGFR), epidermal growth factor receptor
- ESCA, esophageal carcinoma
- FENDRR, FOXF1 adjacent non-coding developmental regulatory RNA
- FER1L4, fer-1 like family member 4 (pseudogene)
- GAS5, growth arrest–specific 5
- HIF-1α (HIF1A), hypoxia inducible factor 1 subunit alpha
- HNRNPA1, heterogeneous nuclear ribonucleoprotein A1
- HNSC, head and neck squamous cell carcinoma
- HRR, homologous recombination-based DNA repair
- IFN-γ (IFNG), interferon gamma
- IGF1, insulin like growth factor 1
- IL6, interleukin 6
- IPMK, inositol phosphate multikinase
- KIRC, clear cell kidney carcinoma
- KIRP, kidney renal papillary cell carcinoma
- KRAS, KRAS proto-oncogene, GTPase
- LIHC, liver hepatocellular carcinoma
- LMP1, latent membrane protein 1
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Liquid biopsy
- MAPK, mitogen-activated protein kinase
- MCM7, minichromosome maintenance complex component 7
- MET, mesenchymal-to-epithelial transition
- MTOR, mechanistic target of rapamycin kinase
- N-myc (MYCN), MYCN proto-oncogene, bHLH transcription factor
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOTCH2, notch receptor 2
- Oncogene
- PAAD, pancreatic adenocarcinoma
- PERK (EIF2AK3), eukaryotic translation initiation factor 2 alpha kinase 3
- PI3K (PIK3CA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
- PIAS3, protein inhibitor of activated STAT 3
- PRAD, prostate adenocarcinoma
- RISC, RNA-induced silencing complex
- SMAD2, SMAD family member 2
- SMG1, SMG1 nonsense mediated mRNA decay associated PI3K related kinase
- SNHG1, small nucleolar RNA host gene 1
- SOCS5, suppressor of cytokine signaling 5
- STAD, stomach adenocarcinoma
- STAT3, signal transducer and activator of transcription 3
- STK4, serine/threonine kinase 4
- Suppressor
- TCGA
- TCGA, The Cancer Genome Atlas
- TGF-β (TGFB1), transforming growth factor beta 1
- TGFBR2, transforming growth factor beta receptor 2
- THCA, papillary thyroid carcinoma
- TNM, Classification of Malignant Tumors: T - tumor / N - lymph nodes / M – metastasis
- TP53, tumor protein p53
- TP53TG1, TP53 target 1
- TRIAP1, p53-regulating inhibitor of apoptosis gene
- TSC1, TSC complex subunit 1
- UCA1, urothelial cancer associated 1
- UCEC, uterine corpus endometrial carcinoma
- UTR, untranslated region
- WDFY3-AS2, WDFY3 antisense RNA 2
- WEE1, WEE1 G2 checkpoint kinase
- WNT family, Wingless-type MMTV integration site family/Wnt family ligands
- ZEB1/ZEB2, zinc finger E-box binding homeobox 1 and 2
- ceRNA, competitive endogenous RNA
- cncRNA, protein coding and non-coding RNA
- lncRNA, long-non coding RNA
- miR-17-92a
- miR-18a
- miRNA
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
24
|
Yan S, Wang Q, Yang L, Zha J. Comparison of the Toxicity Effects of Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) with Tributyl Phosphate (TNBP) Reveals the Mechanism of the Apoptosis Pathway in Asian Freshwater Clams ( Corbicula fluminea). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6850-6858. [PMID: 32379427 DOI: 10.1021/acs.est.0c00640] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To compare the toxicities of a chlorinated and a nonchlorinated organophosphorus flame retardant (OPFR) in this study, adult calms (Corbicula fluminea) were exposed to tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) and tributyl phosphate (TNBP) at 20, 200, and 2000 μg/L for 30 days. Toxicity screening using transcriptomics indicated that the apoptosis pathway was significantly affected in the groups exposed to 2000 μg/L TDCIPP and TNBP (p ≤ 0.05), and this finding was further confirmed by the protein interaction network. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay suggested that TDCIPP and TNBP can cause apoptosis. The significant (p ≤ 0.05) increases in the activities of caspases 3 and 8 obtained with all treatments and in that of caspase 9 obtained with 2000 μg/L exposure treatments indicated the presence of mitochondria-dependent and mitochondria-independent apoptosis. Interestingly, a noticeable dose-dependent increase in DNA damage was observed in all treatments, resulting in apoptosis. Therefore, our results demonstrate that TDCIPP and TNBP induce DNA damage and apoptosis in C. fluminea, which indicates that these chemicals pose an ecological risk to benthic organisms. Moreover, through a similar mechanism of action in apoptosis, TDCIPP induced more serious toxicity than TNBP, which indicated that chlorination or differences in structure-specific metabolism could be key factors influencing toxicity.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Lihua Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
25
|
Mai Y, Peng S, Li H, Lai Z. Histological, biochemical and transcriptomic analyses reveal liver damage in zebrafish (Danio rerio) exposed to phenanthrene. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108582. [PMID: 31374294 DOI: 10.1016/j.cbpc.2019.108582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/05/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023]
Abstract
Phenanthrene (PHE) is a common polycyclic aromatic hydrocarbon (PAH) in aquatic environments, and this contaminant can cause adverse effects on teleostean performance. In this study, we exposed the model freshwater fish (zebrafish; Danio rerio) to 300 μg/L PHE for 15 days. Histological analysis demonstrated that liver morphology deteriorated in PHE-exposed zebrafish, and cellular damage in the liver increased. Biological analysis revealed that exposure to PHE elicited significant changes in glutathione S-transferases (GST) and superoxide dismutase (SOD) activities. 476 differentially expressed genes (DEGs) were identified in liver between control and PHE treated groups through the transcriptomic analysis. Gene Ontology enrichment analysis (GO) suggested that PHE exposure induced changes in the expression of genes associated with "lipid transporter activity", "catalytic activity", "metal ion binding", "lipid transport" and "transmembrane transport". Furthermore, the "vitamin digestion and absorption" and "fat digestion and absorption" pathways enriched in Kyoto Encyclopedia of Genes and Genomes analysis (KEGG). Additionally, five candidate biomarkers associated with the PHE response in zebrafish were identified. In conclusion, our results elucidate the physiological and molecular responses to PHE exposure in the liver of zebrafish, and provide a framework for further studies of the mechanisms underlying the toxic effects of polycyclic aromatic hydrocarbons (PAHs) on aquatic organisms.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
