1
|
Yang X, Peng X, Feng K, Wang S, Zou X, Deng Y. Organic molecular network analysis reveals transformation signatures of dissolved organic matter during anaerobic digestion process. WATER RESEARCH 2025; 282:123777. [PMID: 40349674 DOI: 10.1016/j.watres.2025.123777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/31/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Identifying the transformation types, i.e., syntheses or decompositions, of organic molecules in complex environmental systems remains a significant challenge. To address this, we propose a new analytical framework, Transformation-based Organic Molecular Ecological Network Analysis (TOMENA) for the systematic recognition and analysis of molecular transformations according to the measurement of high-resolution mass spectrometry (FT-ICR MS) through time-series data. Applying the TOMENA framework, we systematically investigated transformation signatures of dissolved organic matter (DOM) during anaerobic digestion processes. We found a close relationship between molecular transformation and molecular weight in the biodegradation system. A total of 129 transformations were identified, involving carbon numbers ranging from 0 to 24, with 59 of these transformations concentrated in small molecular weight changes involving 1-3 carbons. As the molecular weight corresponding to transformations increased, the proportion of bio-transformations used for decomposition decreased linearly. Simultaneously, large molecules were decomposed and small molecules synthesized, indicating a system tendency to transform molecules towards a medium mass range. Topological analysis of the transformation network further expanded our understanding. We discovered that molecular transformations did not follow the shortest path, as the path distance was significantly longer than in random networks (2.558 vs. 2.383). We identified that N-containing transformations were centrally located in the system through edge analysis. However, the transformations' position did not coincide with functional importance. A comprehensive indicator of irreplaceability and usage frequency revealed that C(+1)H(+3)O(+2)N(-1), C(+1)H(+2), O(+1), C(+3)H(+4)O(+2), and H(-2)O(+1) are critical transformation pathways in the system, showing the top 5 efficiency contributions. Our developed TOMENA workflow provides novel insights and robust methodological support for future research, advancing our understanding of molecular transformations in complex biodegradation system.
Collapse
Affiliation(s)
- Xingsheng Yang
- State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Peng
- State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Feng
- State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shang Wang
- State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiao Zou
- Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Ye Deng
- State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Luo X, Zheng W, Li Q, Ma H, Chen R, Liu X, Feng C. Hydrated Electrons Trigger the Breakdown of Recalcitrant Cyanuric Acid in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5327-5336. [PMID: 40033772 DOI: 10.1021/acs.est.4c11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cyanuric acid (CA), a triazine-ring compound commonly used as a stabilizer for free chlorine to enhance disinfection, often persists in wastewater for the production of chlorinated cyanurates (Cl-CAs), posing challenges for treatment. This study demonstrates that conventional advanced oxidation processes (UV/H2O2 and UV/peroxydisulfate) are ineffective in degrading CA, while the UV/sulfite system successfully achieves its breakdown. Hydrated electrons (eaq-) were identified as the primary reactive species responsible for cleaving the stable triazine ring, with minimal contributions from SO3•- and H•. The pH value influences both the activity of eaq- and the degradability of CA by altering its structure; lower pH increases the electron-deficient regions in dihydrogen CA, enhancing its susceptibility to nucleophilic attack by eaq-. The high concentrations of Cl- can inhibit CA removal, likely due to the formation of reactive chlorine species that react with sulfite and suppress eaq- production. Effective CA degradation was also demonstrated in real wastewater, highlighting the UV/sulfite system as a sustainable solution for water treatment. These findings offer valuable insights into CA transformation and present effective approaches for eliminating emerging contaminants in the context of the extensive use of disinfectants.
