1
|
Pinto G, Rodrigues D, Macieira M, Gião MS, Reis CM, Woolhouse S, Azeredo J. Removal of virus from hands: a study on the role of washing and drying. J Hosp Infect 2025; 155:82-87. [PMID: 39413974 DOI: 10.1016/j.jhin.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Proper hand hygiene is extremely important to control the transmission of pathogens. Although many studies have been undertaken on the effect of washing and drying on bacterial contamination of hands, studies on viral contamination are scarce. AIM To assess the viral load of artificially contaminated hands after washing and after drying. METHODS Thirty volunteers completed a questionnaire on hand hygiene, and participated in microbial assays testing five different drying approaches, using whole-hand methodology, to quantify viruses on hands. Bacterial assays were also performed for comparison purposes. RESULTS For both viruses and bacteria, the washing step promoted a significant reduction in the microbial load, while the drying step only promoted a slight reduction, regardless of the drying method used. Hand dryers and paper towels did not induce recontamination of washed hands. CONCLUSIONS Handwashing promoted a reduction in the microbial load of hands, but none of the drying methods tested led to a significant reduction in the microbial load of hands.
Collapse
Affiliation(s)
- G Pinto
- Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - D Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - M Macieira
- Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - M S Gião
- Dyson Technology Ltd, Tetbury Hill, Malmesbury, UK
| | - C M Reis
- Dyson Technology Ltd, Tetbury Hill, Malmesbury, UK
| | - S Woolhouse
- Dyson Technology Ltd, Tetbury Hill, Malmesbury, UK
| | - J Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
2
|
Lin N, Zhang B, Shi R, Gao Y, Wang Z, Ling Z, Tian Y. Decay pattern of SARS-CoV-2 RNA surface contamination in real residences. Sci Rep 2024; 14:6190. [PMID: 38486016 PMCID: PMC10940586 DOI: 10.1038/s41598-024-54445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024] Open
Abstract
The COVID-19 pandemic has provided valuable lessons that deserve deep thought to prepare for the future. The decay pattern of surface contamination by SARS-CoV-2 RNA in the residences of COVID-19 patients is important but still unknown. We collected 2,233 surface samples from 21 categories of objects in 141 residences of COVID-19 patients in Shanghai when attacked by the omicron variant in spring 2022. Several characteristics of the patients and their residences were investigated to identify relevant associations. The decay of contamination was explored to determine the persistence. Approximately 8.7% of the surface samples were tested positive for SARS-CoV-2 RNA. The basin, water tap, and sewer inlet had the highest positive rates, all exceeding 20%. Only time was significantly associated with the level of surface contamination with SARS-CoV-2, showing a negative association. The decrease fit a first-order decay model with a decay rate of 0.77 ± 0.07 day-1, suggesting a 90% reduction in three days. Positive associations between the cumulative number of newly diagnosed patients in the same building and the positive rate of SARS-CoV-2 RNA in the public corridor were significant during the three days. Our results, in conjunction with the likely lower infectivity or viability, demonstrate that fomite transmission played a limited role in COVID-19 spread. The time determined SARS-CoV-2 RNA contamination, which was reduced by three days. This study is the first to show the decay patterns of SARS-CoV-2 contamination in real residential environments, providing insight into the patterns of transmission, as well as community-based prevention and control of similar threats.
Collapse
Affiliation(s)
- Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, 280 South Chongqing Rd, Shanghai, 200025, People's Republic of China
| | - Bo Zhang
- Huangpu Center for Disease Control and Prevention, 309 Xietu Rd, Shanghai, 200023, People's Republic of China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, 280 South Chongqing Rd, Shanghai, 200025, People's Republic of China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, 280 South Chongqing Rd, Shanghai, 200025, People's Republic of China
| | - Zixia Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, 280 South Chongqing Rd, Shanghai, 200025, People's Republic of China
| | - Zhiyi Ling
- Huangpu Center for Disease Control and Prevention, 309 Xietu Rd, Shanghai, 200023, People's Republic of China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, 280 South Chongqing Rd, Shanghai, 200025, People's Republic of China.
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
3
|
Robledo Gonzalez L, Tat RP, Greaves JC, Robinson CM. Viral-Bacterial Interactions That Impact Viral Thermostability and Transmission. Viruses 2023; 15:2415. [PMID: 38140656 PMCID: PMC10747402 DOI: 10.3390/v15122415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Enteric viruses are significant human pathogens that commonly cause foodborne illnesses worldwide. These viruses initiate infection in the gastrointestinal tract, home to a diverse population of intestinal bacteria. In a novel paradigm, data indicate that enteric viruses utilize intestinal bacteria to promote viral replication and pathogenesis. While mechanisms underlying these observations are not fully understood, data suggest that some enteric viruses bind directly to bacteria, stabilizing the virion to retain infectivity. Here, we discuss the current knowledge of these viral-bacterial interactions and examine the impact of these interactions on viral transmission.
Collapse
Affiliation(s)
- Lorimar Robledo Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.R.G.); (R.P.T.)
| | - Rachel P. Tat
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.R.G.); (R.P.T.)
| | - Justin C. Greaves
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47408, USA;
| | - Christopher M. Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.R.G.); (R.P.T.)
| |
Collapse
|
4
|
Pitol AK, Venkatesan S, Hoptroff M, Hughes GL. Persistence of SARS-CoV-2 and its surrogate, bacteriophage Phi6, on surfaces and in water. Appl Environ Microbiol 2023; 89:e0121923. [PMID: 37902315 PMCID: PMC10686083 DOI: 10.1128/aem.01219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The COVID-19 pandemic spurred research on the persistence of SARS-CoV-2 and its surrogates. Here we highlight the importance of evaluating viral surrogates and experimental methodologies when studying pathogen survival in the environment.
Collapse
Affiliation(s)
- Ana K. Pitol
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Samiksha Venkatesan
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael Hoptroff
- Unilever Research and Development, Port Sunlight, United Kingdom
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
5
|
Ouyang L, Wang N, Irudayaraj J, Majima T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv Colloid Interface Sci 2023; 320:103006. [PMID: 37778249 DOI: 10.1016/j.cis.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.
Collapse
Affiliation(s)
- Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joseph Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Tetsuro Majima
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
6
|
Zeng L, Li J, Lv M, Li Z, Yao L, Gao J, Wu Q, Wang Z, Yang X, Tang G, Qu G, Jiang G. Environmental Stability and Transmissibility of Enveloped Viruses at Varied Animate and Inanimate Interfaces. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:15-31. [PMID: 37552709 PMCID: PMC11504606 DOI: 10.1021/envhealth.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 08/10/2023]
Abstract
Enveloped viruses have been the leading causative agents of viral epidemics in the past decade, including the ongoing coronavirus disease 2019 outbreak. In epidemics caused by enveloped viruses, direct contact is a common route of infection, while indirect transmissions through the environment also contribute to the spread of the disease, although their significance remains controversial. Bridging the knowledge gap regarding the influence of interfacial interactions on the persistence of enveloped viruses in the environment reveals the transmission mechanisms when the virus undergoes mutations and prevents excessive disinfection during viral epidemics. Herein, from the perspective of the driving force, partition efficiency, and viral survivability at interfaces, we summarize the viral and environmental characteristics that affect the environmental transmission of viruses. We expect to provide insights for virus detection, environmental surveillance, and disinfection to limit the spread of severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Li Zeng
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junya Li
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Meilin Lv
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Zikang Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Qi Wu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Ziniu Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Yang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Kwon H, Wang Z, Gu H, Hwang S, Hwang Y, An J, Lee DU, Jeong MI, Choi C. Simulation of contamination and elimination of Escherichia coli, Listeria monocytogenes, and Murine norovirus 1 (MNV-1) from the washing process when handling of potatoes. Int J Food Microbiol 2023; 397:110221. [PMID: 37126887 DOI: 10.1016/j.ijfoodmicro.2023.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Root vegetables, which are in close contact with soil, are particularly vulnerable to soil contamination or decay as they can be contaminated from multiple sources, including primary production and processing. This study investigated effective washing conditions to reduce the microbial contamination of potatoes by using soaking and shaking in the washing process. The reduction of Escherichia coli, Listeria monocytogenes, and Murine norovirus 1 (MNV-1) in four washing processes (soaking only, shaking only, combined soaking-shaking I, and combined soaking-shaking I-shaking II) were compared. The numbers of E. coli and L. monocytogenes decreased by 0.55 and 0.49 log CFU/g after shaking only, 1.96 and 1.80 log CFU/g after soaking, 2.07 and 1.67 log CFU/g after soaking-shaking I, and 2.42 and 1.90 log CFU/g after soaking-shaking I-shaking II, respectively. The combined process reduced the microbial contamination more efficiently than shaking only. The reduction of E. coli in the washing process was higher than that of L. monocytogenes by approximately 0.5 logs. MNV-1 showed a reduction in the soaking and shaking steps by 1.34 and 1.98 log GC/100 g, with no significant reduction observed after the combination process. A combined process of soaking-shaking I-shaking II was effective to eliminate E. coli, L. monocytogenes, and MNV-1 from potatoes during the handling and washing process.
