1
|
Li J, Cen X, Zheng Q, Zhao Z, Ren J, Khan S, Duan H, Thai P, Zheng M. Impact of long-term and short-term magnesium hydroxide dosing on transformation of chemical biomarkers in the sewer systems. WATER RESEARCH 2025; 279:123426. [PMID: 40056472 DOI: 10.1016/j.watres.2025.123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Magnesium hydroxide (Mg(OH)₂) dosing is widely applied for sewer odour control. However, its impact on the fate of biomarkers used for wastewater-based epidemiology (WBE) has been overlooked. This study investigated the long-term and short-term impact of Mg(OH)₂ dosing on in-sewer transformation of 20 biomarkers. The dosing duration and amount of Mg(OH)₂ were specifically controlled in laboratory-scale sewer reactors, which led to long-term biofilm adaptation and instant change of wastewater pH. Mg(OH)₂ dosing rapidly inhibited H₂S at high pH levels and changed microbial community structure after long-term exposure. The transformation of biomarkers was a combined result of pH-driven abiotic process and biodegradation in the dosing-impacted sewers. The high stability of biomarkers like acesulfame and carbamazepine was unaffected by Mg(OH)₂ dosing. Most unstable biomarkers like caffeine, codeine and nicotine presented less degradation and extended half-lives in sewers received either long-term or short-term dosing, compared to their rapid losses under normal sewer conditions. This study provides a comprehensive understanding of both instant and lasting impacts of Mg(OH)₂ dosing on microbial community, biological activity, and biomarker stability in sewers. The longer half-lives of biomarkers in Mg(OH)2-dosed sewers benefited WBE application due to the improved detection reliability and less uncertainty related to biomarker loss, suggesting that chemical dosing information is required for accurate WBE estimation within a catchment.
Collapse
Affiliation(s)
- Jiaying Li
- The School of Civil Engineering, The University of Sydney, New South Wales, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zeyang Zhao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jianan Ren
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Stuart Khan
- The School of Civil Engineering, The University of Sydney, New South Wales, Australia
| | - Haoran Duan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Phong Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
2
|
Xia X, Mu H, Du Y, Shao S, Li Y, Li D, Zhao Q, Wei L. Could chloroxylenol be used as WBE biomarker in gravity sewers? Fates, behaviors and feasible conditions. WATER RESEARCH 2025; 278:123376. [PMID: 40015221 DOI: 10.1016/j.watres.2025.123376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
Understanding the in-sewer stability of chemical biomarkers is crucial for effective wastewater-based epidemiology (WBE) studying. Sewer conditions, including environmental and biological factors, significantly influence biomarker transformations. This study investigated the stability of chloroxylenol (PCMX) under different levels of pH, temperature, shear force, and ventilation status, and then clarified the fate and behavior of PCMX in gravity sewers (GS). Results indicated the stability of PCMX obviously increased with higher pH and shear force, and lower temperature in both well- and partially-ventilated GS reactors. In poorly-ventilated GS reactors, the highest degradation rates occurred under normal conditions (pH = 7.0, T = 20 °C, shear = 1.15 N/m2). Biological activity (MPR>SPR) and dissolved oxygen (DO) primarily drove PCMX transformation, with minimal effects from pH, temperature, and shear force. A positive correlation existed between PCMX transformation and DO, and a negative correlation existed between PCMX transformation and biological activity. Mass balance analysis indicated that adsorption and bioaccumulation dominated PCMX transformation in GS, while biotransformation occurred with the increasing of DO and prolongation of HRT. Additionally, the suitability of PCMX as a WBE biomarker under different GS conditions was assessed. PCMX was viable as a biomarker in partially-ventilated GS under pH 8 or shears force of 0.48 N/m2 conditions, and in poorly-ventilated GS under pH 6 or shears force of 0.48 N/m2 conditions. This study enhances understanding of factors affecting PCMX stability and supports its application as a WBE biomarker in community health assessments.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yujia Du
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuocheng Shao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China..
| |
Collapse
|
3
|
Cooper A, Cancelada L, Torres RR, Belcher K, Small M, Belda-Ferre P, Morris C, Mitts B, Dinasquet J, Knight R, Slade JH, Prather KA. Identifying wastewater chemicals in coastal aerosols. SCIENCE ADVANCES 2025; 11:eads9476. [PMID: 40435233 PMCID: PMC12118540 DOI: 10.1126/sciadv.ads9476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025]
Abstract
The Tijuana River, at the US-Mexico border, discharges millions of gallons of wastewater daily-sewage, industrial waste, and runoff-into the Pacific Ocean, making it the dominant source of coastal pollution in this region. This study examines how such wastewater influences coastal aerosols by tracking spatial gradients from near the border northward. Using benzoylecgonine (a nonvolatile cocaine metabolite) as a sewage tracer, we find that wastewater compounds-including a mixture of illicit drugs, drug metabolites, and chemicals from tires and personal care products-become aerosolized and are detectable in both water and air. Spatial analyses confirm that most measured chemicals concentrate in aerosols near the Tijuana River, potentially exposing local populations to tens of nanograms per hour (e.g., octinoxate and methamphetamine) via inhalation. This airborne pathway highlights a largely overlooked source of atmospheric pollution, emphasizing the need to reassess health risks in coastal regions as global water contamination continues to escalate.
Collapse
Affiliation(s)
- Adam Cooper
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lucia Cancelada
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ralph Riley Torres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kathryn Belcher
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mallory Small
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clare Morris
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brock Mitts
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julie Dinasquet
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan H. Slade
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kimberly A. Prather
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Xiao Y, Yuan S, Luo R, Tang Y, Wang X, Xiang P, Di B. Monitoring of ketamine-based emerging contaminants in wastewater: a direct-injection method and fragmentation pathway study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:389-402. [PMID: 39308124 DOI: 10.1080/10934529.2024.2403280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 11/05/2024]
Abstract
The ketamine (KET) and its analogs consumed by humans are becoming emerging contaminants (ECs), as they at present in surface waters after being carried through wastewater systems. Drugs in wastewater can be analyzed using the direct-injection method, a simple wastewater analysis (WWA) method that can provide objective, continuous and nearly to real-time findings. This article describes an ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification and confirmation of seven KET-based ECs in wastewater by direct injection. After optimization of the UPLC-MS/MS and sample pretreatment conditions, the method was validated and applied to samples (n = 157) collected from several wastewater treatment plants (WWTPs) in southern China in which KET had the highest detection rate. The established direct-injection method was not only simple to perform but also had better sensitivity, shorter detection times, and analyzed more KET-based ECs than currently published methods, meeting the requirements for the monitoring and high-throughput analysis of common KET-based ECs. We also analyzed the fragmentation pathway of KET-based ECs to obtain product ion information on other unknown substances. Additional studies are needed to establish a comprehensive direct-injection screening method of ECs in wastewater on model-based assessment.
Collapse
Affiliation(s)
- Yue Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Shuai Yuan
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Ruxin Luo
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Yiling Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Xin Wang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Ping Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
5
|
Aghaei M, Khoshnamvand N, Janjani H, Dehghani MH, Karri RR. Exposure to environmental pollutants: A mini-review on the application of wastewater-based epidemiology approach. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:65-74. [PMID: 38887772 PMCID: PMC11180043 DOI: 10.1007/s40201-024-00895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 06/20/2024]
Abstract
Wastewater-based epidemiology (WBE) is considered an innovative and promising tool for estimating community exposure to a wide range of chemical and biological compounds by analyzing wastewater. Despite scholars' interest in WBE studies, there are uncertainties and limitations associated with this approach. This current review focuses on the feasibility of the WBE approach in assessing environmental pollutants, including pesticides, heavy metals, phthalates, bisphenols, and personal care products (PCPs). Limitations and challenges of WBE studies are initially discussed, and then future perspectives, gaps, and recommendations are presented in this review. One of the key limitations of this approach is the selection and identification of appropriate biomarkers in studies. Selecting biomarkers considering the basic requirements of a human exposure biomarker is the most important criterion for validating this new approach. Assessing the stability of biomarkers in wastewater is crucial for reliable comparisons of substance consumption in the population. However, directly analyzing wastewater does not provide a clear picture of biomarker stability. This uncertainty affects the reliability of temporal and spatial comparisons. Various uncertainties also arise from different steps involved in WBE. These uncertainties include sewage sampling, exogenous sources, analytical measurements, back-calculation, and estimation of the population under investigation. Further research is necessary to ensure that measured pollutant levels accurately reflect human excretion. Utilizing data from WBE can support healthcare policy in assessing exposure to environmental pollutants in the general population. Moreover, WBE seems to be a valuable tool for biomarkers that indicate healthy conditions, lifestyle, disease identification, and exposure to pollutants. Although this approach has the potential to serve as a biomonitoring tool in large communities, it is necessary to monitor more metabolites from wastewater to enhance future studies.