Collapse
Affiliation(s)
- Xin Luo
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qiaoxin Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rundong Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueming Liu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Li X, Bond T, Tan X, Yang H, Chen Y, Jin B, Chen B. Dissolved inorganic nitrogen as an overlooked precursor of nitrogenous disinfection byproducts - A critical review. WATER RESEARCH 2025; 268:122654. [PMID: 39490092 DOI: 10.1016/j.watres.2024.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Aquatic nitrogenous compounds can be classified as dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN), including ammonia, nitrite, nitrate, and inorganic chloramines. The occurrence of nitrogenous disinfection byproducts (N-DBPs) in water, such as haloacetonitriles (HANs), halonitromethanes (HNMs), haloacaetamides (HAcAms), and nitrosamines (NAs), has attracted considerable attention due to their higher toxicity than regulated carbonaceous analogues. While numerous studies have investigated the contributions of DON to N-DBP formation, relatively fewer studies have explored DIN as N-DBP precursors, although DINs are sometimes evaluated as influencing factors. Through a literature review and data mining, this study delves into the existing body of evidence that analyze the contributions of different forms of DIN to N-DBP generation. The results showed that ammonia and nitrite can enhance trichloronitromethane (TCNM) and nitrodimethylamine (NDMA) formation in conventional chlorination and chloramination processes, nitrate can promote HNM formation in ultraviolet-based processes, and monochloramine can increase HAN, HAcAm, HNM, and NDMA formation in most disinfection scenarios. Notably, some experiments demonstrated that the yields of dichloroacetonitrile (DCAN) and TCNM can be higher from reactions involving nitrogen-free organic precursors and DIN than those involving DON and nitrogen-free disinfectant, suggesting that the relative importance of DON and DIN in forming N-DBP in real water remains unresolved. These insights thus underscore DIN as a non-negligible precursor in N-DBP formation and call for more attention to water management strategies for DIN.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tom Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Xiaoyu Tan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haolin Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bingbing Jin
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
4
|
Ma J, Niu X, Zhang D, Wang G. Insights into the inhibitory effects of trichloroisocyanuric acid disinfectant on the phototransformation of polypropylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175904. [PMID: 39226956 DOI: 10.1016/j.scitotenv.2024.175904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
The chemical components in the natural aquatic environment have the potential to be involved in phototransformation of microplastics (MPs). Little information is available regarding the mediation effects of artificially introduced chemicals on MP phototransformation, especially those used in aquaculture water that are vulnerable to human interference. Herein, this study investigated the phototransformation process and mechanism of polypropylene microplastic (PP MPs) in presence of trichloroisocyanuric acid (TCCA) disinfectant with unique properties unlike the conventional inorganic chlorine disinfectants. The results showed that the presence of TCCA inhibited the surface photooxidation of PP MPs. Analysis of PP MP surface and reaction filtrate indicated that the inhibitory effects were likely derived from TCCA derivatives and the weakening in promoting effect of polypropylene microplastic-derived dissolved organic matter (PP-DOM) as photolytic byproducts, with the more important role of free chlorine in initial period and that of other chlorine species (i.e., the adsorbed chloride ions (Cl-), newly formed carbon-chlorine (CCl) bonds, chlorinated cyanurates, and chlorinated products) in middle and later period. The study highlights for the first time the important role of chlorine species derived from TCCA in phototransformation process of co-existed PP MPs and proposes a previously unrecognized phototransformation pathway, which will provide a new understanding and knowledge for the environmental behavior of MPs in aquaculture environment.
Collapse
Affiliation(s)
- Jinling Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Gang Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
5
|
Gong X, He M, Hao Z, Zhao R, Liu J. Freeze-induced acceleration of iodide oxidation and consequent iodination of dissolved organic matter to form organoiodine compounds. J Environ Sci (China) 2024; 144:67-75. [PMID: 38802239 DOI: 10.1016/j.jes.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 05/29/2024]
Abstract
Freeze-induced acceleration of I- oxidation and the consequent iodination of dissolved organic matter (DOM) contribute to the formation of organoiodine compounds (OICs) in cold regions. The formed OICs may be a potentially important source of risk and are very closely with the environment and human health. Herein, we investigated the acceleration effects of the freeze process on I- oxidation and the formation of OICs. In comparison to reactive iodine species (RIS) formed in aqueous solutions, I- oxidation and RIS formation were greatly enhanced in frozen solution and were affected by pH, and the content of I- and O2. Freeze-thaw process further promoted I- oxidation and the concentration of RIS reached 45.7 µmol/L after 6 freeze-thaw cycles. The consequent products of DOM iodination were greatly promoted in terms of both concentration and number. The total content of OICs ranged from 0.02 to 2.83 µmol/L under various conditions. About 183-1197 OICs were detected by Fourier transform ion cyclotron resonance mass spectrometry, and more than 96.2% contained one or two iodine atoms. Most OICs had aromatic structures and were formed via substitution and addition reactions. Our findings reveal an important formation pathway for OICs and shed light on the biogeochemical cycling of iodine in the natural aquatic environment.