Collapse
Affiliation(s)
- Hyojin Kwon
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Zhaoqi Wang
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Hyelim Gu
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Sumin Hwang
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Youngmin Hwang
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Jihoon An
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Dong-Un Lee
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Myeong-In Jeong
- National Institute of Agricultural Sciences, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
8
|
Baker CA, Hamilton AN, Chandran S, Poncet AM, Gibson KE. Transfer of Phi6 Bacteriophage Between Human Skin and Surfaces Common to Consumer-Facing Environments. J Appl Microbiol 2022; 133:3719-3727. [PMID: 36083101 DOI: 10.1111/jam.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to determine the extent of Phi6 (Φ6) transfer between skin and surfaces relevant to consumer-facing environments based on inoculum matrix, surface type, and contact time. METHODS AND RESULTS Φ6 transfer rates were determined from skin-to-fomite and fomite-to-skin influenced by inoculum matrix (artificial saliva and tripartite), surface type (aluminum, plastic, stainless steel, touchscreen, vinyl, and wood) and contact time (5 and 10 s). Significant differences in estimated means were observed based on surface type (both transfer directions), inoculum matrix (skin-to-fomite), and contact time (both transfer directions). During a sequential transfer experiment from fomite-to-skin, the maximum number of consecutive transfer events observed was 3.33 ± 1.19, 2.33 ± 1.20, and 1.67 ± 1.21 for plastic, touchscreen, and vinyl, respectively. CONCLUSIONS Contact time significantly impacted Φ6 transfer rates, which may be attributed to skin absorption dynamics. Surface type should be considered for assessing Φ6 transfer rates. SIGNIFICANCE AND IMPACT OF THE STUDY Although the persistence of Φ6 on fomites has been characterized, limited data is available regarding the transfer of Φ6 amongst skin and fomites. Determining Φ6 transfer rates for surfaces in consumer-facing environments based on these factors is needed to better inform future virus transmission mitigation strategies.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR.,Current address: U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, 20740, Maryland
| | - Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR
| | - Sahaana Chandran
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR
| | - Aurelie M Poncet
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas System Division of Agriculture, 72701, Fayetteville, AR
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR
| |
Collapse
|
9
|
Zhang X, Wu J, Smith LM, Li X, Yancey O, Franzblau A, Dvonch JT, Xi C, Neitzel RL. Monitoring SARS-CoV-2 in air and on surfaces and estimating infection risk in buildings and buses on a university campus. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:751-758. [PMID: 35477766 PMCID: PMC9045468 DOI: 10.1038/s41370-022-00442-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Evidence is needed on the presence of SARS-CoV-2 in various types of environmental samples and on the estimated transmission risks in non-healthcare settings on campus. OBJECTIVES The objective of this research was to collect data on SARS-CoV-2 viral load and to examine potential infection risks of people exposed to the virus in publicly accessible non-healthcare environments on a university campus. METHODS Air and surface samples were collected using wetted wall cyclone bioaerosol samplers and swab kits, respectively, in a longitudinal environmental surveillance program from August 2020 until April 2021 on the University of Michigan Ann Arbor campus. Quantitative rRT-PCR with primers and probes targeting gene N1 were used for SARS-CoV-2 RNA quantification. The RNA concentrations were used to estimate the probability of infection by quantitative microbial risk assessment modeling and Monte-Carlo simulation. RESULTS In total, 256 air samples and 517 surface samples were collected during the study period, among which positive rates were 1.6% and 1.4%, respectively. Point-biserial correlation showed that the total case number on campus was significantly higher in weeks with positive environmental samples than in non-positive weeks (p = 0.001). The estimated probability of infection was about 1 per 100 exposures to SARS-CoV-2-laden aerosols through inhalation and as high as 1 per 100,000 exposures from contacting contaminated surfaces in simulated scenarios. SIGNIFICANCE Viral shedding was demonstrated by the detection of viral RNA in multiple air and surface samples on a university campus. The low overall positivity rate indicated that the risk of exposure to SARS-CoV-2 at monitored locations was low. Risk modeling results suggest that inhalation is the predominant route of exposure compared to surface contact, which emphasizes the importance of protecting individuals from airborne transmission of SARS-CoV-2 and potentially other respiratory infectious diseases. IMPACT Given the reoccurring epidemics caused by highly infectious respiratory viruses in recent years, our manuscript reinforces the importance of monitoring environmental transmission by the simultaneous sampling and integration of multiple environmental surveillance matrices for modeling and risk assessment.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lauren M Smith
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Xin Li
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Olivia Yancey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alfred Franzblau
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - J Timothy Dvonch
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Richard L Neitzel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Brault A, Néré R, Prados J, Boudreault S, Bisaillon M, Marchand P, Couture P, Labbé S. Cellulosic copper nanoparticles and a hydrogen peroxide-based disinfectant trigger rapid inactivation of pseudoviral particles expressing the Spike protein of SARS-CoV-2, SARS-CoV, and MERS-CoV. Metallomics 2022; 14:mfac044. [PMID: 35731587 DOI: 10.1093/mtomcs/mfac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022]
Abstract
Severe acute respiratory syndrome (SARS) is a viral respiratory infection caused by human coronaviruses that include SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). Although their primary mode of transmission is through contaminated respiratory droplets from infected carriers, the deposition of expelled virus particles onto surfaces and fomites could contribute to viral transmission. Here, we use replication-deficient murine leukemia virus (MLV) pseudoviral particles expressing SARS-CoV-2, SARS-CoV, or MERS-CoV Spike (S) protein on their surface. These surrogates of native coronavirus counterparts serve as a model to analyze the S-mediated entry into target cells. Carboxymethyl cellulose (CMC) nanofibers that are combined with copper (Cu) exhibit strong antimicrobial properties. S-pseudovirions that are exposed to CMC-Cu nanoparticles (30 s) display a dramatic reduction in their ability to infect target Vero E6 cells, with ∼97% less infectivity as compared to untreated pseudovirions. In contrast, addition of the Cu chelator tetrathiomolybdate protects S-pseudovirions from CMC-Cu-mediated inactivation. When S-pseudovirions were treated with a hydrogen peroxide-based disinfectant (denoted SaberTM) used at 1:250 dilution, their infectivity was dramatically reduced by ∼98%. However, the combined use of SaberTM and CMC-Cu is the most effective approach to restrict infectivity of SARS-CoV-2-S, SARS-CoV-S, and MERS-CoV-S pseudovirions in Vero E6 cell assays. Together, these results show that cellulosic Cu nanoparticles enhance the effectiveness of diluted SaberTM sanitizer, setting up an improved strategy to lower the risk of surface- and fomite-mediated transmission of enveloped respiratory viruses.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Raphael Néré
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Jérôme Prados
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Simon Boudreault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | | | | | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
11
|
Transfer of MS2 bacteriophage from surfaces to raspberry and pitanga fruits and virus survival in response to sanitization, frozen storage and preservation technologies. Food Microbiol 2022; 104:103995. [DOI: 10.1016/j.fm.2022.103995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 01/20/2023]
|
12
|
Zhao Z, Hossain MI, Jung S, Wang Z, Yeo D, Song M, Min A, Park S, Choi C. Survival of murine norovirus and hepatitis A virus in bottled drinking water, strawberries, and oysters. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Tharayil A, Rajakumari R, Mozetic M, Primc G, Thomas S. Contact transmission of SARS-CoV-2 on fomite surfaces: surface survival and risk reduction. Interface Focus 2022; 12:20210042. [PMID: 34956610 PMCID: PMC8662391 DOI: 10.1098/rsfs.2021.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
There is an unprecedented concern regarding the viral strain SARS-CoV-2 and especially its respiratory disease more commonly known as COVID-19. SARS-CoV-2 virus has the ability to survive on different surfaces for extended periods, ranging from days up to months. The new infectious properties of SARS-CoV-2 vary depending on the properties of fomite surfaces. In this review, we summarize the risk factors involved in the indirect transmission pathways of SARS-CoV-2 strains on fomite surfaces. The main mode of indirect transmission is the contamination of porous and non-porous inanimate surfaces such as textile surfaces that include clothes and most importantly personal protective equipment like personal protective equipment kits, masks, etc. In the second part of the review, we highlight materials and processes that can actively reduce the SARS-CoV-2 surface contamination pattern and the associated transmission routes. The review also focuses on some general methodologies for designing advanced and effective antiviral surfaces by physical and chemical modifications, viral inhibitors, etc.
