1
|
Koenigsmark F, Rivera NA, Pierce EM, Hsu-Kim H. Dissolution Potential of Elemental Mercury in the Presence of Bisulfide and Implications for Mobilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12388-12397. [PMID: 37561589 DOI: 10.1021/acs.est.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Liquid elemental mercury (Hg0L) pollution can remain in soils for decades and, over time, will undergo corrosion, a process in which the droplet surface oxidizes soil constituents to form more reactive phases, such as mercury oxide (HgO). While these reactive coatings may enhance Hg migration in the subsurface, little is known about the transformation potential of corroded Hg0L in the presence of reduced inorganic sulfur species to form sparingly soluble HgS particles, a process that enables the long-term sequestration of mercury in soils and generally reduces its mobility and bioavailability. In this study, we investigated the dissolution of corroded Hg0L in the presence of sulfide by quantifying rates of aqueous Hg release from corroded Hg0L droplets under different sulfide concentrations (expressed as the S:Hg molar ratio). For droplets corroded in ambient air, no differences in soluble Hg release were observed among all sulfide exposure levels (S:Hg mole ratios ranging from 10-4 to 10). However, for droplets oxidized in the presence of a more reactive oxidant (hydrogen peroxide, H2O2), we observed a 10- to 25-fold increase in dissolved Hg when the oxidized droplets were exposed to low sulfide concentrations (S:Hg ratios from 10-4 to 10-1) relative to droplets exposed to high sulfide concentrations. These results suggest two critical factors that dictate the release of soluble Hg from Hg0L in the presence of sulfide: the extent of surface corrosion of the Hg0L droplet and sufficient sulfide concentration for the formation of HgS solids. The mobilization of Hg0L in porous media, therefore, largely depends on aging conditions in the subsurface and chemical reactivity at the Hg0L droplet interface.
Collapse
Affiliation(s)
- Faye Koenigsmark
- Civil and Environmental Engineering, Duke University ,118A Hudson Hall, Box 90287,Durham, North Carolina 27708, United States
| | - Nelson A Rivera
- Civil and Environmental Engineering, Duke University ,118A Hudson Hall, Box 90287,Durham, North Carolina 27708, United States
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Heileen Hsu-Kim
- Civil and Environmental Engineering, Duke University ,118A Hudson Hall, Box 90287,Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Lu C, Fang Q, Hu C, Lyu L. Sustainable micro-activation of dissolved oxygen driving pollutant conversion on Mo-enhanced zinc sulfide surface in natural conditions. FUNDAMENTAL RESEARCH 2023; 3:422-429. [PMID: 38933757 PMCID: PMC11197714 DOI: 10.1016/j.fmre.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022] Open
Abstract
The activation of inert oxygen (O2) often consumes enormous amounts of energy and resources, which is a global challenge in the field of environmental remediation and fuel cells. Organic pollutants are abundant in electrons and are promising alternative electron donors. Herein, we implement sustainable microactivation of dissolved oxygen (DO) by using the electrons and adsorption energy of pollutants by creating a nonequilibrium microsurface on nanoparticle-integrated molybdenum (Mo) lattice-doped zinc sulfide (ZnS) composites (MZS-1). Organic pollutants were quickly removed by DO microactivation in the MZS-1 system under natural conditions without any additional energy or electron donor. The turnover frequency (TOF, per Mo atom basis) is 5 orders of magnitude higher than those of homogeneous systems. Structural and electronic characterization technologies reveal the change in the crystalline phase (Zn-S-Mo) and the activation of π-electrons on six-membered rings of ZnS after Mo doping, which results in the formation of a nonequilibrium microsurface on MZS-1. This is the key for the strong interfacial interaction and directional electron transfer from pollutants to MZS-1 through the delocalized π-π conjugation effect and from MZS-1 to DO via Zn-S-Mo, as demonstrated by electron paramagnetic resonance (EPR) techniques and density functional theory (DFT) calculations. This process achieves the efficient use of pollutants and the low-energy activation of O2 through the construction of a nonequilibrium microsurface, which shows new significance for water treatment.
Collapse
Affiliation(s)
- Chao Lu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Qian Fang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
- Institute of Rural Revitalization, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Koenigsmark F, Chiu M, Rivera N, Johs A, Eskelsen J, Leonard D, Robertson BK, Szynkiewicz A, Derolph C, Zhao L, Gu B, Hsu-Kim H, Pierce EM. Crystal lattice defects in nanocrystalline metacinnabar in contaminated streambank soils suggest a role for biogenic sulfides in the formation of mercury sulfide phases. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:445-460. [PMID: 36692344 DOI: 10.1039/d1em00549a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
At mercury (Hg)-contaminated sites, streambank erosion can act as a main mobilizer of Hg into nearby waterbodies. Once deposited into the waters, mercury from these soils can be transformed to MeHg by microorganisms. It is therefore important to understand the solid-phase speciation of Hg in streambanks as differences in Hg speciation will have implications for Hg transport and bioavailability. In this study, we characterized Hg solid phases in Hg-contaminated soils (100-1100 mg per kg Hg) collected from the incised bank of the East Fork Poplar Creek (EFPC) in Oak Ridge, TN (USA). The analysis of the soil samples by scanning electron microscopy-energy dispersive spectroscopy indicated numerous microenvironments where Hg and sulfur (S) are co-located. According to bulk soil analyses by extended X-ray absorption fine structure spectroscopy (EXAFS), the near-neighbor Hg molecular coordination in the soils closely resembled freshly precipitated Hg sulfide (metacinnabar, HgS); however, EXAFS fits indicated the Hg in the HgS structure was undercoordinated with respect to crystalline metacinnabar. This undercoordination of Hg-S observed by spectroscopy is consistent with transmission electron microspy images showing the presence of nanocrystallites with structural defects (twinning, stacking faults, dislocations) in individual HgS-bearing particles. Although the soils were collected from exposed parts of the stream bank (i.e., open to the atmosphere), the presence of reduced forms of S and sulfate-reducing microbes suggests that biogenic sulfides promote the formation of HgS nanoparticles in these soils. Altogether, these data demonstrate the predominance of nanoparticulate HgS with crystal lattice defects in the bank soils of an industrially impacted stream. Efforts to predict the mobilization and bioavailability of Hg associated with nano-HgS forms should consider the impact of nanocrystalline lattice defects on particle surface reactivity, including Hg dissolution rates and bioavailability on Hg fate and transformations.