Collapse
Affiliation(s)
- Xuexin Gong
- School of Resources and Environment, Yangtze University, Wuhan 430100, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mei He
- School of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Zhineng Hao
- School of Resources and Environment, Yangtze University, Wuhan 430100, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rusong Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Jingfu Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
6
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Schwerdtle T, Vejdovszky K, Viviani B, Benford D, Hart A, Rose M, Schroeder H, Vleminckx C, Vrijheid M, Gkimprixi E, Kouloura E, Riolo F, Bordajandi LR, Hogstrand C. Update of the risk assessment of brominated phenols and their derivatives in food. EFSA J 2024; 22:e9034. [PMID: 39444985 PMCID: PMC11496907 DOI: 10.2903/j.efsa.2024.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The European Commission asked EFSA to update its 2012 risk assessment on brominated phenols and their derivatives in food, focusing on five bromophenols and one derivative: 2,4,6-tribromophenol (2,4,6-TBP), 2,4-dibromophenol (2,4-DBP), 4-bromophenol (4-BP), 2,6-dibromophenol (2,6-DBP), tetrabrominated bisphenol S (TBBPS), tetrabromobisphenol S bismethyl ether (TBBPS-BME). Based on the overall evidence, the CONTAM Panel considered in vivo genotoxicity of 2,4,6-TBP to be unlikely. Effects in liver and kidney were considered as the critical effects of 2,4,6-tribromophenol (2,4,6-TBP) in studies in rats. A BMDL10 of 353 mg/kg body weight (bw) per day for kidney papillary necrosis in male rats was identified and was selected as the reference point for the risk characterisation. The derivation of a health-based guidance value was not considered appropriate due to major limitations in the toxicological database. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Around 78,200 analytical results for 2,4,6-TBP in food were used to estimate dietary exposure for the European population. Considering the resulting MOE values, all far above an MOE of 6000 that does not raise a health concern, and accounting for the uncertainties affecting the exposure and hazard assessments, the CONTAM Panel concluded with at least 95% probability that the current dietary exposure to 2,4,6-TBP does not raise a health concern. Due to lack of occurrence data, no risk assessment could be performed for breastfed or formula-fed infants. No risk characterisation could be performed for any of the other brominated phenols and derivatives included in the assessment, due to lack of data both on the toxicity and occurrence.
Collapse
|
7
|
Yang X, Feng K, Wang S, Yuan MM, Peng X, He Q, Wang D, Shen W, Zhao B, Du X, Wang Y, Wang L, Cao D, Liu W, Wang J, Deng Y. Unveiling the deterministic dynamics of microbial meta-metabolism: a multi-omics investigation of anaerobic biodegradation. MICROBIOME 2024; 12:166. [PMID: 39244624 PMCID: PMC11380791 DOI: 10.1186/s40168-024-01890-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Microbial anaerobic metabolism is a key driver of biogeochemical cycles, influencing ecosystem function and health of both natural and engineered environments. However, the temporal dynamics of the intricate interactions between microorganisms and the organic metabolites are still poorly understood. Leveraging metagenomic and metabolomic approaches, we unveiled the principles governing microbial metabolism during a 96-day anaerobic bioreactor experiment. RESULTS During the turnover and assembly of metabolites, homogeneous selection was predominant, peaking at 84.05% on day 12. Consistent dynamic coordination between microbes and metabolites was observed regarding their composition and assembly processes. Our findings suggested that microbes drove deterministic metabolite turnover, leading to consistent molecular conversions across parallel reactors. Moreover, due to the more favorable thermodynamics of N-containing organic biotransformations, microbes preferentially carried out sequential degradations from N-containing to S-containing compounds. Similarly, the metabolic strategy of C18 lipid-like molecules could switch from synthesis to degradation due to nutrient exhaustion and thermodynamical disadvantage. This indicated that community biotransformation thermodynamics emerged as a key regulator of both catabolic and synthetic metabolisms, shaping metabolic strategy shifts at the community level. Furthermore, the co-occurrence network of microbes-metabolites was structured around microbial metabolic functions centered on methanogenesis, with CH4 as a network hub, connecting with 62.15% of total nodes as 1st and 2nd neighbors. Microbes aggregate molecules with different molecular traits and are modularized depending on their metabolic abilities. They established increasingly positive relationships with high-molecular-weight molecules, facilitating resource acquisition and energy utilization. This metabolic complementarity and substance exchange further underscored the cooperative nature of microbial interactions. CONCLUSIONS All results revealed three key rules governing microbial anaerobic degradation. These rules indicate that microbes adapt to environmental conditions according to their community-level metabolic trade-offs and synergistic metabolic functions, further driving the deterministic dynamics of molecular composition. This research offers valuable insights for enhancing the prediction and regulation of microbial activities and carbon flow in anaerobic environments. Video Abstract.