Collapse
Affiliation(s)
- Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kerala 686560, India
| | - R. Rajakumari
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala 686560, India
| | - Miran Mozetic
- Department of Surface Engineering, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kerala 686560, India
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala 686560, India
| |
Collapse
|
14
|
Phi 6 recovery from inoculated fingerpads based on elution buffer and methodology. J Virol Methods 2022; 299:114307. [PMID: 34606796 PMCID: PMC9757907 DOI: 10.1016/j.jviromet.2021.114307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
Phi 6 (Φ6) bacteriophage is a proposed surrogate to study pathogenic enveloped viruses including SARS-CoV-2-the causative agent of COVID-19-based on structural similarities, BSL-1 status, and ease of use. To determine the role of virus-contaminated hands in disease transmission, an enhanced understanding of buffer and method performance for Φ6 recovery needs to be determined. Four buffer types and three methodologies were investigated for the recovery of Φ6 from human fingerpads over a 30 min duration. Phosphate buffered saline (PBS), PBS + 0.1 % Tween, 0.1 M glycine + 3% beef extract, and viral transport medium were evaluated as buffers for recovery of Φ6 via a dish, modified glove juice, and vigorous swabbing method. Φ6 concentrations on fingerpads were determined at 0-, 5-, 10-, and 30-min post-inoculation. While there were observed differences in virus recovery across buffer and method types depending on the time point, log PFU recovery based on buffer type or methodology was not significantly different at any time point (P > 0.05). The results presented in this study will allow for future work on Φ6 persistence, transfer between hands and surfaces, and efficacy of hand hygiene methods to be performed using a well-characterized and validated recovery method.
Collapse
|
15
|
Watts S, Ramstedt M, Salentinig S. Ethanol Inactivation of Enveloped Viruses: Structural and Surface Chemistry Insights into Phi6. J Phys Chem Lett 2021; 12:9557-9563. [PMID: 34581569 DOI: 10.1021/acs.jpclett.1c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid-enveloped viruses, such as Ebola, influenza, or coronaviruses, are a major threat to human health. Ethanol is an efficient disinfectant that is widely used to inactivate these viruses and prevent their transmission. However, the interactions between ethanol and enveloped viruses leading to their inactivation are not yet fully understood. This study demonstrates the link between ethanol-induced viral inactivation and the nanostructural and chemical transformations of the model virus Phi6, an 85 nm diameter lipid-enveloped bacterial virus that is commonly used as surrogate for human pathogenic viruses. The virus morphology was investigated using small-angle X-ray scattering and dynamic light scattering and was related to its infectivity. The Phi6's surface chemistry was characterized by cryogenic X-ray photoelectron spectroscopy, and the modifications in protein structure were assessed by circular dichroism and fluorescence spectroscopy. Ethanol-triggered structural modifications were found in the lipid envelope, detaching from the protein capsid and forming coexisting nanostructures.
Collapse
Affiliation(s)
- Samuel Watts
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
16
|
Effectiveness of water and sanitizer washing solutions for removing enteric viruses from blueberries. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Shchukarev A, Backman E, Watts S, Salentinig S, Urban CF, Ramstedt M. Applying Cryo-X-ray Photoelectron Spectroscopy to Study the Surface Chemical Composition of Fungi and Viruses. Front Chem 2021; 9:666853. [PMID: 34124001 PMCID: PMC8194281 DOI: 10.3389/fchem.2021.666853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
Interaction between microorganisms and their surroundings are generally mediated via the cell wall or cell envelope. An understanding of the overall chemical composition of these surface layers may give clues on how these interactions occur and suggest mechanisms to manipulate them. This knowledge is key, for instance, in research aiming to reduce colonization of medical devices and device-related infections from different types of microorganisms. In this context, X-ray photoelectron spectroscopy (XPS) is a powerful technique as its analysis depth below 10 nm enables studies of the outermost surface structures of microorganism. Of specific interest for the study of biological systems is cryogenic XPS (cryo-XPS). This technique allows studies of intact fast-frozen hydrated samples without the need for pre-treatment procedures that may cause the cell structure to collapse or change due to the loss of water. Previously, cryo-XPS has been applied to study bacterial and algal surfaces with respect to their composition of lipids, polysaccharides and peptide (protein and/or peptidoglycan). This contribution focuses onto two other groups of microorganisms with widely different architecture and modes of life, namely fungi and viruses. It evaluates to what extent existing models for data treatment of XPS spectra can be applied to understand the chemical composition of their very different surface layers. XPS data from model organisms as well as reference substances representing specific building blocks of their surface were collected and are presented. These results aims to guide future analysis of the surface chemical composition of biological systems.
Collapse
Affiliation(s)
| | - Emelie Backman
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Samuel Watts
- Biointerfaces Lab, Empa, Swiss Federal Laboratories for Material Science and Technology, St. Gallen, Switzerland.,Department of Chemistry, Fribourg University, Fribourg, Switzerland
| | | | - Constantin F Urban
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Madeleine Ramstedt
- Department of Chemistry, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Dang HTT, Tarabara VV. Attachment of human adenovirus onto household paints. Colloids Surf B Biointerfaces 2021; 204:111812. [PMID: 34020317 DOI: 10.1016/j.colsurfb.2021.111812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
Attachment of human adenovirus 40 (HAdV40) onto surfaces coated with three compositionally different household paints was evaluated experimentally and interpreted based on measured physicochemical properties of the paints. Polar, dispersive and electrostatic interactions between HAdV40 and the paints were predicted using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model. Quartz crystal microbalance (QCM-D) was used to quantify virus attachment to paints from 1 mM and 150 mM NaCl solutions, with the latter having the ionic strength of a typical respiratory fluid. Acrylic latex water-based, alkyd water-based, and alkyd oil-based paints were all determined to be highly hydrophobic (ΔGsws < - 48 mJ/m2). XDLVO modeling and preliminary QCM-D tests evaluated virus-paint interactions within and outside pH windows of favorable virus-paint electrostatic interactions. Hydrophobic and electrostatic interactions governed virus attachment while van der Waals interactions played a relatively minor role. In higher ionic strength solutions, the extent of virus attachment correlated with the free energy of virus-paint interfacial interaction, [Formula: see text] : more negative energies corresponded to higher values of the areal mass density of attached viruses. Hydrophobicity was the dominant factor in determining virus adhesion from high ionic strength solutions where electrostatic interactions were screened out. The hydrophobicity of paints, while desirable for minimizing moisture intrusion, also facilitates attachment of colloids such as viruses. The results call for new approaches to the materials design of indoor paints with enhanced resistance to virus adhesion. Paints so formulated should help reduce human exposure to viruses.