Collapse
Affiliation(s)
- Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Khoshnamvand
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosna Janjani
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
6
|
Wen J, Duan L, Wang B, Dong Q, Liu Y, Chen C, Huang J, Yu G. In-sewer stability assessment of 140 pharmaceuticals, personal care products, pesticides and their metabolites: Implications for wastewater-based epidemiology biomarker screening. ENVIRONMENT INTERNATIONAL 2024; 184:108465. [PMID: 38324926 DOI: 10.1016/j.envint.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The monitoring of pharmaceuticals, personal care products (PCPs), pesticides, and their metabolites through wastewater-based epidemiology (WBE) provides timely information on pharmaceutical consumption patterns, chronic disease treatment rates, antibiotic usage, and exposure to harmful chemicals. However, before applying them for quantitative WBE back-estimation, it is necessary to understand their stability in the sewer system to screen suitable WBE biomarkers thereby reducing research uncertainty. This study investigated the in-sewer stability of 140 typical pharmaceuticals, PCPs, pesticides, and their metabolites across 15 subcategories, using a series of laboratory sewer sediment and biofilm reactors. For the first time, stability results for 89 of these compounds were reported. Among the 140 target compounds, 61 biomarkers demonstrated high stability in all sewer reactors, while 41 biomarkers were significantly removed merely by sediment processes. For biomarkers exhibiting notable attenuation, the influence of sediment processes was generally more pronounced than biofilm, due to its stronger microbial activities and more pronounced diffusion or adsorption processes. Adsorption emerged as the predominant factor causing biomarker removal compared to biodegradation and diffusion. Significantly different organic carbon-water partitioning coefficient (Koc) and distribution coefficient at pH = 7 (logD) values were observed between highly stable and unstable biomarkers, with most hydrophobic substances (Koc > 100 or logD > 2) displaying instability. In light of these findings, we introduced a primary biomarker screening process to efficiently exclude inappropriate candidates, achieving a commendable 77 % accuracy. Overall, this study represents the first comprehensive report on the in-sewer stability of 89 pharmaceuticals, PCPs, pesticides, and their metabolites, and provided crucial reference points for understanding the intricate sewer sediment processes.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Qian Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
7
|
Li J, Choi PM, Gao J, Ren J, O'Brien JW, Thomas KV, Mueller JF, Thai PK, Jiang G. In-sewer stability of 31 human health biomarkers and suitability for wastewater-based epidemiology. WATER RESEARCH 2024; 249:120978. [PMID: 38071905 DOI: 10.1016/j.watres.2023.120978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Monitoring urinary markers of dietary, disease, and stress by wastewater-based epidemiology (WBE) is a promising tool to better understand population health and wellbeing. However, common urinary biomarkers are subject to degradation in sewer systems and their fates have to be assessed before they can be used in WBE. This study investigated the stability of 31 urinary biomarkers (12 food biomarkers, 8 vitamins, 9 oxidative stress biomarkers, and 1 histamine biomarker) in a laboratory sewer sediment reactor and evaluated their suitability for WBE, considering their detectability in real wastewater and in-sewer stability. These biomarkers showed various transformation patterns, among which 16 compounds had half-lives <2 h while other 15 compounds presented moderate to high stability (2 to >500 h). Thirteen biomarkers showed potential for WBE because of their consistently measurable concentrations in untreated wastewater and sufficient in-sewer stability. Eighteen biomarkers were unsuitable due to their rapid in-sewer degradation and/or undetectable concentration levels in untreated wastewater using previous methods. Transformation rates of these biomarkers showed generally weak relationships with molecular properties but relatively higher correlations with biological activities in sewers. Overall, this study determined in-sewer stability of 31 health-related biomarkers through laboratory experiments, providing new findings to WBE for population health assessment.
Collapse
Affiliation(s)
- Jiaying Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia; Water Unit, Health Protection and Regulation Branch, Queensland Public Health and Scientific Services, Queensland Health, Herston, QLD 4006, Australia
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jianan Ren
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia; Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Netherlands
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia.
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Australia
| |
Collapse
|
8
|
Wen J, Duan L, Wang B, Dong Q, Liu Y, Huang J, Yu G. Stability and WBE biomarkers possibility of 17 antiviral drugs in sewage and gravity sewers. WATER RESEARCH 2023; 238:120023. [PMID: 37150064 PMCID: PMC10149109 DOI: 10.1016/j.watres.2023.120023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising technique for monitoring the rapidly increasing use of antiviral drugs during the COVID-19 pandemic. It is essential to evaluate the in-sewer stability of antiviral drugs in order to determine appropriate biomarkers. This study developed an analytical method for quantification of 17 typical antiviral drugs, and investigated the stability of target compounds in sewer through 4 laboratory-scale gravity sewer reactors. Nine antiviral drugs (lamivudine, acyclovir, amantadine, favipiravir, nevirapine, oseltamivir, ganciclovir, emtricitabine and telbivudine) were observed to be stable and recommended as appropriate biomarkers for WBE. As for the other 8 unstable drugs (abacavir, arbidol, ribavirin, zidovudine, ritonavir, lopinavir, remdesivir and efavirenz), their attenuation was driven by adsorption, biodegradation and diffusion. Moreover, reaction kinetics revealed that the effects of sediments and biofilms were regarded to be independent in gravity sewers, and the rate constants of removal by biofilms was directly proportional to the ratio of surface area against wastewater volume. The study highlighted the potential importance of flow velocity for compound stability, since an increased flow velocity significantly accelerated the removal of unstable biomarkers. In addition, a framework for graded evaluation of biomarker stability was proposed to provide reference for researchers to select suitable WBE biomarkers. Compared with current classification method, this framework considered the influences of residence time and different removal mechanisms, which additionally screened four antiviral drugs as viable WBE biomarkers. This is the first study to report the stability of antiviral drugs in gravity sewers.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Qian Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
9
|
Guo H, Liu S, Wang Y, Wang Y, Hou J, Zhu T, Liu Y. Reduced sulfide and methane in rising main sewer via calcium peroxide dosing: Insights from microbial physiological characteristics, metabolisms and community traits. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131138. [PMID: 36917912 DOI: 10.1016/j.jhazmat.2023.131138] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Although the biocidal effect of calcium peroxide (CaO2) has attracted increasing attention in wastewater and sludge management, its potential in the reduction of sulfide and methane from sewer is not tapped. This study aims to fill this gap through the long-term operated sewer reactors. Results showed one-time dose of 0.2% (w/v) CaO2 with 12-h exposure decreased the average sulfide and methane production by 80% during one week. The electron paramagnetic resonance and free radical quenching tests indicated free radicals from CaO2 decomposing posed a major contribution on sewer biofilms (•OH>•O2->alkali). Mechanistic analysis revealed extracellular polymeric matrix breakdown (e.g., protein secondary structure) and cell membrane damage were caused by the increased lipid peroxidation of cells and exacerbated intracellular reactive oxygen species under CaO2 stress. Moreover, the intracellular metabolic pathways, such as electrons provision and transfer, as well as pivotal enzymatic activities (e.g., APS reductase, sulfite reductase and coenzymes F420) were significantly impaired. RT-qPCR analysis unveiled the absolute abundances of dsrA and mcrA were decreased by 7.53-40.37% and 67.00-74.85%, respectively. Although this study broadens the application scope of CaO2 and provides in-depth understanding of advanced oxidation-based technology in sewer management, the pipe scale risk due to the release of calcium ions warrants further investigation.
Collapse
Affiliation(s)
- Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Siru Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Zhang S, Shi J, Sharma E, Li X, Gao S, Zhou X, O'Brien J, Coin L, Liu Y, Sivakumar M, Hai F, Jiang G. In-sewer decay and partitioning of Campylobacter jejuni and Campylobacter coli and implications for their wastewater surveillance. WATER RESEARCH 2023; 233:119737. [PMID: 36801582 DOI: 10.1016/j.watres.2023.119737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Campylobacter jejuni and coli are two main pathogenic species inducing diarrhoeal diseases in humans, which are responsible for the loss of 33 million lives each year. Current Campylobacter infections are mainly monitored by clinical surveillance which is often limited to individuals seeking treatment, resulting in under-reporting of disease prevalence and untimely indicators of community outbreaks. Wastewater-based epidemiology (WBE) has been developed and employed for the wastewater surveillance of pathogenic viruses and bacteria. Monitoring the temporal changes of pathogen concentration in wastewater allows the early detection of disease outbreaks in a community. However, studies investigating the WBE back-estimation of Campylobacter spp. are rare. Essential factors including the analytical recovery efficiency, the decay rate, the effect of in-sewer transport, and the correlation between the wastewater concentration and the infections in communities are lacking to support wastewater surveillance. This study carried out experiments to investigate the recovery of Campylobacter jejuni and coli from wastewater and the decay under different simulated sewer reactor conditions. It was found that the recovery of Campylobacter spp. from wastewater varied with their concentrations in wastewater and depended on the detection limit of quantification methods. The concentration reduction of Campylobacter. jejuni and coli in sewers followed a two-phase reduction model, and the faster concentration reduction during the first phase is mainly due to their partitioning onto sewer biofilms. The total decay of Campylobacter. jejuni and coli varied in different types of sewer reactors, i.e. rising main vs. gravity sewer. In addition, the sensitivity analysis for WBE back-estimation of Campylobacter suggested that the first-phase decay rate constant (k1) and the turning time point (t1) are determining factors and their impacts increased with the hydraulic retention time of wastewater.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jiahua Shi
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; School of Medical, Indigenous and Health Sciences, University of Wollongong, Australia
| | - Elipsha Sharma
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Lachlan Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Faisal Hai
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
11
|
Sharma E, Sivakumar M, Kelso C, Zhang S, Shi J, Gao J, Gao S, Zhou X, Jiang G. Effects of sewer biofilms on the degradability of carbapenems in wastewater using laboratory scale bioreactors. WATER RESEARCH 2023; 233:119796. [PMID: 36863281 DOI: 10.1016/j.watres.2023.119796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbapenems are last-resort antibiotics used to treat bacterial infections unsuccessfully treated by most common categories of antibiotics in humans. Most of their dosage is secreted unchanged as waste, thereby making its way into the urban water system. There are two major knowledge gaps addressed in this study to gain a better understanding of the effects of their residual concentrations on the environment and environmental microbiome: development of a UHPLC-MS/MS method of detection and quantification from raw domestic wastewater via direct injection and study of their stability in sewer environment during the transportation from domestic sewers to wastewater treatment plants. The UHPLC-MS/MS method was developed for four carbapenems: meropenem, doripenem, biapenem and ertapenem, and validation was performed in the range of 0.5-10 μg/L for all analytes, with limit of detection (LOD) and limit of quantification (LOQ) values ranging from 0.2-0.5 μg/L and 0.8-1.6 μg/L respectively. Laboratory scale rising main (RM) and gravity sewer (GS) bioreactors were employed to culture mature biofilms with real wastewater as the feed. Batch tests were conducted in RM and GS sewer bioreactors fed with carbapenem-spiked wastewater to evaluate the stability of carbapenems and compared against those in a control reactor (CTL) without sewer biofilms, over a duration of 12 h. Significantly higher degradation was observed for all carbapenems in RM and GS reactors (60 - 80%) as opposed to CTL reactor (5 - 15%), which indicates that sewer biofilms play a significant role in the degradation. First order kinetics model was applied to the concentration data along with Friedman's test and Dunn's multiple comparisons analysis to establish degradation patterns and differences in the degradation observed in sewer reactors. As per Friedman's test, there was a statistically significant difference in the degradation of carbapenems observed depending on the reactor type (p = 0.0017 - 0.0289). The results from Dunn's test indicate that the degradation in the CTL reactor was statistically different from that observed in either RM (p = 0.0033 - 0.1088) or GS (p = 0.0162 - 0.1088), with the latter two showing insignificant difference in the degradation rates observed (p = 0.2850 - 0.5930). The findings contribute to the understanding about the fate of carbapenems in urban wastewater and the potential application of wastewater-based epidemiology.