Collapse
Affiliation(s)
- Xingsheng Yang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94704, USA
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Danrui Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenli Shen
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Bo Zhao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongfeng Du
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingcheng Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Linlin Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Dong Cao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Jianjun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Leri AC, Hettithanthri O, Bolan S, Zhang T, Unrine J, Myneni S, Nachman DR, Tran HT, Phillips AJ, Hou D, Wang Y, Vithanage M, Padhye LP, Jasemi Zad T, Heitz A, Siddique KHM, Wang H, Rinklebe J, Kirkham MB, Bolan N. Bromine contamination and risk management in terrestrial and aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133881. [PMID: 38422740 PMCID: PMC11380803 DOI: 10.1016/j.jhazmat.2024.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.
Collapse
Affiliation(s)
- Alessandra C Leri
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States.
| | - Oshadi Hettithanthri
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, United States; Kentucky Water Research Institute, University of Kentucky, Lexington, KY 40506, United States
| | - Satish Myneni
- Department of Geosciences, Princeton Univ., Princeton, NJ 08544, United States
| | - Danielle R Nachman
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145, India
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yidong Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tahereh Jasemi Zad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Anna Heitz
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| |
Collapse
|
9
|
Peng F, Wang Y, Lu Y, Yang Z, Li H. Formation and control of disinfection by-products during the trichloroisocyanuric acid disinfection in swimming pool water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123536. [PMID: 38365079 DOI: 10.1016/j.envpol.2024.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
The increasing demand for trichloroisocyanuric acid (TCCA) in swimming pool disinfection highlights the need to evaluate its applicability in terms of disinfection by-product (DBP) formation. Nevertheless, there is limited understanding of DBP formation and control during TCCA disinfection, particularly concerning the effects of various management parameters. This study aimed to fill this knowledge gap by comprehensively investigating DBP formation during TCCA chlorination, with a particular focus on assessing the contribution and interaction of influencing factors using Box-Behnken Design and response surface methodology. Results indicated that the concentrations of trichloroacetaldehyde, chloroform, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile produced by TCCA disinfectant were 42.5%, 74.0%, 48.1%, 94.7% and 42.6% of those by the conventional sodium hypochlorite disinfectant, respectively. Temperature exhibited the most significant impact on chloroform formation (49%), while pH played a major role in trichloroacetaldehyde formation (44%). pH2 emerged as the primary contributor to dichloroacetic acid (90%) and trichloroacetic acid (93%) formation. The optimum water quality conditions were determined based on the minimum total DBPs (pH = 7.32, Temperature = 23.7 °C, [Cl-] = 437 mg/L). Chlorine dosage and contact time exhibited greater influence than precursor concentration on chloroform, dichloroacetonitrile, trichloroacetaldehyde, trichloroacetic acid, and total DBPs. Although the interaction between water quality parameters was weak, the interaction between disinfection operating parameters demonstrated substantial effects on DBP formation (8.56-19.06%). Furthermore, the DBP predictive models during TCCA disinfection were provided for the first time, which provides valuable insights for DBP control and early warning programs.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
10
|