Collapse
Affiliation(s)
- Hien T T Dang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Liu YN, Lv ZT, Yang SY, Liu XW. Optical Tracking of the Interfacial Dynamics of Single SARS-CoV-2 Pseudoviruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4115-4122. [PMID: 33566596 PMCID: PMC7885801 DOI: 10.1021/acs.est.0c06962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 05/20/2023]
Abstract
The frequent detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in healthcare environments, accommodations, and wastewater has attracted great attention to the risk of viral transmission by environmental fomites. However, the process of SARS-CoV-2 adsorption to exposed surfaces in high-risk environments remains unclear. In this study, we investigated the interfacial dynamics of single SARS-CoV-2 pseudoviruses with plasmonic imaging technology. Through the use of this technique, which has high spatial and temporal resolution, we tracked the collision of viruses at a surface and differentiated their stable adsorption and transient adsorption. We determined the effect of the electrostatic force on virus adhesion by correlating the solution and surface chemistry with the interfacial diffusion velocity and equilibrium position. Viral adsorption was found to be enhanced in real scenarios, such as in simulated saliva. This work not only describes a plasmonic imaging method to examine the interfacial dynamics of a single virus but also provides direct measurements of the factors that regulate the interfacial adsorption of SARS-CoV-2 pseudovirus. Such information is valuable for understanding virus transport and environmental transmission and even for designing anticontamination surfaces.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
| | - Zhen-Ting Lv
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
| | - Si-Yu Yang
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
- Department of Applied Chemistry,
University of Science and Technology of China, Hefei 230026,
China
| |
Collapse
|
20
|
Castaño N, Cordts SC, Kurosu Jalil M, Zhang KS, Koppaka S, Bick AD, Paul R, Tang SKY. Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS OMEGA 2021; 6:6509-6527. [PMID: 33748563 PMCID: PMC7944398 DOI: 10.1021/acsomega.0c06335] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/19/2021] [Indexed: 05/07/2023]
Abstract
Inanimate objects or surfaces contaminated with infectious agents, referred to as fomites, play an important role in the spread of viruses, including SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The long persistence of viruses (hours to days) on surfaces calls for an urgent need for effective surface disinfection strategies to intercept virus transmission and the spread of diseases. Elucidating the physicochemical processes and surface science underlying the adsorption and transfer of virus between surfaces, as well as their inactivation, is important for understanding how diseases are transmitted and for developing effective intervention strategies. This review summarizes the current knowledge and underlying physicochemical processes of virus transmission, in particular via fomites, and common disinfection approaches. Gaps in knowledge and the areas in need of further research are also identified. The review focuses on SARS-CoV-2, but discussion of related viruses is included to provide a more comprehensive review given that much remains unknown about SARS-CoV-2. Our aim is that this review will provide a broad survey of the issues involved in fomite transmission and intervention to a wide range of readers to better enable them to take on the open research challenges.
Collapse
Affiliation(s)
- Nicolas Castaño
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Seth C. Cordts
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Myra Kurosu Jalil
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kevin S. Zhang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Saisneha Koppaka
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alison D. Bick
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Rajorshi Paul
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K. Y. Tang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Pitol AK, Julian TR. Community Transmission of SARS-CoV-2 by Surfaces: Risks and Risk Reduction Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:263-269. [PMID: 37566313 PMCID: PMC7805599 DOI: 10.1021/acs.estlett.0c00966] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 05/19/2023]
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is perceived to be primarily transmitted via person-to-person contact through droplets produced while talking, coughing, and sneezing. Transmission may also occur through other routes, including contaminated surfaces; nevertheless, the role that surfaces have on the spread of the disease remains contested. Here, we use the Quantitative Microbial Risk Assessment framework to examine the risks of community transmission of SARS-CoV-2 through surfaces and to evaluate the effectiveness of hand and surface disinfection as potential interventions. Using conservative assumptions on input parameters of the model (e.g., dose-response relationship, ratio of genome copies to infective virus), the average of the median risks for single hand-to-surface contact followed by hand-to-face contact range from 1.6 × 10-4 to 5.6 × 10-9 for modeled prevalence rates of 0.2%-5%. For observed prevalence rates (0.2%, 1%), this corresponds to a low risk of infection (<10-6). Hand disinfection substantially reduces risks of transmission independently of the disease's prevalence and contact frequency. In contrast, the effectiveness of surface disinfection is highly dependent on the prevalence and the frequency of contacts. The work supports the current perception that contaminated surfaces are not a primary mode of transmission of SARS-CoV-2 and affirms the benefits of making hand disinfectants widely available.
Collapse
Affiliation(s)
- Ana K. Pitol
- Department of Civil and Environmental Engineering,
Imperial College London, London SW7 2AZ, United
Kingdom
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic
Science and Technology, Dübendorf CH-8600,
Switzerland
- Swiss Tropical and Public Health
Institute, Basel CH-4051, Switzerland
- University of Basel, Basel
CH-4055, Switzerland
| |
Collapse
|
22
|
Kusumawardhana A, Zlatanovic L, Bosch A, van der Hoek JP. Microbiological Health Risk Assessment of Water Conservation Strategies: A Case Study in Amsterdam. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2595. [PMID: 33807661 PMCID: PMC7967349 DOI: 10.3390/ijerph18052595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
The aim of this study was to assess the health risks that may arise from the implementation of greywater reuse and rainwater harvesting for household use, especially for toilet flushing. In addition, the risk of cross connections between these systems and the drinking water system was considered. Quantitative microbial risk assessment (QMRA) is a method that uses mathematical modelling to estimate the risk of infection when exposure to pathogens happens and was used in this study to assess the health risks. The results showed that using rainwater without prior treatment for toilet flushing poses an annual infection risk from L. pneumophila at 0.64 per-person-per-year (pppy) which exceeds the Dutch standard of 10-4 pppy. The use of untreated greywater showed a risk that is below the standard. However, treatment is recommended due to the ability of P. aeruginosa to grow in the reuse system. Moreover, showering and drinking with cross-connected water has a high annual infection risk that exceeds the standard due to contact with Staphylococcus aureus and E. coli O157:H7. Several measures can be implemented to mitigate the risks such as treating the greywater and rainwater with a minimum of 5-log removal, closing the toilet lid while flushing, good design of greywater and rainwater collection systems, and rigorous plumbing installation procedures.
Collapse
Affiliation(s)
- Agung Kusumawardhana
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands; (A.K.); (L.Z.)
| | - Ljiljana Zlatanovic
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands; (A.K.); (L.Z.)
- Amsterdam Institute for Advanced Metropolitan Solutions, Kattenburgerstraat 5, 1018 JA Amsterdam, The Netherlands
- Water Supply Company Noord-Holland PWN, Rijksweg 501, 1991 AS Velserbroek, The Netherlands
| | - Arne Bosch
- Waternet, P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands;
| | - Jan Peter van der Hoek
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands; (A.K.); (L.Z.)