Collapse
Affiliation(s)
- Elipsha Sharma
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia; Molecular Horizons, University of Wollongong, Australia
| | - Shuxin Zhang
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Jiahua Shi
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzen University, Shenzen, 518060, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guangming Jiang
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia.
| |
Collapse
|
12
|
Moslah B, Smaoui O, Nouioui MA, Araoud M, Chaouali N, Laribi M, Amira D, Ben Salah N, Hedhili A. Sewage analysis as an alternative tool for assessing drug of abuse and new psychoactive substances in Tunisia. Forensic Sci Int 2023; 347:111672. [PMID: 37023613 DOI: 10.1016/j.forsciint.2023.111672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Many studies attest to the pollution of wastewaters by organic molecules including drug of abuse (DAs) residues and new psychoactive substances (NPS) at trace levels. The occurrence of these emerging micropollutants in influent wastewaters (IWW) from three Tunisian Wastewater Treatment Plants (WWTPs) was assessed. Influent wastewater composite samples (24 h) were collected over 7 consecutive days in November 2019. The determination and quantification of 11 drug of abuse or their metabolites was performed by the application of an optimized multi-residue method liquid chromatography tandem mass spectrometry (LC-MS/MS). MDMA, THC and the cocaine metabolite benzoyl ecgonine were the most detected substances across the three investigated sewage plants. A new wastewater-based epidemiology (WBE) approach was applied in this study to estimate illicit drug consumption. This innovative approach was used to calculate and to assess collective drug consumption of illicit drug at a community level, based on the concentration of selected illicit substances and their major metabolites in influent wastewater. The average MDMA consumption found in the selected cities ranged between 35,8-1531,1 mg day- 1/1000 inhabitants and increased during the weekends. Cocaine consumption varied from 24.5 to 179.8 mg day- 1/1000 inhabitants. Complementary qualitative investigation of new psychoactive substances was monitored for the first time for an African country, examining the occurrence of 33 NPS in wastewaters samples. Out of 33 totals screened NPS across all sampling sites, 16 were tentatively identified with this approach. The 16 detected NPS covered most of the representative and used molecules of different NPS classes; including synthetic opioids, synthetic cathinones, amphetamines derivatives and synthetic cannabinoids.
Collapse
|
13
|
Steenbeek R, Emke E, Vughs D, Matias J, Boogaerts T, Castiglioni S, Campos-Mañas M, Covaci A, de Voogt P, Ter Laak T, Hernández F, Salgueiro-González N, Meijer WG, Dias MJ, Simões S, van Nuijs ALN, Bijlsma L, Béen F. Spatial and temporal assessment of crack cocaine use in 13 European cities through wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157222. [PMID: 35901880 DOI: 10.1016/j.scitotenv.2022.157222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Already in early 2000s, concerns have been growing in the EU about increasing use of cocaine and it is estimated that below 1 % of the population administer the drug by smoking crack cocaine. New available data suggests an increase in the use of crack cocaine and an increase in the number of crack cocaine users entering treatment has been reported in several European countries. Robust estimations of crack cocaine use are however not available yet. The use of crack cocaine has long been associated with severe adverse socio-economic conditions as well as mental health problems, such as suicide ideation and depression. The aim of this study was to assess spatial trends in population-normalized mass loads of crack cocaine biomarkers (i.e., anhydroecgonine and anhydroecgonine methyl ester) in 13 European cities in six countries (the Netherlands, Belgium, Ireland, Portugal, Spain and Italy). Furthermore, temporal trends over a five-year period were evaluated through the analysis of historic samples collected in the Netherlands. Finally, the stability of the crack cocaine biomarkers in wastewater was investigated through batch experiments. The samples were analyzed with a new developed and validated hydrophilic interaction liquid chromatography coupled to mass spectrometry method. Targeted crack cocaine biomarkers were found in all cities. Also, crack cocaine biomarker was detected in wastewater from 2017 to 2021 in the Netherlands, but no significance between the years were found. With respect to biomarker in-sample stability, AEME was found to be stable in wastewater. This study assessed crack cocaine use for the first time on a broad scale, both temporal and in cities across Europe, with wastewater-based epidemiology and it shows the importance of wastewater analysis to monitor community loads of crack cocaine use.
Collapse
Affiliation(s)
- Ruud Steenbeek
- KWR Water Research Institute, Nieuwegein, the Netherlands.
| | - Erik Emke
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Dennis Vughs
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - João Matias
- European Monitoring Centre for Drugs and Drug Addiction, Lisbon, Portugal
| | - Tim Boogaerts
- Toxicological Center, University of Antwerp, Antwerp, Belgium
| | - Sara Castiglioni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marina Campos-Mañas
- Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Antwerp, Belgium
| | - Pim de Voogt
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Thomas Ter Laak
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| | - Félix Hernández
- Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Noelia Salgueiro-González
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | - Mario J Dias
- National Institute of Legal Medicine and Forensic Sciences, Lisbon, Portugal
| | - Susana Simões
- National Institute of Legal Medicine and Forensic Sciences, Lisbon, Portugal
| | | | - Lubertus Bijlsma
- Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Frederic Béen
- KWR Water Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
14
|
Zillien C, Posthuma L, Roex E, Ragas A. The role of the sewer system in estimating urban emissions of chemicals of emerging concern. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:957-991. [PMID: 36311376 PMCID: PMC9589831 DOI: 10.1007/s11157-022-09638-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/02/2022] [Indexed: 05/28/2023]
Abstract
UNLABELLED The use of chemicals by society has resulted in calls for more effective control of their emissions. Many of these chemicals are poorly characterized because of lacking data on their use, environmental fate and toxicity, as well as lacking detection techniques. These compounds are sometimes referred to as contaminants of emerging concern (CECs). Urban areas are an important source of CECs, where these are typically first collected in sewer systems and then discharged into the environment after being treated in a wastewater treatment plant. A combination of emission estimation techniques and environmental fate models can support the early identification and management of CEC-related environmental problems. However, scientific insight in the processes driving the fate of CECs in sewer systems is limited and scattered. Biotransformation, sorption and ion-trapping can decrease CEC loads, whereas enzymatic deconjugation of conjugated metabolites can increase CEC loads as metabolites are back-transformed into their parent respective compounds. These fate processes need to be considered when estimating CEC emissions. This literature review collates the fragmented knowledge and data on in-sewer fate of CECs to develop practical guidelines for water managers on how to deal with in-sewer fate of CECs and highlights future research needs. It was assessed to what extent empirical data is in-line with text-book knowledge and integrated sewer modelling approaches. Experimental half-lives (n = 277) of 96 organic CECs were collected from literature. The findings of this literature review can be used to support environmental modelling efforts and to optimize monitoring campaigns, including field studies in the context of wastewater-based epidemiology. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11157-022-09638-9.