Collapse
Affiliation(s)
- Faye Koenigsmark
- Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Michelle Chiu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Nelson Rivera
- Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Jeremy Eskelsen
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Donovan Leonard
- Manufacturing Demonstration Facility Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Boakai K Robertson
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Anna Szynkiewicz
- Department of Earth and Planetary Sciences, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Christopher Derolph
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Linduo Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Heileen Hsu-Kim
- Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
4
|
Wang X, Hung TF, Chen FR, Wang WX. In Situ Tracking of Crystal-Surface-Dependent Cu 2O Nanoparticle Dissolution in an Aqueous Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1006-1016. [PMID: 36598407 DOI: 10.1021/acs.est.2c07845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-oxide-based nanoparticles (MONPs) such as Cu2O NPs have attracted growing attention, but the potential discharges of MONPs have raised considerable concern of their environmental fate including their dissolution behavior. The impacts of morphology on MONP dissolution are largely uncertain due to the lack of in situ tracking techniques. In this study, we combined a series of in situ technologies including liquid-cell transmission electron microscopy and fluorescence probes to reveal the in situ dissolution process of Cu2O NPs in freshwater. Our results suggest that cubic Cu2O NPs exhibit a higher dissolution quantity compared with spherical NPs of the same surface area. The difference was mainly related to the crystal surface, while other factors such as particle size or aggregation status showed minor effects. Importantly, we demonstrated the simultaneous growth of new small NPs and the dissolution of pristine Cu2O NPs during the dissolution of Cu2O NPs. Cubic Cu2O NPs became much less soluble under O2-limited conditions, suggesting that O2 concentration largely affected the dependence of dissolution on the NP morphology. Our findings highlight the potential application of in situ techniques to track the environmental fates of MONPs, which would provide important information for assessing the ecological risks of engineered NPs.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| | - Tak-Fu Hung
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| |
Collapse
|
5
|
Zhang X, Lin S, Huang R, Gupta A, Fedeli S, Cao-Milán R, Luther DC, Liu Y, Jiang M, Li G, Rondon B, Wei H, Rotello VM. Degradable ZnS-Supported Bioorthogonal Nanozymes with Enhanced Catalytic Activity for Intracellular Activation of Therapeutics. J Am Chem Soc 2022; 144:12893-12900. [PMID: 35786910 DOI: 10.1021/jacs.2c04571] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bioorthogonal catalysis using transition-metal catalysts (TMCs) provides a toolkit for the in situ generation of imaging and therapeutic agents in biological environments. Integrating TMCs with nanomaterials mimics key properties of natural enzymes, providing bioorthogonal "nanozymes". ZnS nanoparticles provide a platform for bioorthogonal nanozymes using ruthenium catalysts embedded in self-assembled monolayers on the particle surface. These nanozymes uncage allylated profluorophores and prodrugs. The ZnS core combines the non-toxicity and degradability with the enhancement of Ru catalysis through the release of thiolate surface ligands that accelerate the rate-determining step in the Ru-mediated deallylation catalytic cycle. The maximum rate of reaction (Vmax) increases ∼2.5-fold as compared to the non-degradable gold nanoparticle analogue. The therapeutic potential of these bioorthogonal nanozymes is demonstrated by activating a chemotherapy drug from an inactive prodrug with efficient killing of cancer cells.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Shichao Lin
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States.,Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Roberto Cao-Milán
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Gengtan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Brayan Rondon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Naughton KL, Boedicker JQ. Simulations to Aid in the Design of Microbes for Synthesis of Metallic Nanomaterials. ACS Synth Biol 2021; 10:3475-3488. [PMID: 34807578 DOI: 10.1021/acssynbio.1c00412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbes are champions of nanomaterial synthesis. By virtue of their incredible native range─from thermal vents to radioactive soil─microbes evolved tools to thrive on inorganic material, and, in their normal course of living, forge nanomaterials. In recent decades, synthetic biologists have engineered a vast array of functional nanomaterials using genetic tools that control the natural ability of bacteria to perform complex redox chemistry, maintain steep chemical gradients, and express biomolecular scaffolds. Leveraging microbial biology can lead to intricate nanomaterial architectures whose design and assembly exists beyond the ken of inorganic methods. Theories enumerating microbial nanomaterial synthesis are spare, however, despite the advantage they could offer. Here, we describe a theoretical approach to simulating biogenic nanomaterial synthesis that incorporates key features and parameters of Gram-negative bacteria. By adapting previously verified inorganic theories of nanoparticle synthesis, we recapitulate past biogenic experiments, such as the ability to localize nanoparticle synthesis or regulate nucleation of specific nanomaterials. Moreover, the simulation offers direction in the design of future experiments. Our results demonstrate the promise of marrying experimental and theoretical approaches to microbial nanomaterial synthesis.