- Amsterdam Institute for Advanced Metropolitan Solutions, Kattenburgerstraat 5, 1018 JA Amsterdam, The Netherlands
- Waternet, P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands;
| |
Collapse
|
23
|
Kim K, Jothikumar N, Sen A, Murphy JL, Chellam S. Removal and Inactivation of an Enveloped Virus Surrogate by Iron Conventional Coagulation and Electrocoagulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2674-2683. [PMID: 33533250 DOI: 10.1021/acs.est.0c07697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is imperative to understand the behavior of enveloped viruses during water treatment to better protect public health, especially in the light of evidence of detection of coronaviruses in wastewater. We report bench-scale experiments evaluating the extent and mechanisms of removal and/or inactivation of a coronavirus surrogate (ϕ6 bacteriophage) in water by conventional FeCl3 coagulation and Fe(0) electrocoagulation. Both coagulation methods achieved ∼5-log removal/inactivation of ϕ6 in 20 min. Enhanced removal was attributed to the high hydrophobicity of ϕ6 imparted by its characteristic phospholipid envelope. ϕ6 adhesion to freshly precipitated iron (hydr)oxide also led to envelope damage causing inactivation in both coagulation techniques. Fourier transform infrared spectroscopy revealed oxidative damages to ϕ6 lipids only for electrocoagulation consistent with electro-Fenton reactions. Monitoring ϕ6 dsRNA by a novel reverse transcription quantitative polymerase chain reaction (RT-qPCR) method quantified significantly lower viral removal/inactivation in water compared with the plaque assay demonstrating that relying solely on RT-qPCR assays may overstate human health risks arising from viruses. Transmission electron microscopy and computationally generated electron density maps of ϕ6 showed severe morphological damages to virus' envelope and loss of capsid volume accompanying coagulation. Both conventional and electro- coagulation appear to be highly effective in controlling enveloped viruses during surface water treatment.
Collapse
Affiliation(s)
- Kyungho Kim
- Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843-3136, United States
| | - Narayanan Jothikumar
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329, United States
| | - Anindito Sen
- Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843-2257, United States
| | - Jennifer L Murphy
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329, United States
| | - Shankararaman Chellam
- Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843-3136, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
24
|
Harvey AP, Fuhrmeister ER, Cantrell ME, Pitol AK, Swarthout JM, Powers JE, Nadimpalli ML, Julian TR, Pickering AJ. Longitudinal Monitoring of SARS-CoV-2 RNA on High-Touch Surfaces in a Community Setting. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:168-175. [PMID: 34192125 PMCID: PMC7927285 DOI: 10.1021/acs.estlett.0c00875] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
Environmental surveillance of surface contamination is an unexplored tool for understanding transmission of SARS-CoV-2 in community settings. We conducted longitudinal swab sampling of high-touch non-porous surfaces in a Massachusetts town during a COVID-19 outbreak from April to June 2020. Twenty-nine of 348 (8.3%) surface samples were positive for SARS-CoV-2 RNA, including crosswalk buttons, trash can handles, and door handles of essential business entrances (grocery store, liquor store, bank, and gas station). The estimated risk of infection from touching a contaminated surface was low (less than 5 in 10,000) by quantitative microbial risk assessment, suggesting fomites play a minimal role in SARS-CoV-2 community transmission. The weekly percentage of positive samples (out of n = 33 unique surfaces per week) best predicted variation in city-level COVID-19 cases with a 7-day lead time. Environmental surveillance of SARS-CoV-2 RNA on high-touch surfaces may be a useful tool to provide early warning of COVID-19 case trends.
Collapse
Affiliation(s)
- Abigail P. Harvey
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | | | - Molly E. Cantrell
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Ana K. Pitol
- Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jenna M. Swarthout
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Julie E. Powers
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Maya L. Nadimpalli
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf CH-8600, Switzerland
- Swiss Tropical and Public Health Institute, Basel CH-4051, Switzerland
- University of Basel, Basel CH-4055, Switzerland
| | - Amy J. Pickering
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
- Department of Civil and Environmental Engineering, University of California, Berkeley, 94720
| |
Collapse
|
25
|
Wang X, Şengür-Taşdemir R, Koyuncu İ, Tarabara VV. Lip balm drying promotes virus attachment: Characterization of lip balm coatings and XDLVO modeling. J Colloid Interface Sci 2021; 581:884-894. [PMID: 32877879 PMCID: PMC7398005 DOI: 10.1016/j.jcis.2020.07.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023]
Abstract
HYPOTHESIS Drying-induced decrease in lip balm surface energy enhances virus adhesion due to the emergence of strong hydrophobic colloid-surface interactions. EXPERIMENTS A protocol was developed for preparing lip balm coatings to enable physicochemical characterization and adhesion studies. Surface charge and hydrophobicity of four brands of lip balm (dry and hydrated) and human adenovirus 5 (HAdV5) were measured and used to calculate the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) energy of interactions between lip balm coatings and HAdV5 as well as four other colloids: HAdV40, MS2 and P22 bacteriophages, and SiO2. Quartz crystal microbalance with dissipation monitoring (QCM-D) tests employed SiO2 colloids, HAdV5 and hydrated lip balms. FINDINGS Drying of lip balms results in a dramatic decrease of their surface energy (δΔGsws≥ 83.0 mJ/m2) making the surfaces highly hydrophobic. For dry lip balms, the interaction of the balm surface with all five colloids is attractive. For lip balms hydrated in 150 mM NaCl (ionic strength of human saliva), XDLVO calculations predict that hydrophilic colloids (MS2, P22, SiO2) may attach into shallow secondary minima. Due to the relative hydrophobicity of human adenoviruses, primary maxima in XDLVO profiles are low or non-existent making irreversible deposition into primary energy minima possible. Preliminary QCM-D tests with SiO2 colloids and HAdV5 confirm deposition on hydrated lip balms.
Collapse
Affiliation(s)
- Xunhao Wang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | - Reyhan Şengür-Taşdemir
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey.
| | - İsmail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey; Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Jacquin C, Yu D, Sander M, Domagala KW, Traber J, Morgenroth E, Julian TR. Competitive co-adsorption of bacteriophage MS2 and natural organic matter onto multiwalled carbon nanotubes. WATER RESEARCH X 2020; 9:100058. [PMID: 32613183 PMCID: PMC7322093 DOI: 10.1016/j.wroa.2020.100058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 05/04/2023]
Abstract
A leading challenge in drinking water treatment is to remove small-sized viruses from the water in a simple and efficient manner. Multi-walled carbon nanotubes (MWCNT) are new generation adsorbents with previously demonstrated potential as filter media to improve virus removal. This study therefore aimed to evaluate the field applicability of MWCNT-filters for virus removal in water containing natural organic matter (NOM) as co-solute to viruses, using batch equilibrium experiments. Contrary to previous studies, our results showed with MS2 bacteriophages single-solute systems that the affinity of MWCNT for MS2 was low, since after 3 h of equilibration only 4 log10 reduction value (LRV) of MS2 (20 mL at an initial concentration of 106 PFU MS2/mL) were reached. Single solute experiments with Suwannee river NOM (SRNOM) performed with environmentally-relevant concentrations showed MWCNT surface saturation at initial SRNOM concentrations between 10 and 15 mgC/L, for water pH between 5.2 and 8.7. These results suggested that at NOM:virus ratios found in natural waters, the NOM would competitively suppress virus adsorption onto MWCNT, even at low NOM concentrations. We confirmed this expectation with SRNOM-MS2 co-solute experiments, which showed an exponential decrease of the MS2 LRV by MWCNT with an increase in the initial SRNOM concentration. More interestingly, we showed that pre-equilibrating MWCNT with a SRNOM solution at a concentration as low as 0.4 mgC/L resulted in a LRV decrease of 3 for MS2, due to the formation of a negatively charged SRNOM adlayer on the MWCNT surface. Complementary batch experiments with natural NOM-containing waters and competition experiments with SRNOM in the presence of CaCl2 confirmed that the presence of NOM in waters challenges virus removal by MWCNT-filters, irrespective of the concentration and type of NOM and also in the presence of Ca2+. We therefore conclude that MWCNT-filters produced with commercially available pristine MWCNT cannot be considered as a viable technology for drinking water virus removal.