Collapse
Affiliation(s)
- Caterina Zillien
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Leo Posthuma
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Erwin Roex
- Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ad Ragas
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
16
|
Liu A, Lin W, Ming R, Guan W, Wang X, Hu N, Ren Y. Stability of 28 typical prescription drugs in sewer systems and interaction with the biofilm bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129142. [PMID: 35594665 DOI: 10.1016/j.jhazmat.2022.129142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Identifying the attenuation characteristics of drugs in sewage and sewers is one of the important factors to improve the accuracy of wastewater-based epidemiology (WBE) application. In this study, 28 drugs including antidepressants, cardiovascular drugs, antihistamines, anticonvulsants and some of their human metabolites were chosen as the targets to study the hydrolysis, adsorption, and biodegradation at different temperatures in sewage and sewers. The interaction between drugs degradation and community structure of biofilm was also investigated. In the simulated sewers, the removal percentages of 12 parent or drug metabolites are 0-20%, such as demethylvenlafaxine, fluvoxamine, etc., which are highly stable chemicals and suitable to be chosen as biomarkers for WBE back-calculation under appropriate circumstances. Fourteen drugs including venlafaxine and citalopram have removal percentages of 20-60%. While paroxetine and sertraline, with removal percentage of 100%, are the most unstable and cannot be used as biomarkers. Among the 28 drugs, there are 25 drugs that have a higher loss rate in the aerobic sewer than that in the anaerobic sewer in this study. During drug exposure in anaerobic biofilms, species abundance first decreased and then increased. Species abundance and diversity in aerobic biofilm generally showed a decreasing trend. In addition, Proteobacteria and Spirochaetota were the dominant phyla in both sewers.
Collapse
Affiliation(s)
- Anchen Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ruiliang Ming
- Guangzhou CAS Test Technical Services Co., Ltd, Guangzhou 510650, PR China
| | - Wenqi Guan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xinying Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ningyi Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
17
|
Shi J, Li X, Zhang S, Sharma E, Sivakumar M, Sherchan SP, Jiang G. Enhanced decay of coronaviruses in sewers with domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151919. [PMID: 34826473 PMCID: PMC8610560 DOI: 10.1016/j.scitotenv.2021.151919] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Recent outbreaks caused by coronaviruses and their supposed potential fecal-oral transmission highlight the need for understanding the survival of infectious coronavirus in domestic sewers. To date, the survivability and decay of coronaviruses were predominately studied using small volumes of wastewater (normally 5-30 mL) in vials (in-vial tests). However, real sewers are more complicated than bulk wastewater (wastewater matrix only), in particular the presence of sewer biofilms and different operational conditions. This study investigated the decay of infectious human coronavirus 229E (HCoV-229E) and feline infectious peritonitis virus (FIPV), two typical surrogate coronaviruses, in laboratory-scale reactors mimicking the gravity (GS, gravity-driven sewers) and rising main sewers (RM, pressurized sewers) with and without sewer biofilms. The in-sewer decay of both coronaviruses was greatly enhanced in comparison to those reported in bulk wastewater through in-vial tests. 99% of HCoV-229E and FIPV decayed within 2 h under either GS or RM conditions with biofilms, in contrast to 6-10 h without biofilms. There is limited difference in the decay of HCoV and FIPV in reactors operated as RM or GS, with the T90 and T99 difference of 7-10 min and 14-20 min, respectively. The decay of both coronaviruses in sewer biofilm reactors can be simulated by biphasic first-order kinetic models, with the first-order rate constant 2-4 times higher during the first phase than the second phase. The decay of infectious HCoV and FIPV was significantly faster in the reactors with sewer biofilms than in the reactors without biofilms, suggesting an enhanced decay of these surrogate viruses due to the presence of biofilms and related processes. The mechanism of biofilms in virus adsorption and potential inactivation remains unclear and requires future investigations. The results indicate that the survivability of infectious coronaviruses detected using bulk wastewater overestimated the infectivity risk of coronavirus during wastewater transportations in sewers or the downstream treatment.
Collapse
Affiliation(s)
- Jiahua Shi
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Elipsha Sharma
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
18
|
Pagsuyoin SA, Luo J, Chain FJ. Effects of sewer biofilm on the degradation of drugs in sewage: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127666. [PMID: 34774351 DOI: 10.1016/j.jhazmat.2021.127666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A thorough understanding of the in-sewer stability of chemical biomarkers is critical in applying wastewater-based surveillance of community drug use. In this study, we examined the effects of sewer biofilm on the degradation of commonly abused drugs, namely, morphine, fentanyl, cocaine, and amphetamine, in wastewater using 48-h batch degradation tests. The experiments were designed to distinguish among abiotic, biochemical, and physical degradation processes, and used mature biofilm obtained from an actual sewer line. Parallel microcosm tests were conducted using wastewater with and without suspended biofilm. Results indicate that first order kinetics describe the degradation of the drugs in both wastewater and wastewater-biofilm microcosms. Amphetamine was most stable in all microcosms, with a maximum removal of only 34% after 48 h. Abiotic chemical transformation played a major role in the degradation of morphine (kab = 0.018 h-1), fentanyl (kab = 0.022 h-1) and cocaine (kab = 0.049 h-1) in wastewater. Fentanyl removal from wastewater was also influenced by the presence of biofilm (kf = 0.015 h-1). This study is the first to report on the effect of sewer biofilm on fentanyl degradation, and highlights the need to account for in-sewer drug stability in wastewater-based drug use estimation, particularly for chemicals with high affinity for organics.
Collapse
Affiliation(s)
- Sheree A Pagsuyoin
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA.
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| | - Frédéric J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| |
Collapse
|
19
|
Shimko KM, O'Brien JW, Li J, Tscharke BJ, Brooker L, Thai PK, Choi PM, Samanipour S, Thomas KV. In-Sewer Stability Assessment of Anabolic Steroids and Selective Androgen Receptor Modulators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1627-1638. [PMID: 35060377 DOI: 10.1021/acs.est.1c03047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wastewater-based epidemiology is a potential complementary technique for monitoring the use of performance- and image-enhancing drugs (PIEDs), such as anabolic steroids and selective androgen receptor modulators (SARMs), within the general population. Assessing in-sewer transformation and degradation is critical for understanding uncertainties associated with wastewater analysis. An electrospray ionization liquid chromatography mass spectrometry method for the quantification of 59 anabolic agents in wastewater influent was developed. Limits of detection and limits of quantification ranged from 0.004 to 1.56 μg/L and 0.01 to 4.75 μg/L, respectively. Method performance was acceptable for linearity (R2 > 0.995, few exceptions), accuracy (68-119%), and precision (1-21%RSD), and applicability was successfully demonstrated. To assess the stability of the selected biomarkers in wastewater, we used laboratory-scale sewer reactors to subject the anabolic agents to simulated realistic sewer environments for 12 h. Anabolic agents, including parent compounds and metabolites, were spiked into freshly collected wastewater that was then fed into three sewer reactor types: control sewer (no biofilm), gravity sewer (aerobic conditions), and rising main sewer (anaerobic conditions). Our results revealed that while most glucuronide conjugates were completely transformed following 12 h in the sewer reactors, 50% of the investigated biomarkers had half-lives longer than 4 h (mean residence time) under gravity sewer conditions. Most anabolic agents were likely subject to biofilm sorption and desorption. These novel results lay the groundwork for any future wastewater-based epidemiology research involving anabolic steroids and SARMs.
Collapse
Affiliation(s)
- Katja M Shimko
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Lance Brooker
- Australian Sports Drug Testing Laboratory (ASDTL), National Measurement Institute (NMI), 105 Delhi Road, North Ryde, NSW 2113, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
- Water Unit, Health Protection Branch, Queensland Health, 15 Butterfield Street, Herston, QLD 4006, Australia
| | - Saer Samanipour
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
- University of Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park, Amsterdam 904, The Netherlands
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
20
|
Ahmed F, Li J, O'Brien JW, Tscharke BJ, Samanipour S, Thai PK, Yuan Z, Mueller JF, Thomas KV. In-sewer stability of selected analgesics and their metabolites. WATER RESEARCH 2021; 204:117647. [PMID: 34536687 DOI: 10.1016/j.watres.2021.117647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Understanding the in-sewer stability of analgesic biomarkers is important for interpreting wastewater-based epidemiology (WBE) data to estimate community-wide analgesic drugs consumption. The in-sewer stability of a suite of 19 analgesics and their metabolites was assessed using lab-scale sewer reactors. Target biomarkers were spiked into wastewater circulating in simulated gravity, rising main and control (no biofilm) sewer reactors. In-sewer transformation was observed over a hydraulic retention time of 12 h. All investigated biomarkers were stable under control reactor conditions. In gravity sewer conditions, diclofenac, desmetramadol, ibuprofen carboxylic acid, ketoprofen, lidocaine and tapentadol were highly stable (0-20% transformation in 12 h). Valdecoxib, parecoxib, etoricoxib, indomethacin, naltrexone, naloxone, piroxicam, ketoprofen, lidocaine, tapentadol, oxymorphone, hydrocodone, meperidine, hydromorphone were considered as moderately stable biomarkers (20-50% transformation in 12 h). Celecoxib and sulindac were considered unstable biomarkers (>50% transformation in 12 h). Ketoprofen, lidocaine, tapentadol, meperidine, hydromorphone were transformed to 0-20% whereas diclofenac, desmetramadol, ibuprofen carboxylic acid, valdecoxib, parecoxib, etoricoxib, indomethacin, naltrexone, piroxicam were transformed up to 20-50% in 12 h in rising main reactor (RMR). These biomarkers were considered as highly stable and stable biomarkers in RMR, respectively. Sulindac, celecoxib, naloxone, oxymorphone and hydrocodone were transformed more than 50% in 12 h and considered as unstable biomarkers in RMR. This study provides the information for a better understanding of the in-sewer loss of the analgesics before using them in WBE biomarkers for estimating drug loads at the population level.