Collapse
Affiliation(s)
- Kyle L. Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
| | - James Q. Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371, United States
| |
Collapse
|
7
|
Huang M, Liu C, Cui P, Wu T, Feng X, Huang H, Zhou J, Wang Y. Facet-Dependent Photoinduced Transformation of Cadmium Sulfide (CdS) Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13132-13141. [PMID: 34519482 DOI: 10.1021/acs.est.1c04026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbial-mediated transformation of anthropogenic Cd2+ controls its distribution, bioavailability, and potential risks. However, the processes readily form CdS nanoparticles (CdS-NPs), which exhibit dissolution behavior different from that of larger sized particles. Here, we investigated the effects of morphologies and facets of CdS-NPs on their photoinduced dissolution. Three CdS-NPs, CdS-sphere, CdS-rod, and CdS-sheet, and one nanosized biogenic CdS (Bio-CdS) were synthesized with different dominant facets of {101}, {100}, {001}, and {111} and thus distinct surface chemistry. As explored by HRTEM, EPR, and DFT calculations, photogenerated e-/h+ pairs were more likely to generate on CdS-sheet surfaces due to higher surface energies and a narrower band gap, facilitating the formation of •OH and thereby faster dissolution (kobs = 6.126-6.261 × 10-2 h-1). The wider band gaps of CdS-sphere and CdS-rod caused less formation of O2•- and •OH, leading to slower oxidative dissolutions (kobs = 0.090-0.123 and 2.174-3.038 × 10-2 h-1, respectively). Given the similar surface energy as that of CdS-sheet, the dissolution rate of Bio-CdS was close to that of CdS-rod and CdS-sheet, which was 1.6-3.5 times faster than that of larger sized CdS, posing higher environmental risks than thought. Altogether, this work revealed the facet effects on the dissolution of CdS-NPs, manifesting a deeper understanding of metal sulfides' environmental behaviors.
Collapse
Affiliation(s)
- Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008, China
| | - Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
He H, Cao J, Fei X, Duan N. Dissolution magnitude and kinetics of ZnO nanoparticles mediated by water are dependent on O vacancy abundance: The environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147545. [PMID: 34004534 DOI: 10.1016/j.scitotenv.2021.147545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Metal oxide nanoparticles (NPs) dissolution in water environment is an important issue with regard to their environmental behaviors. The metal ion dissolves from surface defective site, but the effect of defect abundance remains largely unknown. This study aims to reveal this effect using ZnO NPs and O vacancy as the model system. The abundance of O vacancy is modulated by using different precursors and changing calcination atmosphere and temperature. X-ray photoelectron spectroscopy characterization shows that surface O vacancy abundance is effectively modulated to be distributed in a wide range from 15.3% to 41.8%. The deviation of O/Zn mole-ratio from 1.00 is used to denote O vacancy abundance in the bulk crystal, and the deviation reaches up to 0.32. Experiments show that the kinetics and magnitude of ZnO NPs dissolution vary in H2O, which are highly dependent on O vacancy abundance. In comparison, the specific surface area and aggregation state take minor roles. Particularly, Zn2+ dissolution rate in the first hour is more linearly correlated with surface O vacancy abundance than with specific surface area. Defects and their abundances should thus be co-considered with other physicochemical properties to fully understand the dissolution behaviors of metal oxide NPs in water environment. This study is of significance in comprehensively assessing and predicting the environmental risk of metal oxide NPs.
Collapse
Affiliation(s)
- Hongping He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Jianglin Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai 200092, PR China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore.
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Technology Center for Heavy Metal Cleaner Production Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
9
|
Adele NC, Ngwenya BT, Heal KV, Mosselmans JFW. Role of plant growth promoting bacteria in driving speciation gradients across soil-rhizosphere-plant interfaces in zinc-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116909. [PMID: 33744635 DOI: 10.1016/j.envpol.2021.116909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Inoculation of soil or seeds with plant growth promoting bacteria ameliorates metal toxicity to plants by changing metal speciation in plant tissues but the exact location of these changes remains unknown. Knowing where the changes occur is a critical first step to establish whether metal speciation changes are driven by microbial metabolism or by plant responses. Since bacteria concentrate in the rhizosphere, we hypothesised steep changes in metal speciation across the rhizosphere. We tested this by comparing speciation of zinc (Zn) in roots of Brassica juncea plants grown in soil contaminated with 600 mg kg-1 of Zn with that of bulk and rhizospheric soil using synchrotron X-ray absorption spectroscopy (XAS). Seeds were either uninoculated or inoculated with Rhizobium leguminosarum bv. trifolii and Zn was supplied in the form of sulfide (ZnS nanoparticles) and sulfate (ZnSO4). Consistent with previous studies, Zn toxicity, as assessed by plant growth parameters, was alleviated in B. juncea inoculated with Rhizobium leguminosarum. XAS results showed that in both ZnS and ZnSO4 treatments, the most significant changes in speciation occurred between the rhizosphere and the root, and involved an increase in the proportion of organic acids and thiol complexes. In ZnS treatments, Zn phytate and Zn citrate were the dominant organic acid complexes, whilst Zn histidine also appeared in roots exposed to ZnSO4. Inoculation with bacteria was associated with the appearance of Zn cysteine and Zn formate in roots, suggesting that these two forms are driven by bacterial metabolism. In contrast, Zn complexation with phytate, citrate and histidine is attributed to plant responses, perhaps in the form of exudates, some with long range influence into the bulk soil, leading to shallower speciation gradients.