Collapse
Affiliation(s)
- Céline Jacquin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- Corresponding author.
| | - Diya Yu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Kamila W. Domagala
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- AGH, University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Jacqueline Traber
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- Swiss Tropical and Public Health, P.O. Box, 4001, Basel, Switzerland
- University of Basel, P.O. Box, 4002, Basel, Switzerland
| |
Collapse
|
27
|
Yang B, Li W, Wang J, Tian Z, Cheng X, Zhang Y, Qiu R, Hou S, Guo H. Estimation of the potential spread risk of COVID-19: Occurrence assessment along the Yangtze, Han, and Fu River basins in Hubei, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141353. [PMID: 32763612 PMCID: PMC7388013 DOI: 10.1016/j.scitotenv.2020.141353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 05/09/2023]
Abstract
Given that the novel coronavirus was detected in stool and urine from diagnosed patients, the potential risk of its transmission through the water environment might not be ignored. In the current study, to investigate the spread possibility of COVID-19 via the environmental media, three typical rivers (Yangtze, Han, and Fu River) and watershed cities in Hubei province of China were selected, and a more comprehensive risk assessment analysis method was built with a risk index proposed. Results showed that the risk index in the Yangtze River Basin is about 10-12, compared to 10-10 and 10-8 in the Han and Fu River Basins, and the risk index is gradually reduced from Wuhan city to the surrounding cities. The safety radius and safety time period for the Yangtze, Han, and Fu River are 8 km/14 h, 20 km/30 h and 36 km/36 h, respectively. The linear relationship between the risk potential calculated by the QMRA model and the multiple linear regression proved that the built index model is statistically significant. By comparing the theoretical removal rates for the novel coronavirus, our study proposed an effective method to estimate the potential spread risk of COVID-19 in the typical river basins.
Collapse
Affiliation(s)
- Bo Yang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Wei Li
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zixin Tian
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xin Cheng
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, United States
| | - Yongli Zhang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Rui Qiu
- Business School, Sichuan University, Chengdu 610064, China
| | - Shuhua Hou
- Business School, Sichuan University, Chengdu 610064, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
Harvey AP, Fuhrmeister ER, Cantrell M, Pitol AK, Swarthout JM, Powers JE, Nadimpalli ML, Julian TR, Pickering AJ. Longitudinal monitoring of SARS-CoV-2 RNA on high-touch surfaces in a community setting. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.27.20220905. [PMID: 33140065 PMCID: PMC7605577 DOI: 10.1101/2020.10.27.20220905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental surveillance of surface contamination is an unexplored tool for understanding transmission of SARS-CoV-2 in community settings. We conducted longitudinal swab sampling of high-touch non-porous surfaces in a Massachusetts town during a COVID-19 outbreak from April to June 2020. Twenty-nine of 348 (8.3 %) surface samples were positive for SARS-CoV-2, including crosswalk buttons, trash can handles, and door handles of essential business entrances (grocery store, liquor store, bank, and gas station). The estimated risk of infection from touching a contaminated surface was low (less than 5 in 10,000), suggesting fomites play a minimal role in SARS-CoV-2 community transmission. The weekly percentage of positive samples (out of n=33 unique surfaces per week) best predicted variation in city-level COVID-19 cases using a 7-day lead time. Environmental surveillance of SARS-CoV-2 RNA on high-touch surfaces could be a useful tool to provide early warning of COVID-19 case trends.
Collapse
Affiliation(s)
- Abigail P. Harvey
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | | | - Molly Cantrell
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Ana K. Pitol
- Department of Civil and Environmental Engineering, Imperial College London, United Kingdom
| | - Jenna M. Swarthout
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Julie E. Powers
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Maya L. Nadimpalli
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf CH-8600, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Amy J. Pickering
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
- Department of Civil and Environmental Engineering, University of California, Berkeley
| |
Collapse
|
29
|
Bär J, Boumasmoud M, Kouyos RD, Zinkernagel AS, Vulin C. Efficient microbial colony growth dynamics quantification with ColTapp, an automated image analysis application. Sci Rep 2020; 10:16084. [PMID: 32999342 PMCID: PMC7528005 DOI: 10.1038/s41598-020-72979-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Populations of genetically identical bacteria are phenotypically heterogeneous, giving rise to population functionalities that would not be possible in homogeneous populations. For instance, a proportion of non-dividing bacteria could persist through antibiotic challenges and secure population survival. This heterogeneity can be studied in complex environmental or clinical samples by spreading the bacteria on agar plates and monitoring time to growth resumption in order to infer their metabolic state distribution. We present ColTapp, the Colony Time-lapse application for bacterial colony growth quantification. Its intuitive graphical user interface allows users to analyze time-lapse images of agar plates to monitor size, color and morphology of colonies. Additionally, images at isolated timepoints can be used to estimate lag time. Using ColTapp, we analyze a dataset of Staphylococcus aureus time-lapse images including populations with heterogeneous lag time. Colonies on dense plates reach saturation early, leading to overestimation of lag time from isolated images. We show that this bias can be corrected by taking into account the area available to each colony on the plate. We envision that in clinical settings, improved analysis of colony growth dynamics may help treatment decisions oriented towards personalized antibiotic therapies.
Collapse
Affiliation(s)
- Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mathilde Boumasmoud
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clément Vulin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland. .,Department of Environmental Microbiology, 8600, Eawag, Dubendorf, Switzerland.
| |
Collapse
|
30
|
Pitol AK, Kohn T, Julian TR. Retention of E. coli and water on the skin after liquid contact. PLoS One 2020; 15:e0238998. [PMID: 32941473 PMCID: PMC7498081 DOI: 10.1371/journal.pone.0238998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
The frequent contact people have with liquids containing pathogenic microorganisms provides opportunities for disease transmission. In this work, we quantified the transfer of bacteria-using E. coli as a model- from liquid to skin, estimated liquid retention on the skin after different contact activities (hand immersion, wet-cloth and wet-surface contact), and estimated liquid transfer following hand-to-mouth contacts. The results of our study show that the number of E. coli transferred to the skin per surface area (n [E. coli/cm2]) can be modeled using n = C (10-3.38+h), where C [E. coli/cm3] is the concentration of E. coli in the liquid, and h [cm] is the film thickness of the liquid retained on the skin. Findings from the E. coli transfer experiments reveal a significant difference between the transfer of E. coli from liquid to the skin and the previously reported transfer of viruses to the skin. Additionally, our results demonstrate that the time elapsed since the interaction significantly influences liquid retention, therefore modulating the risks associated with human interaction with contaminated liquids. The findings enhance our understanding of liquid-mediated disease transmission processes and provide quantitative estimates as inputs for microbial risk assessments.
Collapse
Affiliation(s)
- Ana K. Pitol
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Laboratory of Environmental Chemistry, School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail: (AKP); (TRJ)
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (AKP); (TRJ)
| |
Collapse
|
31
|
Joonaki E, Hassanpouryouzband A, Heldt CL, Areo O. Surface Chemistry Can Unlock Drivers of Surface Stability of SARS-CoV-2 in a Variety of Environmental Conditions. Chem 2020; 6:2135-2146. [PMID: 32838053 PMCID: PMC7409833 DOI: 10.1016/j.chempr.2020.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The surface stability and resulting transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), specifically in indoor environments, have been identified as a potential pandemic challenge requiring investigation. This novel virus can be found on various surfaces in contaminated sites such as clinical places; however, the behavior and molecular interactions of the virus with respect to the surfaces are poorly understood. Regarding this, the virus adsorption onto solid surfaces can play a critical role in transmission and survival in various environments. In this article, we first give an overview of existing knowledge concerning viral spread, molecular structure of SARS-CoV-2, and the virus surface stability is presented. Then, we highlight potential drivers of the SARS-CoV-2 surface adsorption and stability in various environmental conditions. This theoretical analysis shows that different surface and environmental conditions including temperature, humidity, and pH are crucial considerations in building fundamental understanding of the virus transmission and thereby improving safety practices.