26
|
Zhao Q, Li Y, Chai X, Geng Y, Cao Y, Xu L, Zhang L, Huang J, Ning P, Tian S. Interaction of pulmonary surfactant with silica and polycyclic aromatic hydrocarbons: Implications for respiratory health. CHEMOSPHERE 2019; 222:603-610. [PMID: 30731380 DOI: 10.1016/j.chemosphere.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Understanding the interaction between pulmonary surfactant (PS) and inhalable pollutants is vital for risk assessment of respiratory health. Here, PS extracted from porcine lung (EPS) was used to investigate the interaction of PS with nano-silica particles and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that silica significantly affected the phase behavior and foaming ability of EPS; EPS and its major components (dipalmitoyl phosphatidylcholine, DPPC; bovine serum albumin, BSA) exhibited great enhancing effect on PAHs solubility, which follows the order: EPS > DPPC > BSA, and it was positively correlated with the hydrophobicity of PAHs. Further experiments demonstrated that mixed phospholipids of EPS were largely responsible for the solubilization of EPS on PAHs. In the presence of EPS, DPPC or BSA, adsorption of PAHs by silica was notably inhibited, indicating competitive adsorption between PAHs and PS components on silica. These findings provide evidence for the surface chemistry by which PS facilitates the solubilization of PAHs and reducing the adsorption of PAHs on silica, which may be helpful for deeply understanding the effects of particulate matter and PAHs on lung health.
Collapse
Affiliation(s)
- Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Xiaolong Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linzhen Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
27
|
Hong X, Chen R, Yuan L, Zha J. Global microRNA and isomiR expression associated with liver metabolism is induced by organophosphorus flame retardant exposure in male Chinese rare minnow (Gobiocypris rarus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:829-838. [PMID: 30176492 DOI: 10.1016/j.scitotenv.2018.08.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
To reveal the adverse effects of organophosphorus flame retardants (OPFRs) on aquatic organisms at the epigenetic level, male Chinese rare minnows were exposed to 0.24 mg/L tris(2‑butoxyethyl) phosphate (TBOEP), 0.04 mg/L tris(1,3‑dichloro‑2‑propyl) phosphate (TDCIPP), or 0.012 mg/L triphenyl phosphate (TPHP) for 14 days. The effects of sub-acute OPFR exposure on liver miRNA and the 3' isomiR expression profiles of Chinese rare minnows were investigated. Through small RNA sequencing and bioinformatics analysis, a total of 32, 84, and 19 differentially expressed miRNAs were detected for TBOEP, TDCIPP, and TPHP exposure, respectively (p < 0.05). Target prediction of the differentially expressed miRNAs and pathway enrichment analysis indicated that predicted altered mRNAs for all three OPFRs were associated with metabolic pathways, whereas base excision repair was only predicted to be perturbed by the TPHP treatment. In addition, 3' isomiR-Us were unexpectedly abundant in all groups (e.g., miR-143), and TDCIPP strongly increased the ratio of 3' isomiR-U expression. Finally, histological examination and metabolic enzyme activity analyses werein agreement with the predicted metabolic pathways. As such, our study indicates that the investigation of epigenetics changes in miRNA gene transcription is a considerable method for the assessment of aquatic toxicity.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
28
|
Li M, Xie Z, Wang P, Li J, Liu W, Tang S, Liu Z, Wu X, Wu Y, Shen H. The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a ceRNA. Cell Death Dis 2018; 9:554. [PMID: 29748618 PMCID: PMC5945827 DOI: 10.1038/s41419-018-0627-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are important pluripotent stem cells and a major source of adipocytes in the body. However, the mechanism of adipogenic differentiation has not yet been completely elucidated. In this study, the long noncoding RNA GAS5 was found to be negatively correlated with MSC adipogenic differentiation. GAS5 overexpression negatively regulated adipocyte formation, whereas GAS5 knockdown had the opposite effect. Further mechanistic analyses using luciferase reporter assays revealed that GAS5 regulates the adipogenic differentiation of MSCs by acting as competing endogenous RNA (ceRNA) to sponge miR-18a, which promotes adipogenic differentiation. Mutation of the binding sites for GAS5 in miR-18a abolished the effect of the interaction. The miR-18a mimic and inhibitor reversed the negative regulatory effect of GAS5 on MSCs adipogenic differentiation. In addition, GAS5 inhibited miR-18a, which downregulates connective tissue growth factor (CTGF) expression, to negatively regulate the adipogenic differentiation of MSCs. Taken together, the results show that GAS5 serves as a sponge for miR-18a, inhibiting its capability to suppress CTGF protein translation and ultimately decreasing the adipogenic differentiation of MSCs. GAS5 is an important molecule involved in the adipogenic differentiation of MSCs and may contribute to the functional regulation and clinical applications of MSCs.
Collapse
Affiliation(s)
- Ming Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Jinteng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Wenjie Liu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Su'an Tang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Zhenhua Liu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510120, People's Republic of China
| | - Xiaohua Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|