Collapse
Affiliation(s)
- Fahad Ahmed
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia.
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia; Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia
| | - Saer Samanipour
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia; Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD 4102, Australia
| |
Collapse
|
21
|
Jia Y, Zheng F, Maier HR, Ostfeld A, Creaco E, Savic D, Langeveld J, Kapelan Z. Water quality modeling in sewer networks: Review and future research directions. WATER RESEARCH 2021; 202:117419. [PMID: 34274902 DOI: 10.1016/j.watres.2021.117419] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/20/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Urban sewer networks (SNs) are increasingly facing water quality issues as a result of many challenges, such as population growth, urbanization and climate change. A promising way to addressing these issues is by developing and using water quality models. Many of these models have been developed in recent years to facilitate the management of SNs. Given the proliferation of different water quality models and the promise they have shown, it is timely to assess the state-of-the-art in this field, to identify potential challenges and suggest future research directions. In this review, model types, modeled quality parameters, modeling purpose, data availability, type of case studies and model performance evaluation are critically analyzed and discussed based on a review of 110 papers published between 2010 and 2019. The review identified that applications of empirical and kinetic models dominate those of data-driven models for addressing water quality issues. The majority of models are developed for prediction and process understanding using experimental or field sampled data. While many models have been applied to real problems, the corresponding prediction accuracies are overall moderate or, in some cases, low, especially when dealing with larger SNs. The review also identified the most common issues associated with water quality modeling of SNs and based on these proposed several future research directions. These include the identification of appropriate data resolutions for the development of different SN models, the need and opportunity to develop hybrid SN models and the improvement of SN model transferability.
Collapse
Affiliation(s)
- Yueyi Jia
- College of Civil Engineering and Architecture, Zhejiang University, China.
| | - Feifei Zheng
- College of Civil Engineering and Architecture, Anzhong Building, Zijingang Campus, Zhejiang University, Zhejiang University, A501, , 866 Yuhangtang Rd, Hangzhou 310058, China.
| | - Holger R Maier
- School of Civil, Environmental and Mining Engineering, The University of Adelaide, Australia.
| | - Avi Ostfeld
- Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Enrico Creaco
- Dipartimento di Ingegneria Civile e Architettura, University of Pavia, Via Ferrata 3 Pavia 27100, Italy; School of Civil, Environmental and Mining Engineering, The University of Adelaide, Australia.
| | - Dragan Savic
- KWR Water Research Institute, the Netherlands; Centre for Water Systems, University of Exeter, United Kingdom; Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Malaysia.
| | - Jeroen Langeveld
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, the Netherlands.
| | - Zoran Kapelan
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands; Centre for Water Systems, University of Exeter, North Park Road, Exeter EX4 4QF, United Kingdom.
| |
Collapse
|
22
|
Li J, Gao J, Zheng Q, Thai PK, Duan H, Mueller JF, Yuan Z, Jiang G. Effects of pH, Temperature, Suspended Solids, and Biological Activity on Transformation of Illicit Drug and Pharmaceutical Biomarkers in Sewers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8771-8782. [PMID: 34157837 DOI: 10.1021/acs.est.1c01516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In-sewer stability of biomarkers is a critical factor for wastewater-based epidemiology, as it could affect the accuracy of the estimated prevalence of substances in the community. The spatiotemporal variations of environmental and biological conditions in sewers can influence the transformation of biomarkers. To date, the relationship between environmental variables and biomarker stability in sewers is poorly understood. Therefore, this study evaluated the transformation of common illicit drug and pharmaceutical biomarkers in laboratory sewer reactors with different levels of pH, temperature, and suspended solids. The correlations between degradation rates of 14 biomarkers, 3 controlled environmental variables (pH, temperature, and suspended solids concentration), and 3 biological activity indicators (sulfide production rate, methane production rate, and the removal rate of soluble chemical oxygen demand (SCOD)) were assessed using correlation matrix, stepwise regression method, and principal component analysis. The consistent results affirmed the dominant effects of biological activities and pH on biomarker transformation in sewers, particularly for labile compounds, whereas the impact of temperature or suspended solids was less significant. This study enhances the understanding of factors affecting the fate of micropollutants in sewer systems and facilitates the interpretation of WBE results for assessing drug use and public health in communities.
Collapse
Affiliation(s)
- Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
23
|
Lin X, Choi PM, Thompson J, Reeks T, Verhagen R, Tscharke BJ, O'Malley E, Shimko KM, Guo X, Thomas KV, O'Brien JW. Systematic Evaluation of the In-Sample Stability of Selected Pharmaceuticals, Illicit Drugs, and Their Metabolites in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7418-7429. [PMID: 34014086 DOI: 10.1021/acs.est.1c00396] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The in-sample stability of selected pharmaceuticals, illicit drugs, and their metabolites in wastewater was assessed under six different conditions-untreated, addition of hydrochloric acid or sodium metabisulfite solution, combined with or without sterile filtration, and at four representative temperatures, at 35 °C for up to 28 days, 22 °C for 56 days, and 4 °C and -20 °C for 196 days, or freeze/thaw cycles for 24 weeks. Paracetamol, 6-monoacetylmorphine, morphine, and cocaine were poorly stable in untreated wastewater-e.g., with 50% transformation within 1.2-8.1 days at 22 °C, and acidification reduced their in-sample transformations. Acesulfame, carbamazepine, cotinine, methamphetamine, 3,4-methylenedioxy-methamphetamine (MDMA), ketamine, norfentanyl, 3,4-methylenedioxy-N-ethylamphetamine (MDEA), and norbuprenorphine were highly or moderately stable over the observed period, even in untreated wastewater. Fitting of pseudo-first-order kinetics and the Arrhenius equation was used to develop a multistage transformation estimation model combined with an interactive tool to evaluate possible transformation scenarios of selected biomarkers for the processes from sampling to preanalysis. However, as the wastewater composition can vary between sites and over time, the variability of in-sample stability requires further exploration.
Collapse
Affiliation(s)
- Xialu Lin
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Jack Thompson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Timothy Reeks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Elissa O'Malley
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Katja M Shimko
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| |
Collapse
|
24
|
Christophoridis C, Veloutsou S, Mitsika E, Zacharis CK, Christia C, Raikos N, Fytianos K. Determination of illicit drugs and psychoactive pharmaceuticals in wastewater from the area of Thessaloniki (Greece) using LC-MS/MS: estimation of drug consumption. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:249. [PMID: 33829338 DOI: 10.1007/s10661-021-09035-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
This study presents the development of an analytical method for the simultaneous determination of multiclass illicit drugs (cocainoids, opiates, amphetamines, and cannabinoids) and psychoactive pharmaceuticals (anxiolytics, hypnotics, antipsychotics, antidepressants, and antiparkinsonian), in municipal wastewater. The analytical method was validated in terms of specificity, linearity, precision, and accuracy. The recoveries (%) for the majority of the analytes ranged between 70 and 120%, while the method showed good repeatability (2.4-29.2%). The limits of detection (LOD) of the method ranged between 0.8 and 9.4 ng L-1. The method was implemented on influent and effluent samples from Thessaloniki (N. Greece) wastewater treatment plant (WWTP), and it revealed the daily presence of benzoylecgonine (BEG) (84.0-202.2 ng L-1), methadone (12.3-17.5 ng L-1), 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) (80.3-171.9 ng L-1), morphine (144.2-264.3 ng L-1), and 6-monoacetylmorphine (6-MAM) (5.8-12.0 ng L-1) in the influent samples of WWTP. Clozapine (101.6-315.5 ng L-1), quetiapine (33.5-109.7 ng L-1), and fluoxetine (20.9-124.4 ng L-1) were pharmaceutical psychotics with the highest concentration in the influents. Back calculation estimated that the daily consumption of cocaine, heroin, cannabis, and methadone was 36-95, 86-164, 2300-5400, and 8-12 mg day-1 per 1000 inhabitants, respectively. The consumption was estimated between 7-16 and 15 mg day-1 per 1000 inhabitants for methyl diethanolamine (MDEA) and 3,4-methylenedioxymethamphetamine (MDMA), respectively.
Collapse
Affiliation(s)
| | - Sofia Veloutsou
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University, Thessaloniki, Greece
| | - Elena Mitsika
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University, Thessaloniki, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Christina Christia
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University, Thessaloniki, Greece
| | - Nikolaos Raikos
- Laboratory of Forensic Medicine and Toxicology, Faculty of Medicine, Aristotle University, Thessaloniki, Greece
| | - Konstantinos Fytianos
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
25
|
Wang S, Green HC, Wilder ML, Du Q, Kmush BL, Collins MB, Larsen DA, Zeng T. High-throughput wastewater analysis for substance use assessment in central New York during the COVID-19 pandemic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2147-2161. [PMID: 33104143 DOI: 10.1039/d0em00377h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wastewater entering sewer networks represents a unique source of pooled epidemiological information. In this study, we coupled online solid-phase extraction with liquid chromatography-high resolution mass spectrometry to achieve high-throughput analysis of health and lifestyle-related substances in untreated municipal wastewater during the coronavirus disease 2019 (COVID-19) pandemic. Twenty-six substances were identified and quantified in influent samples collected from six wastewater treatment plants during the COVID-19 pandemic in central New York. Over a 12 week sampling period, the mean summed consumption rate of six major substance groups (i.e., antidepressants, antiepileptics, antihistamines, antihypertensives, synthetic opioids, and central nervous system stimulants) correlated with disparities in household income, marital status, and age of the contributing populations as well as the detection frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater and the COVID-19 test positivity in the studied sewersheds. Nontarget screening revealed the covariation of piperine, a nontarget substance, with SARS-CoV-2 RNA in wastewater collected from one of the sewersheds. Overall, this proof-of-the-concept study demonstrated the utility of high-throughput wastewater analysis for assessing the population-level substance use patterns during a public health crisis such as COVID-19.