Collapse
Affiliation(s)
- Edris Joonaki
- TÜV SÜD UK National Engineering Laboratory, Scottish Enterprise Technology Park, East Kilbride, South Lanarkshire, G75 0QF, United Kingdom
| | - Aliakbar Hassanpouryouzband
- School of Geosciences, University of Edinburgh, King's Buildings, West Main Road, Edinburgh, EH9 3JW, United Kingdom
| | - Caryn L Heldt
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Oluwatoyin Areo
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
32
|
Wilson AM, King MF, López-García M, Weir MH, Sexton JD, Canales RA, Kostov GE, Julian TR, Noakes CJ, Reynolds KA. Evaluating a transfer gradient assumption in a fomite-mediated microbial transmission model using an experimental and Bayesian approach. J R Soc Interface 2020; 17:20200121. [PMID: 32574546 PMCID: PMC7328381 DOI: 10.1098/rsif.2020.0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Current microbial exposure models assume that microbial exchange follows a concentration gradient during hand-to-surface contacts. Our objectives were to evaluate this assumption using transfer efficiency experiments and to evaluate a model's ability to explain concentration changes using approximate Bayesian computation (ABC) on these experimental data. Experiments were conducted with two phages (MS2, ΦX174) simultaneously to study bidirectional transfer. Concentrations on the fingertip and surface were quantified before and after fingertip-to-surface contacts. Prior distributions for surface and fingertip swabbing efficiencies and transfer efficiency were used to estimate concentrations on the fingertip and surface post contact. To inform posterior distributions, Euclidean distances were calculated for predicted detectable concentrations (log10 PFU cm−2) on the fingertip and surface post contact in comparison with experimental values. To demonstrate the usefulness of posterior distributions in calibrated model applications, posterior transfer efficiencies were used to estimate rotavirus infection risks for a fingertip-to-surface and subsequent fingertip-to-mouth contact. Experimental findings supported the transfer gradient assumption. Through ABC, the model explained concentration changes more consistently when concentrations on the fingertip and surface were similar. Future studies evaluating microbial transfer should consider accounting for differing fingertip-to-surface and surface-to-fingertip transfer efficiencies and extend this work for other microbial types.
Collapse
Affiliation(s)
- Amanda M Wilson
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | | | - Mark H Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Jonathan D Sexton
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Robert A Canales
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Georgiana E Kostov
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Timothy R Julian
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.,Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland.,University of Basel, PO Box, CH-4003 Basel, Switzerland
| | | | - Kelly A Reynolds
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
33
|
Bozkurt H, Phan-Thien KY, van Ogtrop F, Bell T, McConchie R. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Crit Rev Food Sci Nutr 2020; 61:116-138. [PMID: 32008374 DOI: 10.1080/10408398.2020.1719383] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Foodborne enteric viruses, in particular HuNoV and HAV, are the most common cause of the berry-linked viral diseases, and outbreaks around the world, and have become an important concern for health authorities. Despite the increased importance of berry fruits as a vehicle for foodborne viruses, there is limited information concerning the fate of foodborne viruses in the berry supply chain from farm to consumer. A comprehensive understanding of berry-associated viral outbreaks - with a focus on contamination sources, persistence, survival, and the effects of current postharvest and processing interventions and practices - is essential for the development of effective preventative strategies to reduce risk of illness. The purpose of this paper is twofold; (i) to critically review the published literature on the current state of knowledge regarding berry-associated foodborne viral outbreaks and the efficiency of berry processing practices and (ii) to identify and prioritize research gaps regarding practical and effective mechanism to reduce viral contamination of berries. The review found that fecally infected food handlers were the predominant source of preharvest and postharvest pathogenic viral contamination. Current industrial practices applied to fresh and frozen berries demonstrated limited efficacy for reducing the viral load. While maintaining best practice personal and environmental hygiene is a key intervention, the optimization of processing parameters (i.e., freezing, frozen storage, and washing) and/or development of alternative processing technologies to induce sufficient viral inactivation in berries along with retaining sensory and nutritional quality, is also an important direction for further research.
Collapse
Affiliation(s)
- Hayriye Bozkurt
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Kim-Yen Phan-Thien
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Floris van Ogtrop
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Tina Bell
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Robyn McConchie
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Wilson AM, Reynolds KA, Verhougstraete MP, Canales RA. Validation of a Stochastic Discrete Event Model Predicting Virus Concentration on Nurse Hands. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:1812-1824. [PMID: 30759318 DOI: 10.1111/risa.13281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Understanding healthcare viral disease transmission and the effect of infection control interventions will inform current and future infection control protocols. In this study, a model was developed to predict virus concentration on nurses' hands using data from a bacteriophage tracer study conducted in Tucson, Arizona, in an urgent care facility. Surfaces were swabbed 2 hours, 3.5 hours, and 6 hours postseeding to measure virus spread over time. To estimate the full viral load that would have been present on hands without sampling, virus concentrations were summed across time points for 3.5- and 6-hour measurements. A stochastic discrete event model was developed to predict virus concentrations on nurses' hands, given a distribution of virus concentrations on surfaces and expected frequencies of hand-to-surface and orifice contacts and handwashing. Box plots and statistical hypothesis testing were used to compare the model-predicted and experimentally measured virus concentrations on nurses' hands. The model was validated with the experimental bacteriophage tracer data because the distribution for model-predicted virus concentrations on hands captured all observed value ranges, and interquartile ranges for model and experimental values overlapped for all comparison time points. Wilcoxon rank sum tests showed no significant differences in distributions of model-predicted and experimentally measured virus concentrations on hands. However, limitations in the tracer study indicate that more data are needed to instill more confidence in this validation. Next model development steps include addressing viral concentrations that would be found naturally in healthcare environments and measuring the risk reductions predicted for various infection control interventions.
Collapse
Affiliation(s)
- Amanda M Wilson
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Kelly A Reynolds
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Marc P Verhougstraete
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Robert A Canales
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
35
|
Bischel HN, Caduff L, Schindelholz S, Kohn T, Julian TR. Health Risks for Sanitation Service Workers along a Container-Based Urine Collection System and Resource Recovery Value Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7055-7067. [PMID: 31082211 PMCID: PMC6587154 DOI: 10.1021/acs.est.9b01092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Container-based sanitation (CBS) within a comprehensive service system value chain offers a low-cost sanitation option with potential for revenue generation but may increase microbial health risks to sanitation service workers. This study assessed occupational exposure to rotavirus and Shigella spp. during CBS urine collection and subsequent struvite fertilizer production in eThekwini, South Africa. Primary data included high resolution sequences of hand-object contacts from annotated video and measurement of fecal contamination from urine and surfaces likely to be contacted. A stochastic model incorporated chronological surface contacts, pathogen concentrations in urine, and literature data on transfer efficiencies of pathogens to model pathogen concentrations on hands and risk of infection from hand-to-mouth contacts. The probability of infection was highest from exposure to rotavirus during urine collection (∼10-1) and struvite production (∼10-2), though risks from Shigella spp. during urine collection (∼10-3) and struvite production (∼10-4) were non-negligible. Notably, risk of infection was higher during urine collection than during struvite production due to contact with contaminated urine transport containers. In the scale-up of CBS, disinfection of urine transport containers is expected to reduce pathogen transmission. Exposure data from this study can be used to evaluate the effectiveness of measures to protect sanitation service workers.