Collapse
Affiliation(s)
| | - Bryne T Ngwenya
- School of GeoSciences, University of Edinburgh, Edinburgh, UK.
| | - Kate V Heal
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
10
|
Sun M, Tian J, Chen Q. The studies on wet chemical etching via in situ liquid cell TEM. Ultramicroscopy 2021; 231:113271. [PMID: 33879369 DOI: 10.1016/j.ultramic.2021.113271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Wet chemical etching is a widely used process to fabricate fascinating nanomaterials, such as nanoparticles with precisely controlled size and shape. Understanding the etching mechanism and kinetic evolution process is crucial for controlling wet chemical etching. The development of in situ liquid cell transmission electron microscopy (LCTEM) enables the study on wet chemical etching with high temporal and spatial resolutions. However, there still lack a detailed literature review on the wet chemical etching studies by in situ LCTEM. In this review, we summarize the studies on wet etching nanoparticles, one-dimensional nanomaterials and nanoribbons by in situ LCTEM, including etching rate, anisotropic etching, morphology evolution process, and etching mechanism. The challenges and opportunities of in situ LCTEM are also discussed.
Collapse
Affiliation(s)
- Mei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jiamin Tian
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Wang Q, Zhang C, Jung H, Liu P, Patel D, Pavlostathis SG, Tang Y. Transformation and Mobility of Cu, Zn, and Cr in Sewage Sludge during Anaerobic Digestion with Pre- or Interstage Hydrothermal Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1615-1625. [PMID: 33461291 DOI: 10.1021/acs.est.0c05164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) combined with hydrothermal treatment (HT) is an attractive technology for sewage sludge treatment and resource recovery. The fate and distribution of heavy metals in the sludge during combined HT/AD significantly affect the sludge final disposal/utilization options, yet such information is still lacking. This study systematically characterizes the transformation of important heavy metals Cu, Zn, and Cr in sewage sludge during AD with pre- or interstage HT (i.e., HT-AD or AD-HT-AD, respectively). Complementary sequential chemical extraction and X-ray absorption spectroscopy were used to characterize the speciation and mobility of metals. For the HT-AD system, both Cu and Zn predominantly occur as sulfides in HT hydrochars. Subsequent AD favors the formation of Cu2S and partial transformation of nano-ZnS to adsorbed and organo-complexed Zn species. HT favors the formation of Cr-bearing silicates in hydrochars, whereas Fe(III)-Cr(III)-hydroxide and Cr(III)-humic complex are the predominant Cr species in AD solids. Similar reaction pathways occur in the AD-HT-AD system with some minor differences in metal species and contents, as the first-stage AD changed the sludge matrix. These findings have important implications for understanding the fate and mobility of heavy metals in sludge-derived hydrochars and AD solids.
Collapse
Affiliation(s)
- Qian Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Chiqian Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| | - Haesung Jung
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Pan Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Dhara Patel
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| |
Collapse
|
12
|
Mansor M, Xu J. Benefits at the nanoscale: a review of nanoparticle-enabled processes favouring microbial growth and functionality. Environ Microbiol 2020; 22:3633-3649. [PMID: 32705763 DOI: 10.1111/1462-2920.15174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
Abstract
Nanoparticles are ubiquitous and co-occur with microbial life in every environment on Earth. Interactions between microbes and nanoparticles impact the biogeochemical cycles via accelerating various reaction rates and enabling biological processes at the smallest scales. Distinct from microbe-mineral interactions at large, microbe-nanoparticle interactions may involve higher levels of active recognition and utilization of the reactive, changeable, and thereby 'moldable' nano-sized inorganic phases by microbes, which has been given minimal attention in previous reviews. Here we have compiled the various cases of microbe-nanoparticle interactions with clear and potential benefits to the microbial cells and communities. Specifically, we discussed (i) the high bioavailabilities of nanoparticles due to increased specific surface areas and size-dependent solubility, with a focus on environmentally-relevant iron(III) (oxyhydr)oxides and pyrite, (ii) microbial utilization of nanoparticles as 'nano-tools' for electron transfer, chemotaxis, and storage units, and (iii) speculated benefits of precipitating 'moldable' nanoparticles in extracellular biomineralization. We further discussed emergent questions concerning cellular level responses to nanoparticle-associated cues, and the factors that affect nanoparticles' bioavailabilities beyond size-dependent effects. We end the review by proposing a framework towards more quantitative approaches and by highlighting promising techniques to guide future research in this exciting field.