Collapse
Affiliation(s)
- Shiru Wang
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Li J, Gao J, Thai PK, Mueller JF, Yuan Z, Jiang G. Transformation of Illicit Drugs and Pharmaceuticals in Sewer Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13056-13065. [PMID: 32951431 DOI: 10.1021/acs.est.0c04266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In-sewer stability of human excreted biomarkers is a critical factor of wastewater-based epidemiology in back-estimating illicit drug and pharmaceutical use in the community. Biomarker stability has been investigated in sewers with the presence of biofilms, but the understanding in sewer sediments is still lacking. This study for the first time employed a laboratory sediment reactor to measure 18 illicit drug and pharmaceutical biomarkers under gravity sewer environments with the presence of sediments. Biomarkers exhibited various stability patterns due to transformation processes occurring in the bulk wastewater and sediments. The attenuation of a biomarker by sediments is driven by complex processes involving biodegradation, diffusion, and sorption, which is directly proportional to the ratio of sediment surface area against wastewater volume. The sediment-driven transformation coefficients of biomarkers are higher than the accordingly biofilm-mediated rates because of stronger microbial activities in sediments. Additionally, the stability of most biomarkers was insensitive to the natural pH variation in sewers, except for a few compounds (e.g., methadone, ketamine, and paracetamol) susceptible to pH changes. In general, this study delineates the stability data of various biomarkers in gravity sewers with sediments, which are novel and long-missing information for wastewater-based epidemiology and improve the reliability of back-estimation in complex sewer networks.
Collapse
Affiliation(s)
- Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, China
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| |
Collapse
|
27
|
Choi PM, Bowes DA, O'Brien JW, Li J, Halden RU, Jiang G, Thomas KV, Mueller JF. Do food and stress biomarkers work for wastewater-based epidemiology? A critical evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139654. [PMID: 32497888 DOI: 10.1016/j.scitotenv.2020.139654] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 05/25/2023]
Abstract
Dietary characteristics and oxidative stress are closely linked to the wellbeing of individuals. In recent years, various urinary biomarkers of food and oxidative stress have been proposed for use in wastewater-based epidemiology (WBE), in efforts to objectively monitor the food consumed and the oxidative stress experienced by individuals in a wastewater catchment. However, it is not clear whether such biomarkers are suitable for wastewater-based epidemiology. This study presents a suite of 30 urinary food and oxidative stress biomarkers and evaluates their applicability for WBE studies. This includes 22 biomarkers which were not previously considered for WBE studies. Daily per capita loads of biomarkers were measured from 57 wastewater influent samples from nine Australian catchments. Stability of biomarkers were assessed using laboratory scale sewer reactors. Biomarkers of consumption of vitamin B2, vitamin B3 and fibre, as well as a component of citrus had per capita loads in line with reported literature values despite susceptibility of degradation in sewer reactors. Consumption biomarkers of red meat, fish, fruit, other vitamins and biomarkers of stress had per capita values inconsistent with literature findings, and/or degraded rapidly in sewer reactors, indicating that they are unsuitable for use as WBE biomarkers in the traditional quantitative sense. This study serves to communicate the suitability of food and oxidative stress biomarkers for future WBE research.
Collapse
Affiliation(s)
- P M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia.
| | - D A Bowes
- Biodesign Center for Environmental Health Engineering, Arizona State University, United States of America; OneWaterOneHealth, Arizona State University Foundation, United States of America
| | - J W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - J Li
- Advanced Water Management Centre, The University of Queensland, Australia
| | - R U Halden
- Biodesign Center for Environmental Health Engineering, Arizona State University, United States of America; OneWaterOneHealth, Arizona State University Foundation, United States of America
| | - G Jiang
- Advanced Water Management Centre, The University of Queensland, Australia; School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - K V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - J F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| |
Collapse
|
28
|
Ahmed F, Tscharke B, O'Brien JW, Cabot PJ, Hall WD, Mueller JF, Thomas KV. Can wastewater analysis be used as a tool to assess the burden of pain treatment within a population? ENVIRONMENTAL RESEARCH 2020; 188:109769. [PMID: 32535354 DOI: 10.1016/j.envres.2020.109769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Pain is a global health priority that is challenging to asses. Here we propose a new approach to estimating the burden of pain treatment in a population using wastewater-based epidemiology (WBE). WBE is able to quantify multiple pharmaceutical compounds in order to estimate consumption by a population. Wastewater samples collected from areas representing whole communities can be analysed to estimate the consumption of drugs used to treat pain, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and opioids. The collection and analysis of wastewater can be conducted systematically to estimate the total consumption of NSAIDs and/or opioids in the population of a catchment area and to compare changes over time within the catchment or between different catchment populations. Consumption estimates can be combined by standardising the mass consumed to Defined Daily Doses (DDD) or morphine equivalents in order to assess, the population burden of pain treatment from mild to moderate (for NSAIDs) and for strong and severe pain (for opioids). We propose this method could be used to evaluate the total pain treatment burden between locations and over time. While this concept shows promise, future studies should evaluate the applicability as a tool to measure the burden of pain receiving treatment in a community.
Collapse
Affiliation(s)
- Fahad Ahmed
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| | - Benjamin Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Wayne D Hall
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia; Centre for Youth Substance Abuse Research, The University of Queensland, Herston, QLD, 4029, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
29
|
Choi PM, Li J, Gao J, O'Brien JW, Thomas KV, Thai PK, Jiang G, Mueller JF. Considerations for assessing stability of wastewater-based epidemiology biomarkers using biofilm-free and sewer reactor tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136228. [PMID: 31887516 DOI: 10.1016/j.scitotenv.2019.136228] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology is an increasingly popular method for analysing drugs or metabolites excreted by populations. The in-sewer transformation of biomarkers is important but often receives little consideration in published studies. Many studies publish stability under biofilm-free conditions only, which do not represent actual sewer conditions. This study aims to fill a gap in the field by comparing the wastewater stability of 33 licit drug and pharmaceutical biomarkers in biofilm-free (BFF) conditions to stability in sewer biofilm reactors. All but one biomarker was stable under BFF conditions, whereas most transformed in sewer biofilm reactors. Sewer reactor results tended to overestimate the degradation in pilot and actual sewers, whereas BFF stability had no clear relationship to stability in pilot and actual sewers. Our results provide additional basis for more informed interpretation of biofilm-free and sewer reactor stability results for past and future WBE studies.
Collapse
Affiliation(s)
- Phil Min Choi
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jake William O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Kevin Victor Thomas
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Phong Khanh Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jochen Friedrich Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
30
|
O'Brien JW, Choi PM, Li J, Thai PK, Jiang G, Tscharke BJ, Mueller JF, Thomas KV. Evaluating the stability of three oxidative stress biomarkers under sewer conditions and potential impact for use in wastewater-based epidemiology. WATER RESEARCH 2019; 166:115068. [PMID: 31542546 DOI: 10.1016/j.watres.2019.115068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Wastewater contains a wealth of information about the population who contribute to it including biological and chemical markers of human activity and exposures. F2-isoprostanes have been proposed as oxidative stress biomarkers that can be measured in wastewater to provide a measure of oxidative stress at the population level. While an association between tobacco use and their level in wastewater has been demonstrated, an in-sewer stability assessment has not been conducted to support their use as oxidative stress biomarkers for wastewater-based epidemiology studies. In this study we investigated the stability of 8-iso-prostaglandin F2α (PGF2α), its metabolite dinor-11β-Prostaglandin F2α (dnPGF2α) and Prostaglandin E2 (PGE2) (representative of other classes of prostaglandins) in laboratory-scale sewer reactors simulating real sewers. PGF2α, dnPGF2α and PGE2 were all found to be sufficiently stable under typical sewer conditions therefore satisfying the stability requirement of wastewater-based epidemiology population health biomarkers.
Collapse
Affiliation(s)
- Jake W O'Brien
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| | - Phil M Choi
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jiaying Li
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD, 4072, Australia
| | - Phong K Thai
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Guangming Jiang
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD, 4072, Australia; School of Civil, Mining & Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, NSW, 2522, Australia
| | - Benjamin J Tscharke
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Kevin V Thomas
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
31
|
Xiao Y, Shao XT, Tan DQ, Yan JH, Pei W, Wang Z, Yang M, Wang DG. Assessing the trend of diabetes mellitus by analyzing metformin as a biomarker in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:281-287. [PMID: 31229825 DOI: 10.1016/j.scitotenv.2019.06.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
According to International Diabetes Federation estimates, China has the highest rate of diabetes in the world. To monitor the prevalence of diabetes mellitus (DM) in near real-time, a first-line medication for the treatment of type 2 diabetes, metformin, was used. Wastewater-based epidemiology (WBE) was applied to estimate the consumption of metformin in Dalian from 2015 to 2018. Quantification of metformin was undertaken using solid-phase extraction (SPE) and N-methyl-bis (trifluoroacetamide) derivatization prior to GC-MS analysis. The concentrations of metformin in eleven wastewater treatment plants (WWTPs) ranged from 1.7 μg/L to 239.0 μg/L, with an average value of 68.3 μg/L. For metformin consumption, there was a gradual increase from 12.1 mg/d/capita in 2015 to 28.4 mg/d/capita in 2018. Meanwhile, the prevalence of metformin in the Dalian population ranged from 1.6% in 2015 to 3.8% in 2018. Similarly, the prevalence of DM showed an increasing trend from 12.2% in 2015 to 21.6% in 2018, which is consistent with the data predicted by traditional surveys (15.2-19.8%). Additionally, the prevalence of DM in 2015 estimated based on WBE was 12.2%, which agreed with the results from the traditional survey (12.3%). These results indicated that the proposed method provided a feasible way to reveal the prevalence of DM through metformin monitoring by the WBE approach.