Collapse
Affiliation(s)
- Heather N. Bischel
- School
of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale
de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
- Department
of Civil & Environmental Engineering, University of California at Davis, Davis, California 95616, United States
| | - Lea Caduff
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600 Dübendorf, Switzerland
| | - Simon Schindelholz
- School
of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale
de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Tamar Kohn
- School
of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale
de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600 Dübendorf, Switzerland
- Swiss
Tropical and Public Health Institute, CH 4002 Basel, Switzerland
- University
of Basel, CH 4003 Basel, Switzerland
| |
Collapse
|
36
|
Verbyla ME, Pitol AK, Navab-Daneshmand T, Marks SJ, Julian TR. Safely Managed Hygiene: A Risk-Based Assessment of Handwashing Water Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2852-2861. [PMID: 30689351 DOI: 10.1021/acs.est.8b06156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sustainable Development Goal (SDG) Indicator 6.2.1 requires household handwashing facilities to have soap and water, but there are no guidelines for handwashing water quality. In contrast, drinking water quality guidelines are defined: water must be "free from contamination" to be defined as "safely managed" (SDG Indicator 6.1.1). We modeled the hypothesized mechanism of infection due to contaminated handwashing water to inform risk-based guidelines for microbial quality of handwashing water. We defined two scenarios that should not occur: (1) if handwashing caused fecal contamination, indicated using Escherichia coli, on a person's hands to increase rather than decrease and (2) if hand-to-mouth contacts following handwashing caused an infection risk greater than an acceptable threshold. We found water containing <1000 E. coli colony-forming units (CFU) per 100 mL removes E. coli from hands with>99.9% probability. However, for the annual probability of infection to be <1:1000, handwashing water must contain <2 × 10-6 focus-forming units of rotavirus, <1 × 10-4 CFU of Vibrio cholerae, and <9 × 10-6 Cryptosporidium oocysts per 100 mL. Our model suggests that handwashing with nonpotable water will generally reduce fecal contamination on hands but may be unable to lower the annual probability of infection risks from hand-to-mouth contacts below 1:1000.
Collapse
Affiliation(s)
- Matthew E Verbyla
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana K Pitol
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Sara J Marks
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Swiss Tropical and Public Health Institute , P.O. Box, CH-4002 Basel , Switzerland
- University of Basel , P.O. Box, CH-4003 Basel , Switzerland
| |
Collapse
|
37
|
Canales RA, Reynolds KA, Wilson AM, Fankem SLM, Weir MH, Rose JB, Abd-Elmaksoud S, Gerba CP. Modeling the role of fomites in a norovirus outbreak. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:16-26. [PMID: 30274562 DOI: 10.1080/15459624.2018.1531131] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Norovirus accounts for a large portion of the gastroenteritis disease burden, and outbreaks have occurred in a wide variety of environments. Understanding the role of fomites in norovirus transmission will inform behavioral interventions, such as hand washing and surface disinfection. The purpose of this study was to estimate the contribution of fomite-mediated exposures to infection and illness risks in outbreaks. A simulation model in discrete time that accounted for hand-to-porous surfaces, hand-to-nonporous surfaces, hand-to-mouth, -eyes, -nose, and hand washing events was used to predict 17 hr of simulated human behavior. Norovirus concentrations originated from monitoring contamination levels on surfaces during an outbreak on houseboats. To predict infection risk, two dose-response models (fractional Poisson and 2F1 hypergeometric) were used to capture a range of infection risks. A triangular distribution describing the conditional probability of illness given an infection was multiplied by modeled infection risks to estimate illness risks. Infection risks ranged from 70.22% to 72.20% and illness risks ranged from 21.29% to 70.36%. A sensitivity analysis revealed that the number of hand-to-mouth contacts and the number of hand washing events had strong relationships with model-predicted doses. Predicted illness risks overlapped with leisure setting and environmental attack rates reported in the literature. In the outbreak associated with the viral concentrations used in this study, attack rates ranged from 50% to 86%. This model suggests that fomites may have accounted for 25% to 82% of illnesses in this outbreak. Fomite-mediated exposures may contribute to a large portion of total attack rates in outbreaks involving multiple transmission modes. The findings of this study reinforce the importance of frequent fomite cleaning and hand washing, especially when ill persons are present.
Collapse
Affiliation(s)
- Robert A Canales
- a Mel & Enid Zuckerman College of Public Health , The University of Arizona , Tucson , AZ
| | - Kelly A Reynolds
- a Mel & Enid Zuckerman College of Public Health , The University of Arizona , Tucson , AZ
| | - Amanda M Wilson
- a Mel & Enid Zuckerman College of Public Health , The University of Arizona , Tucson , AZ
| | - Sonia L M Fankem
- a Mel & Enid Zuckerman College of Public Health , The University of Arizona , Tucson , AZ
- b Department of Soil, Water, and Environmental Science , The University of Arizona , Tucson , AZ
| | - Mark H Weir
- c College of Public Health , The Ohio State University , Columbus , OH
| | - Joan B Rose
- d Department of Fisheries and Wildlife , Michigan State University , East Lansing , MI
| | - Sherif Abd-Elmaksoud
- e Environmental Virology Laboratory, Department of Water Pollution Research , National Research Centre , Cairo , Egypt
| | - Charles P Gerba
- a Mel & Enid Zuckerman College of Public Health , The University of Arizona , Tucson , AZ
- b Department of Soil, Water, and Environmental Science , The University of Arizona , Tucson , AZ
| |
Collapse
|
38
|
Transfer of Enteric Viruses Adenovirus and Coxsackievirus and Bacteriophage MS2 from Liquid to Human Skin. Appl Environ Microbiol 2018; 84:AEM.01809-18. [PMID: 30217840 PMCID: PMC6210118 DOI: 10.1128/aem.01809-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022] Open
Abstract
Enteric viruses (viruses that infect the gastrointestinal tract) are responsible for most water-transmitted diseases. They are shed in high concentrations in the feces of infected individuals, persist for an extended period of time in water, and are highly infective. Exposure to contaminated water directly (through ingestion) or indirectly (for example, through hand-water contacts followed by hand-to-mouth contacts) increases the risk of virus transmission. The work described herein provides a quantitative model for estimating human-pathogenic virus retention on skin following contact with contaminated water. The work will be important in refining the contribution of indirect transmission of virus to risks associated with water-related activities. Indirect exposure to waterborne viruses increases the risk of infection, especially among children with frequent hand-to-mouth contacts. Here, we quantified the transfer of one bacteriophage (MS2) and two enteric viruses (adenovirus and coxsackievirus) from liquid to skin. MS2, a commonly used enteric virus surrogate, was used to compare virus transfer rates in a volunteer trial to those obtained using human cadaver skin and synthetic skin. MS2 transfer to volunteer skin was similar to transfer to cadaver skin but significantly different from transfer to synthetic skin. The transfer of MS2, adenovirus, and coxsackievirus to cadaver skin was modeled using measurements for viruses attaching to the skin (adsorbed) and viruses in liquid residual on skin (unadsorbed). We find virus transfer per surface area is a function of the concentration of virus in the liquid and the film thickness of liquid retained on the skin and is estimable using a linear model. Notably, the amount of MS2 adsorbed on the skin was on average 5 times higher than the amount of adenovirus and 4 times higher than the amount of coxsackievirus. Quantification of pathogenic virus retention to skin would thus be overestimated using MS2 adsorption data. This study provides models of virus transfer useful for risk assessments of water-related activities, demonstrates significant differences in the transfer of pathogenic virus and MS2, and suggests cadaver skin as an alternative testing system for studying interactions between viruses and skin. IMPORTANCE Enteric viruses (viruses that infect the gastrointestinal tract) are responsible for most water-transmitted diseases. They are shed in high concentrations in the feces of infected individuals, persist for an extended period of time in water, and are highly infective. Exposure to contaminated water directly (through ingestion) or indirectly (for example, through hand-water contacts followed by hand-to-mouth contacts) increases the risk of virus transmission. The work described herein provides a quantitative model for estimating human-pathogenic virus retention on skin following contact with contaminated water. The work will be important in refining the contribution of indirect transmission of virus to risks associated with water-related activities.
Collapse
|