Collapse
Affiliation(s)
- Muammar Mansor
- Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, 72076, Germany
| | - Jie Xu
- Department of Geological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA
| |
Collapse
|
13
|
Lieb HC, Nguyen BD, Ramsayer ER, Mullaugh KM. A voltammetric investigation of the sulfidation of silver nanoparticles by zinc sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137685. [PMID: 32325601 DOI: 10.1016/j.scitotenv.2020.137685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (Ag NPs) are among the most common forms of nanoparticles in consumer products, yet the environmental implications of their widespread use remain unclear due to uncertainties about their fate. Because sulfidation of Ag NPs results in the formation of a stable silver sulfide (Ag2S) product, it is likely an important removal mechanism of bioavailable silver in natural waters. In addition to sulfide, the complete conversion of Ag NPs to Ag2S will require dissolved oxygen or some other oxidant so dispersed metal sulfides may be an important pool of reactive sulfide for such reactions in oxygenated systems. The reaction of Ag NPs with zinc sulfide (ZnS) was investigated using a voltammetric method, anodic stripping voltammetry (ASV). ASV provided sensitive, in situ measurements of the release of zinc (Zn2+) cations resulting from the cation exchange reaction between Ag NPs and ZnS. The effects of Ag NP size and surface coatings on the initial rates of sulfidation by ZnS were examined. Sulfidation of smaller Ag NPs generally occurred faster and to a greater extent due to their larger relative surface areas. Sulfidation of Ag NPs capped by citrate and lipoic acid occurred more rapidly relative to polyvinylpyrrolidone (PVP) and branched polyethylene (BPEI). This study demonstrates the utility of voltammetry for such investigations and provides insights into important factors controlling Ag NP sulfidation such as availability of dissolved oxygen, Ag NP size and Ag NP surface coating. Furthermore, this work demonstrates the importance of cation exchange reactions between silver and metal sulfides, and how the environmental release of Ag NPs could alter the speciation of other metals of environmental significance.
Collapse
Affiliation(s)
- Heather C Lieb
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Bach D Nguyen
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Emily R Ramsayer
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Katherine M Mullaugh
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA.
| |
Collapse
|
14
|
Mansor M, Cantando E, Wang Y, Hernandez-Viezcas JA, Gardea-Torresdey JL, Hochella MF, Xu J. Insights into the Biogeochemical Cycling of Cobalt: Precipitation and Transformation of Cobalt Sulfide Nanoparticles under Low-Temperature Aqueous Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5598-5607. [PMID: 32243750 DOI: 10.1021/acs.est.0c01363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cobalt sulfide precipitates, key phases in the natural biogeochemistry of cobalt and in relevant remediation and resource recovery processes, are poorly defined under low-temperature aqueous conditions. Here, we systematically studied Co (Fe) sulfides precipitated and aged in environmentally relevant solutions, defined by different combinations of pH, initial cobalt to iron ratios ([Co]aq/[Fe]aq), with/without S0, and the presence/absence of sulfate-reducing bacteria. The initial abiogenic precipitates were composed exclusively of amorphous Co sulfide nanoparticles (CoS·xH2O) that were stable in anoxic solution for 2 months, with estimated log K* values 1-5 orders of magnitude higher than that previously reported for Co sulfides. The addition of S0, in combination with acidic pH and elevated temperature (60 °C), resulted in recrystallization of the amorphous precipitates into nanocrystalline jaipurite (hexagonal CoS) within 1 month. In the presence of Fe(II)aq, the abiogenic precipitates were composed of more crystalline Co sulfides and/or Co-rich mackinawite, the exact phase being dependent on the [Co]aq/[Fe]aq value. The biogenic precipitates displayed higher crystallinity for Co sulfides (up to the formation of nanocrystalline cobalt pentlandite, Co9S8) and lower crystallinity for Co-rich mackinawite, suggestive of mineral-specific bacterial interaction. The revealed precipitation and transformation pathways of Co (Fe) sulfides in this study allows for a better constraint of Co biogeochemistry in various natural and engineered environments.