Collapse
Affiliation(s)
- Yang Xiao
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China
| | - Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China
| | - Dong-Qin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China.
| | - Ji-Hao Yan
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China
| | - Wei Pei
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Meng Yang
- Dalian Environmental Monitoring Center, 58 Lianshan Street, Shahekou District 116023, China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China.
| |
Collapse
|
32
|
Delli Compagni R, Polesel F, von Borries KJF, Zhang Z, Turolla A, Antonelli M, Vezzaro L. Modelling micropollutant fate in sewer systems - A new systematic approach to support conceptual model construction based on in-sewer hydraulic retention time. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:141-149. [PMID: 31176178 DOI: 10.1016/j.jenvman.2019.05.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/11/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Conceptual sewer models are useful tools to assess the fate of micropollutants (MPs) in integrated wastewater systems. However, the definition of their model structure is highly subjective, and obtaining a realistic simulation of the in-sewer hydraulic retention time (HRT) is a major challenge without detailed hydrodynamic information or with limited measurements from the sewer network. This study presents an objective approach for defining the structure of conceptual sewer models in view of modelling MP fate in large urban catchments. The proposed approach relies on GIS-based information and a Gaussian mixture model to identify the model optimal structure, providing a multi-catchment conceptual model that accounts for HRT variability across urban catchment. This approach was tested in a catchment located in a highly urbanized Italian city and it was compared against a traditional single-catchment conceptual model (using a single average HRT) for the fate assessment of reactive MPs. Results showed that the multi-catchment model allows for a successful simulation of dry weather flow patterns and for an improved simulation of MP fate compared to the classical single-catchment model. Specifically, results suggested that a multi-catchment model should be preferred for (i) degradable MPs with half-life lower than the average HRT of the catchment and (ii) MPs undergoing formation from other compounds (e.g. human metabolites); or (iii) assessing MP loads entering the wastewater treatment plant from point sources, depending on their location in the catchment. Overall, the proposed approach is expected to ease the building of conceptual sewer models, allowing to properly account for HRT distribution and consequently improving MP fate estimation.
Collapse
Affiliation(s)
- Riccardo Delli Compagni
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy
| | - Fabio Polesel
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark; DHI A/S, Agern Allé, 2970, Hørsholm, Denmark
| | - Kerstin J F von Borries
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Zhen Zhang
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Andrea Turolla
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy
| | - Manuela Antonelli
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy.
| | - Luca Vezzaro
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
33
|
Kulandaivelu J, Gao J, Song Y, Shrestha S, Li X, Li J, Doederer K, Keller J, Yuan Z, Mueller JF, Jiang G. Removal of Pharmaceuticals and Illicit Drugs from Wastewater Due to Ferric Dosing in Sewers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6245-6254. [PMID: 31067854 DOI: 10.1021/acs.est.8b07155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ferric (Fe3+) salt dosing is an efficient sulfide control strategy in the sewer network, with potential for multiple benefits including phosphorus removal in the biological reactors and sulfide emission control in the anaerobic digesters of wastewater treatment plant (WWTP). This paper extends the knowledge on the benefit of iron dosing by exploring its impact on the fate of organic micropollutants (MPs) in the wastewater using sewer reactors simulating a rising main sewer pipe. The sulfide produced by the sewer biofilms reacted with Fe3+ forming black colored iron sulfide (FeS). Among the selected MPs, morphine, methadone, and atenolol had >90% initial rapid removal within 5 min of ferric dosing in the sewer reactor. The ultimate removal after 6 h of retention time in the reactor reached 93-97%. Other compounds, ketamine, codeine, carbamazepine, and acesulfame had 30-70% concentration decrease. The ultimate removal varied between 35 and 70% depending on the biodegradability of those MPs. In contrast, paracetamol had no initial removal. The rapid removal of MPs was likely due to adsorption to the FeS surface, which is further confirmed by batch tests with different FeS concentrations. The results showed a direct relationship between the removal of MPs and FeS concentration. The transformation kinetics of these compounds in the reactor without Fe3+ dosing is in good agreement with biodegradation associated with the sewer biofilms in the reactor. This study revealed a significant additional benefit of dosing ferric salts in sewers, that is, the removal of MPs before the sewage enters the WWTP.
Collapse
Affiliation(s)
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Woollongabba , Queensland 4072 , Australia
| | - Yarong Song
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Sohan Shrestha
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Xuan Li
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Jiaying Li
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Katrin Doederer
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Jurg Keller
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Woollongabba , Queensland 4072 , Australia
| | - Guangming Jiang
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
- Department of Chemistry and Chemical Engineering , Sichuan University of Arts and Science , Sichuan , China
- School of Civil, Mining and Environmental Engineering , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
34
|
González-Mariño I, Estévez-Danta A, Rodil R, Da Silva KM, Sodré FF, Cela R, Quintana JB. Profiling cocaine residues and pyrolytic products in wastewater by mixed-mode liquid chromatography-tandem mass spectrometry. Drug Test Anal 2019; 11:1018-1027. [PMID: 30891957 DOI: 10.1002/dta.2590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 02/04/2023]
Abstract
This work provides a new analytical method for the determination of cocaine, its metabolites benzoylecgonine and cocaethylene, the pyrolytic products anhydroecgonine and anhydroecgonine methyl ester, and the pharmaceutical levamisole in wastewater. Samples were solid-phase extracted and extracts analyzed by liquid chromatography-tandem mass spectrometry using, for the first time in the illicit drug field, a stationary phase that combines reversed-phase and weak cation-exchange functionalities. The overall method performance was satisfactory, with limits of detection below 1 ng/L, relative standard deviations below 21%, and percentages of recovery between 93% and 121%. Analysis of 24-hour composite raw wastewater samples collected in Santiago de Compostela (Spain) and Brasilia (Brazil) highlighted benzoylecgonine as the compound showing the highest population-normalized mass loads (300-1000 mg/day/1000 inhabitants). In Brasilia, cocaine and levamisole loads underwent an upsurge on Sunday, indicating a high consumption, and likely a direct disposal, of cocaine powder on this day. Conversely, the pyrolytic product resulting from the smoke of crack, anhydroecgonine methyl ester, and its metabolite anhydroecgonine were relatively stable over the four days, agreeing with a non-recreational-associated use of crack.
Collapse
Affiliation(s)
- Iria González-Mariño
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Estévez-Danta
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Rafael Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
35
|
Li J, Gao J, Thai PK, Shypanski A, Nieradzik L, Mueller JF, Yuan Z, Jiang G. Experimental Investigation and Modeling of the Transformation of Illicit Drugs in a Pilot-Scale Sewer System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4556-4565. [PMID: 30852889 DOI: 10.1021/acs.est.8b06169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In-sewer stability of illicit drug biomarkers has been evaluated by several reactor-based studies, but less has been done in sewer pipes. Experiments conducted in sewer pipes have advantages over lab-scale reactors in providing more realistic biomarker stability due to the flow and biological dynamics. This study assessed the transportation and transformation of seven illicit drug biomarker compounds in a pilot-scale rising main and a gravity sewer pipe. Biomarkers presented diverse stability patterns in the pilot sewers, based on which a drug transformation model was calibrated. This model was subsequently validated using transformation data sets from the literature, aiming to demonstrate the predictability of the pilot-based transformation coefficients under varying sewer conditions. Furthermore, transformation coefficients for five investigated biomarkers were generated from four studies, and their prediction capabilities under the pilot-sewer conditions were jointly assessed using performance statistics. The transformation model was successful in simulating the in-sewer stability for most illicit drugs. However, further study is required to delineate the sources and pathways for those compounds with potential formations to be simulated in the transformation model. Overall, the transformation model calibrated using the pilot-sewer data is a credible tool for the application of wastewater-based epidemiology.