Collapse
Affiliation(s)
- Muammar Mansor
- Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Elizabeth Cantando
- Virginia Tech National Center for Earth and Environmental Nanotechnology (NanoEarth), Blacksburg, Virginia 24061, United States
| | - Yi Wang
- Chemistry & Biochemistry Department, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jose A Hernandez-Viezcas
- Chemistry & Biochemistry Department, The University of Texas at El Paso, El Paso, Texas 79968, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jorge L Gardea-Torresdey
- Chemistry & Biochemistry Department, The University of Texas at El Paso, El Paso, Texas 79968, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Michael F Hochella
- Virginia Tech National Center for Earth and Environmental Nanotechnology (NanoEarth), Blacksburg, Virginia 24061, United States
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jie Xu
- Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
15
|
Marks R, Schranck A, Stillwell R, Doudrick K. Stability of 2H- and 1T-MoS2 in the presence of aqueous oxidants and its protection by a carbon shell. RSC Adv 2020; 10:9324-9334. [PMID: 35497240 PMCID: PMC9050048 DOI: 10.1039/d0ra00788a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
Two-dimensional molybdenum disulfide (MoS2) is emerging as a catalyst for energy and environmental applications. Recent studies have suggested the stability of MoS2 is questionable when exposed to oxidizing conditions found in water and air. In this study, the aqueous stability of 2H- and 1T-MoS2 and 2H-MoS2 protected with a carbon shell was evaluated in the presence of model oxidants (O2, NO2−, BrO3−). The MoS2 electrocatalytic performance and stability was characterized using linear sweep voltammetry and chronoamperometry. In the presence of dissolved oxygen (DO) only, 2H- and 1T-MoS2 were relatively stable, with SO42− formation of only 2.5% and 3.1%, respectively. The presence of NO2− resulted in drastically different results, with SO42− formations of 11% and 14% for 2H- and 1T-MoS2, respectively. When NO2− was present without DO, the 2H- and 1T-MoS2 remained relatively stable with SO42− formations of only 4.2% and 3.3%, respectively. Similar results were observed when BrO3− was used as an oxidant. Collectively, these results indicate that the oxidation of 2H- and 1T-MoS2 can be severe in the presence of these aqueous oxidants but that DO is also required. To investigate the ability of a capping agent to protect the MoS2 from oxidation, a carbon shell was added to 2H–MoS2. In a batch suspension in the presence of DO and NO2−, the 2H–MoS2 with the carbon shell exhibited good stability with no oxidation observed. The activity of 2H–MoS2 electrodes was then evaluated for the hydrogen evolution reaction by a Tafel analysis. The carbon shell improved the activity of 2H–MoS2 with a decrease in the Tafel slope from 451 to 371 mV dec−1. The electrode stability, characterized by chronopotentiometry, was also enhanced for the 2H–MoS2 coated with a carbon shell, with no marked degradation in current density observed over the reaction period. Because of the instability exhibited by unprotected MoS2, it will only be a useful catalyst if measures are taken to protect the surface from oxidation. Further, given the propensity of MoS2 to undergo oxidation in aqueous solutions, caution should be used when describing it as a true catalyst for reduction reactions (e.g., H2 evolution), unless proven otherwise. Two-dimensional molybdenum disulfide (MoS2) is emerging as a catalyst for energy and environmental applications.![]()
Collapse
Affiliation(s)
- Randal Marks
- University of Notre Dame
- Department of Civil and Environmental Engineering and Earth Sciences
- Notre Dame
- USA
| | - Andrew Schranck
- University of Notre Dame
- Department of Civil and Environmental Engineering and Earth Sciences
- Notre Dame
- USA
| | - Roy Stillwell
- University of Notre Dame
- Department of Electrical Engineering
- USA
| | - Kyle Doudrick
- University of Notre Dame
- Department of Civil and Environmental Engineering and Earth Sciences
- Notre Dame
- USA
| |
Collapse
|
16
|
Tong Y, Feng A, Hou X, Zhou Q, Hu X. Nanoholes Regulate the Phytotoxicity of Single-Layer Molybdenum Disulfide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13938-13948. [PMID: 31671268 DOI: 10.1021/acs.est.9b04198] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-layer molybdenum disulfide (SLMoS2) are applied as a hot 2D nanosheet in various fields involving water treatments. Both intentional design and environmental or biological processes induce many nanoholes in SLMoS2. However, the effects of nanoholes on the environmental stability and ecotoxicity of SLMoS2 remain largely unknown. The present work discovered that visible-light irradiation induced nanoholes (diameters, approximately 20 nm) in the plane of SLMoS2, with irregular edges and increased interplanar crystal spacing. The ratios of Mo to S in pristine and transformed SLMoS2 were 0.53 and 0.33, respectively. After 96 h exposure at concentrations from 0.1 to 1 mg/L, the above nanoholes promoted algal division, induced a stress-response hormesis, decreased the generation of •OH, and mitigated the cell shrinkage and wall rupture of Chlorella vulgaris induced by SLMoS2. In terms of stress response, the nanohole-bearing SLMoS2 induced fewer vacuoles and polyphosphate bodies of Chlorella vulgaris than the pristine form. Metabolomic analysis revealed that nanoholes perturbed the metabolisms of energy, carbohydrates, and fatty acids. This work proposes that nanoholes cause obvious effects on the environmental fate and ecotoxicity of SLMoS2 and that the environmental risks of engineered nanomaterials should be reevaluated using nanohole-bearing rather than pristine forms for testing.
Collapse
Affiliation(s)
- Yuchen Tong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Anqi Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| |
Collapse
|
17
|
He H, Cao J, Fei X, Duan N. High-temperature annealing of ZnO nanoparticles increases the dissolution magnitude and rate in water by altering O vacancy distribution. ENVIRONMENT INTERNATIONAL 2019; 130:104930. [PMID: 31228784 DOI: 10.1016/j.envint.2019.104930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The effects and mechanism of high-temperature annealing, a frequently-used strategy to modulate the properties of nanoparticles (NPs), on the dissolution of zinc oxide (ZnO) NPs are investigated in this study. The results show that annealing increases the ZnO NPs dissolution magnitude via increasing O vacancy abundance on the surface and in the bulk crystal. The face-dependent distribution of O vacancy is revealed by characterizing ZnO single crystal, and the (000-1) face has a higher abundance than the (10-10) face. Particularly, O vacancy abundance in the bulk (000-1) is about 3 times higher than in the bulk (10-10). Annealing further strengthens the face-dependence of O vacancy distribution, therefore both raw and annealed (000-1) faces contribute dominantly to the dissolution of ZnO NPs. Typical topographies of the surface defect sites on the (000-1) face and their evolutions during dissolution are collected. Annealing promotes the formation of larger and deeper etching pits. Elevated solution temperature and annealing synergize to further accelerate ZnO dissolution. The dissolution behaviors of ZnO NPs with different annealing statuses, surface properties, and solution temperatures investigated in this study have potential implications to the evaluations of environmental fate and risk of metal oxide NPs.
Collapse
Affiliation(s)
- Hongping He
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Jianglin Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai 200092, PR China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Technology Center for Heavy Metal Cleaner Production Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
18
|
Bhattarai N, Woodall DL, Boercker JE, Tischler JG, Brintlinger TH. Controlling dissolution of PbTe nanoparticles in organic solvents during liquid cell transmission electron microscopy. NANOSCALE 2019; 11:14573-14580. [PMID: 31355832 DOI: 10.1039/c9nr04646a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present direct visualization of the dynamics of oleic-acid-capped PbTe nanoparticles suspended in different organic solvents using liquid cell transmission electron microscopy. Liquid cell transmission electron microscopy is a powerful tool to directly observe the behavior of a variety of nanoparticles in liquids, but requires careful consideration and quantification of how the electron beam affects the systems being investigated. We find that etching and dissolution of PbTe nanoparticles occurs with a strong dependence on electron dose rate ranging from no perceivable effect on the nanoparticles with lower dose rates (50 e- Å-2 s-1) to complete dissolution within seconds or minutes at higher dose rates (100 and 200 e- Å-2 s-1). We propose that oxidative etching, resulting from the radiolysis of small amounts of water, causes the PbTe nanoparticles to dissolve after exposure to a threshold electron dose rate of 50 e- Å-2 s-1.
Collapse
Affiliation(s)
- Nabraj Bhattarai
- NRC Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, DC, USA
| | | | | | | | | |
Collapse
|
19
|
Li X, Qin F, Chen X, Sheng A, Wang Z, Liu J. Dissolution Behavior of Isolated and Aggregated Hematite Particles Revealed by in Situ Liquid Cell Transmission Electron Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2416-2425. [PMID: 30695642 DOI: 10.1021/acs.est.8b05922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dissolution behavior of isolated and aggregated hematite particles in 10, 36, and 103 nm, respectively, was investigated using in situ liquid cell transmission microscopy (LCTEM). The high spatial and temporal resolution of LCTEM enables us to differentiate the respective effects of primary particle size, crystal defects, and aggregation state on particle dissolution. At similar electron-beam irradiation parameters, the initial surface-area normalized dissolution rates ( RSA,Int) of isolated 10, 36, and 103 nm particles are 4.64 ± 3.60, 0.91 ± 0.44, and 0.24 ± 0.04 mg m-2 s-1, respectively. Interface free energy, calculated from the measured RSA,Int, decreases with the decreasing primary particle size. No preferential etching occurs on 10 nm, defect-free nanoparticles, whereas dissolution preferentially originates from crystal defects on 103 nm particles. In dissolution of aggregated particles, dissolution occurs more rapidly on the particles that are more accessible to bulk solution than the others inside the aggregate. As dissolution proceeds, dendritic aggregates break into several smaller aggregates that respectively shrink into even smaller and more compact aggregates, followed by reaggregation together. This study directly shows microscopic dissolution behavior of isolated and aggregated particles in different primary particle sizes, which is important to understand bioavailability, transport, and fate of nanoparticles in aquatic systems.
Collapse
Affiliation(s)
- Xiaoxu Li
- College of Environmental Sciences and Engineering, Peking University , The Key Laboratory of Water and Sediment Sciences, Ministry of Education , Beijing , 100871 , China
| | - Fuyu Qin
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing , 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xuanyu Chen
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing , 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Anxu Sheng
- College of Environmental Sciences and Engineering, Peking University , The Key Laboratory of Water and Sediment Sciences, Ministry of Education , Beijing , 100871 , China
| | - Zhiwei Wang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing , 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Juan Liu
- College of Environmental Sciences and Engineering, Peking University , The Key Laboratory of Water and Sediment Sciences, Ministry of Education , Beijing , 100871 , China
- Beijing Key Laboratory of Mineral Environmental Function , Peking University , Beijing 100871 , China
| |
Collapse
|
20
|
He H, Cao J, Duan N. Defects and their behaviors in mineral dissolution under water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2208-2217. [PMID: 30326453 DOI: 10.1016/j.scitotenv.2018.10.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Mineral dissolution is a spontaneous process that takes indispensible role in the determination of water quality in a specific water body. Deep insights into defects as a result of characterization technique development have greatly improved our understanding of their significances and behaviors in the dissolution within the mineral-water interface. Based on the progresses from previous decades, this review attempts to re-elaborate the molecular-scale process of dissolution. Material flow within the mineral/water interface is updated, with emphasis on the function of defect sites. A brief introduction of defect properties is presented, including the microscopic appearances and typical physicochemical characteristics. Feasible strategies that have been adopted to increase the defect abundance are inferred, which maybe enlightening for hydrometallurgy. The merits and drawbacks of the techniques that could be employed for the qualitative and quantitative determination of defect presence are introduced, although relatively satisfactory performances are noted. With the aid of these techniques, it is concluded that screw dislocation is the main defect type responsible for surface topography evolution as a result of dissolution. Finally, this review identifies the current knowledge gaps and future research needs for comprehensively identifying the significance of defects in mineral dissolution.