Collapse
Affiliation(s)
- Jiaying Li
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Brisbane , Queensland 4102 , Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Brisbane , Queensland 4102 , Australia
| | - Adam Shypanski
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Ludwika Nieradzik
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Brisbane , Queensland 4102 , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Guangming Jiang
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
- Department of Chemistry and Chemical Engineering , Sichuan University of Arts and Science , Sichuan , China
- School of Civil, Mining and Environmental Engineering , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
36
|
Munro K, Martins CPB, Loewenthal M, Comber S, Cowan DA, Pereira L, Barron LP. Evaluation of combined sewer overflow impacts on short-term pharmaceutical and illicit drug occurrence in a heavily urbanised tidal river catchment (London, UK). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1099-1111. [PMID: 30677877 DOI: 10.1016/j.scitotenv.2018.12.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 05/12/2023]
Abstract
The occurrence of pharmaceutical and illicit drug residues potentially arising from combined sewer overflows (CSOs) in the Central London portion of the Thames Estuary is presented. Approximately 39 million tonnes of untreated sewage enter the River Thames at 57 CSO points annually. Differential analysis of influents and effluents in a major wastewater treatment plant identified seven potential drug-related CSO markers based on removal rates. Three were present in influent at concentrations >1 μg L-1 (caffeine, cocaine and benzoylecgonine). During dry weather, analysis of hourly samples of river water revealed relatively consistent concentrations for most drugs, including CSO markers, over a tidal cycle. River water was monitored over a week in January and July and then daily across six consecutive weeks in November/December 2014. Out of 31 compounds monitored, 27 drug residues were determined in the River Thames and, combined, ranged between ~1000-3500 ng L-1. Total drug concentration generally declined during extended periods of drier weather. For CSO markers, short-term increases in caffeine, cocaine and benzoylecgonine concentration were observed ~24 h after CSO events (especially those occurring at low tide) and generally within one order of magnitude. Timings of elevated occurrence also correlated well with ammonium ion and dissolved oxygen data following CSOs. This work also represents an important study of pharmaceutical occurrence before a major 'Super Sewer' infrastructure upgrade in London aiming to reduce CSOs by 95%.
Collapse
Affiliation(s)
- Kelly Munro
- King's Forensics, Dept. Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, SE1 9NH London, UK
| | | | - Matthew Loewenthal
- Environment Agency, National Water Quality Instrumentation Service, Bristol, UK
| | - Sean Comber
- Dept. Environmental Science, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - David A Cowan
- King's Forensics, Dept. Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, SE1 9NH London, UK
| | - Luisa Pereira
- Thermo Fisher Scientific, Manor Park, Tudor Road, Runcorn, UK
| | - Leon P Barron
- King's Forensics, Dept. Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, SE1 9NH London, UK.
| |
Collapse
|
37
|
Gao J, Li J, Jiang G, Shypanski AH, Nieradzik LM, Yuan Z, Mueller JF, Ort C, Thai PK. Systematic evaluation of biomarker stability in pilot scale sewer pipes. WATER RESEARCH 2019; 151:447-455. [PMID: 30641462 DOI: 10.1016/j.watres.2018.12.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Transformation of biomarkers (or their stability) during sewer transport is an important issue for wastewater-based epidemiology (WBE). Most studies so far have been conducted in the laboratory, which usually employed unrealistic conditions. In the present study, we utilized a pilot sewer system including a gravity pipe and a rising main pipe to investigate the fate of 24 pharmaceutical biomarkers. A programmable logic controller was used to control and monitor the system including sewer operational conditions and wastewater properties. Sequential samples were collected that can represent hydraulic retention time (HRT) of up to 8 h in a rising main and 4 h in a gravity sewer. Wastewater parameters and biomarker concentrations were analysed to evaluate the stability and transformation kinetics. The wastewater parameters of the pilot system were close to the conditions of real sewers. The findings of biomarker transformation were also close to real sewer data with seventeen biomarkers reported as stable while buprenorphine, caffeine, ethyl-sulfate, methadone, paracetamol, paraxanthine and salicylic acid degraded to variable extents. Both zero-order and first-order kinetics were used to model the degradation of unstable biomarkers and interestingly the goodness of fit R2 for the zero-order model was higher than the first-order model for all unstable biomarkers in the rising main. The pilot sewer system simulates more realistic conditions than benchtop laboratory setups and may provide a more accurate approach for assessing the in-sewer transformation kinetics and stability of biomarkers.
Collapse
Affiliation(s)
- Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Jiaying Li
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Adam H Shypanski
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ludwika M Nieradzik
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600, Dübendorf, Switzerland
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
38
|
Ramin P, Polesel F, Brock AL, Plósz BG. The impact of temperature on the transformation of illicit drug biomarkers in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1612-1616. [PMID: 30743873 DOI: 10.1016/j.scitotenv.2018.06.307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 06/09/2023]
Abstract
Temperature is one of the key factors, influencing the transformation kinetics of organic chemicals. In the context of wastewater-based epidemiology, however, temperature differences among sewer catchments and within the same catchment (due to, e.g., seasonal variations) have been neglected to date as a factor influencing the estimation of illicit drug consumption. In this study, we assessed the influence of temperature on the transformation of biomarkers in wastewater and its ensuing implications on the back-calculation of chemical consumption rate in urban catchments using the example of selected illicit drugs. Literature data, obtained in laboratory-scale experiments, on the stability of drug biomarkers in untreated wastewater at trace levels was systematically reviewed, and transformation rates obtained at different temperatures were collected. Arrhenius-based equations were fitted to empirical data and identified to describe the transformation of selected cocaine and morphine biomarkers at applicability temperature range (from 2-9 °C to 30-31 °C), with estimated exponential Arrhenius coefficients between 1.04 and 1.18. These empirically-derived relationships were used to assess the influence of temperature on the transformation of drug biomarkers during in-sewer transport and its effect on the back-calculation of drug consumption rate in hypothetical urban catchment scenario simulations. Up to 4-fold increase in removal efficiency was estimated when wastewater temperature increased from 15 °C to 25 °C. Findings from this study can help reducing the uncertainty intrinsic to wastewater-based epidemiology studies, and will be beneficial in comparing chemical consumption estimates from different catchments worldwide.
Collapse
Affiliation(s)
- Pedram Ramin
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark; Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark.
| | - Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Andreas Libonati Brock
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark; Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
39
|
Choi PM, O'Brien JW, Li J, Jiang G, Thomas KV, Mueller JF. Population histamine burden assessed using wastewater-based epidemiology: The association of 1,4‑methylimidazole acetic acid and fexofenadine. ENVIRONMENT INTERNATIONAL 2018; 120:172-180. [PMID: 30096611 DOI: 10.1016/j.envint.2018.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 05/06/2023]
Abstract
Systematic sampling and analysis of wastewater has become an important tool for monitoring consumption of drugs and other substances, and has been proposed as a method to evaluate aspects of population health using endogenous biomarkers. 1,4‑methylimidazoleacetic acid (MIAA) is an endogenous biomarker and metabolite of histamine turnover. Its urinary excretion is elevated in conditions such as mastocytosis, hay fever, hives, food allergies and anaphylaxis. The aim of this study was to develop and apply methods for MIAA in wastewater and compare its occurrence with antihistamine use in wastewater. Consecutive daily samples were collected from seven catchments serving populations from 3000 to 2 million and covering rural and urban communities during the 2016 Census in Australia. MIAA and the antihistamines (ranitidine, fexofenadine, cetirizine) were quantified consistently. Per capita excretion of MIAA (mg/d/capita) estimated from the WW concentrations were consistent with findings from previous clinical studies. We found significant positive correlations between loads of MIAA and fexofenadine (R2 = 0.68, p < 0.0001) and cetirizine (R2 = 0.25, p = 0.03) across the various catchments. Sewer reactor experiments on the degradation of MIAA and the antihistamines found that fexofenadine is stable for at least 24 h while MIAA, ranitidine and cetirizine are subject to degradation, and this should be considered in interpretations. To the best of our knowledge, this study is the first wastewater study to introduce and monitor an endogenous metabolite of histamine, and the first study to monitor and relate proxies of disease and treatment of disease.
Collapse
Affiliation(s)
- Phil M Choi
- Queensland Alliance for Environmental Health Science, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Science, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Science, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Science, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
40
|
Gao J, Li J, Jiang G, Yuan Z, Eaglesham G, Covaci A, Mueller JF, Thai PK. Stability of alcohol and tobacco consumption biomarkers in a real rising main sewer. WATER RESEARCH 2018; 138:19-26. [PMID: 29571085 DOI: 10.1016/j.watres.2018.03.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 05/27/2023]
Abstract
Since alcohol and tobacco consumption are among the leading causes of population health harm, it is very important to understand the consumption behaviour to develop effective harm reduction strategies. Wastewater-based epidemiology (WBE) is a potential tool for estimating their consumption, but there are several uncertainties that need to be determined, including the stability of biomarkers in the sewer. Utilizing a real rising main sewer, this study investigated the stability of alcohol and tobacco consumption biomarkers. Rhodamine and acesulfame were used as flow tracer and benchmarker to understand the transportation of wastewater in the sewer with a hydraulic retention time between 2.7 and 5.0 h. Ethyl sulphate (EtS) and ethyl glucuronide (EtG), two biomarkers of alcohol consumption, were found to have different in-sewer stability, with EtS much more stable than EtG. The degradation rate of EtS is approximately 8% per hour, while EtG has a half-life of 1.9 h. Formation of nicotine, cotinine and trans-3'-hydroxycotinine, three biomarkers for tobacco consumption, was observed during the experiment, probably due to deconjugation of their glucuronide chemicals. The deconjugation process has prevented the determination of actual stability of the three chemicals. However, it is suggested that cotinine is relatively stable, while nicotine and trans-3'-hydroxycotinine degrade to a certain degree in the sewer system. According to our findings, the in-sewer degradation is more important during the interpretation of alcohol consumption estimation than for tobacco consumption estimation.
Collapse
Affiliation(s)
- Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Geoff Eaglesham
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia
| | - Phong K Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|