Collapse
Affiliation(s)
- Hongping He
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianglin Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Technology Center for Heavy Metal Cleaner Production Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
21
|
Moon JW, Eskelsen JR, Ivanov IN, Jacobs CB, Jang GG, Kidder MK, Joshi PC, Armstrong BL, Pierce EM, Oremland RS, Phelps TJ, Graham DE. Improved ZnS nanoparticle properties through sequential NanoFermentation. Appl Microbiol Biotechnol 2018; 102:8329-8339. [PMID: 30078139 DOI: 10.1007/s00253-018-9245-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Sequential NanoFermentation (SNF) is a novel process which entails sparging microbially produced gas containing H2S from a primary reactor through a concentrated metal-acetate solution contained in a secondary reactor, thereby precipitating metallic sulfide nanoparticles (e.g., ZnS, CuS, or SnS). SNF holds an advantage over single reactor nanoparticle synthesis strategies, because it avoids exposing the microorganisms to high concentrations of toxic metal and sulfide ions. Also, by segregating the nanoparticle products from biological materials, SNF avoids coating nanoparticles with bioproducts that alter their desired properties. Herein, we report the properties of ZnS nanoparticles formed from SNF as compared with ones produced directly in a primary reactor (i.e., conventional NanoFermentation, or "CNF"), commercially available ZnS, and ZnS chemically synthesized by bubbling H2S gas through a Zn-acetate solution. The ZnS nanoparticles produced by SNF provided improved optical properties due to their smaller crystallite size, smaller overall particle sizes, reduced biotic surface coatings, and reduced structural defects. SNF still maintained the advantages of NanoFermentation technology over chemical synthesis including scalability, reproducibility, and lower hazardous waste burden.
Collapse
Affiliation(s)
- Ji-Won Moon
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 37831, USA. .,National Minerals Information Center, United States Geological Survey, Reston, VA, 20192, USA.
| | | | - Ilia N Ivanov
- Center for Nanophase Materials Sciences, ORNL, Oak Ridge, TN, 37831, USA
| | | | - Gyoung Gug Jang
- Energy & Transportation Science Division, ORNL, Oak Ridge, TN, 37831, USA
| | | | - Pooran C Joshi
- Material Science and Technology Division, ORNL, Oak Ridge, TN, 37831, USA
| | - Beth L Armstrong
- Material Science and Technology Division, ORNL, Oak Ridge, TN, 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, ORNL, Oak Ridge, TN, 37831, USA
| | | | - Tommy J Phelps
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 37831, USA
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 37831, USA
| |
Collapse
|
22
|
Adele NC, Ngwenya BT, Heal KV, Mosselmans JFW. Soil Bacteria Override Speciation Effects on Zinc Phytotoxicity in Zinc-Contaminated Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3412-3421. [PMID: 29466659 DOI: 10.1021/acs.est.7b05094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of zinc (Zn) speciation on plant growth in Zn-contaminated soil in the presence of bacteria are unknown but are critical to our understanding of metal biodynamics in the rhizosphere where bacteria are abundant. A 6-week pot experiment investigated the effects of two plant growth promoting bacteria (PGPB), Rhizobium leguminosarum and Pseudomonas brassicacearum, on Zn accumulation and speciation in Brassica juncea grown in soil amended with 600 mg kg-1 elemental Zn as three Zn species: soluble ZnSO4 and nanoparticles of ZnO and ZnS. Measures of plant growth were higher across all Zn treatments inoculated with PGPB compared to uninoculated controls, but Zn species effects were not significant. Transmission electron microscopy identified dense particles in the epidermis and intracellular spaces in roots, suggesting Zn uptake in both dissolved and particulate forms. X-ray absorption near-edge structure (XANES) analysis of roots revealed differences in Zn speciation between treatments. Uninoculated plants exposed to ZnSO4 contained Zn predominantly in the form of Zn phytate (35%) and Zn polygalacturonate (30%), whereas Zn cysteine (57%) and Zn polygalacturonate (37%) dominated in roots exposed to ZnO nanoparticles. Inoculation with PGPB increased (>50%) the proportion of Zn cysteine under all Zn treatments, suggesting Zn coordination with cysteine as the predominant mechanism of Zn toxicity reduction by PGPB. Using this approach, we show, for the first time, that although speciation is important, the presence of rhizospheric bacteria completely overrides speciation effects such that most of the Zn in plant tissue exists as complexes other than the original form.
Collapse
Affiliation(s)
- Nyekachi C Adele
- School of GeoSciences , University of Edinburgh , Edinburgh , U.K
| | - Bryne T Ngwenya
- School of GeoSciences , University of Edinburgh , Edinburgh , U.K
| | - Kate V Heal
- School of GeoSciences , University of Edinburgh , Edinburgh , U.K
| | | |
Collapse
|