Wang J, Zheng M, Du E, Chu W, Guo H. A Novel Source of Radicals from UV/Dichloroisocyanurate for Surpassing Abatement of Emerging Contaminants Versus Conventional UV/Chlor(am)ine Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18452-18461. [PMID: 36668904 DOI: 10.1021/acs.est.2c06327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultraviolet (UV)/chlor(am)ine processes are emerging advanced oxidation processes (AOPs) for water decontamination and raising continuous attention. However, limitations appear in the UV/hypochlorite and UV/monochloramine for removing specific contaminants ascribed to the differences in the sorts and yields of free radicals. Here, this study reports UV/dichloroisocyanurate (NaDCC) as a novel source of radicals. NaDCC was demonstrated to be a well-balanced compound between hypochlorite and monochloramine, and it had significant UV absorption and a medium intrinsic quantum yield. The UV/NaDCC produced more substantial hydroxyl radicals (·OH) and reactive chlorine species (RCSs, including Cl·, ClO·, and Cl2·-) than conventional UV/chlor(am)ine, thereby generating a higher oxidation efficiency. The reaction mechanisms, environmental applicability, and energy requirements of the UV/NaDCC process for emerging contaminants (ECs) abatement were further investigated. The results showed that ·OH and ·NH2 attacked ECs mostly through hydrogen atom transfer (HAT) and radical adduct formation, whereas Cl· destroyed ECs mainly through HAT and single electron transfer, with ClO· playing a certain role through HAT. Kinetic model analyses revealed that the UV/NaDCC outperformed the conventional UV/chlor(am)ine in a variety of water matrices with superior degradation efficiency, significantly saving up to 96% electrical energy per order. Overall, this study first demonstrates application prospects of a novel AOP using UV/NaDCC, which can compensate for the deficiency of the conventional UV/chlor(am)ine AOPs.
Collapse
Affiliation(s)
- Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute, Sichuan University, Yibin 644000, China
| |
Collapse
|
11
|
Wu S, Fujii M, Yang X, Fu QL. Characterization of halogenated organic compounds by the Fourier transform ion cyclotron resonance mass spectrometry: A critical review. WATER RESEARCH 2023; 246:120694. [PMID: 37832250 DOI: 10.1016/j.watres.2023.120694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Halogenated organic compounds (HOCs), widely present in various environments, are generally formed by natural processes (e.g., photochemical halogenation) and anthropogenic activities (e.g., water disinfection and anthropogenic discharge of HOCs), posing health and environmental risks. Therefore, in-depth knowledge of the molecular composition, transformation, and fate of HOCs is crucial to regulate and reduce their formation. Because of the extremely complex nature of HOCs and their precursors, the molecular composition of HOCs remains largely unknown. The Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers the most powerful resolution and mass accuracy for the simultaneous molecular-level characterization of HOCs and their precursors. However, there is still a paucity of reviews regarding the comprehensive characterization of HOCs by FT-ICR MS. Based on the FT-ICR MS, the formation mechanism, sample pretreatment, and analysis methods were summarized for two typical HOCs classes, namely halogenated disinfection byproducts and per- and polyfluoroalkyl substances in this review. Moreover, we have highlighted data analysis methods and some typical applications of HOCs using FT-ICR MS and proposed suggestions for current issues. This review will deepen our understanding of the chemical characterization of HOCs and their formation mechanisms and transformation at the molecular level in aquatic systems, facilitating the application of the state-of-the-art FT-ICR MS in environmental and geochemical research.
Collapse
Affiliation(s)
- Shixi Wu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing-Long Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
12
|
Wang L, Wang H, Deng J, Liu J, Wu Y, Huang S, Ma X, Li X, Dietrich AM. Enhanced dehalogenation of brominated DBPs by catalyzed electrolysis using Vitamin B 12 modified electrodes: Kinetics, mechanisms, and mass balances. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131052. [PMID: 36827722 DOI: 10.1016/j.jhazmat.2023.131052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Vitamin B12 (VB12) modified electrodes were prepared for the electrocatalytic reductive debromination of tribromoacetic acid (TBAA). Under galvanostatic conditions set as 5 mmol/L VB12 loading, 20 mmol/L Na2SO4 as electrolyte, 10.0 mA/cm2 current density, pH 3, and 298 K, the degradation efficiency of 200 μg/L TBAA at the VB12 modified electrode could reach 99.9 % after 6 h. The debromination of TBAA followed the first-order kinetic model. The masses of carbon and bromine elements were conserved before and after the reaction, together with the qualitative analysis of the degradation products showed the likely degradation pathways as TBAA→dibromoacetic acid (DBAA)→monobromoacetic acid (MBAA)→acetic acid (AA). ESR detection and quenching experiments confirmed the role of atomic H* in TBAA debromination. In-situ Raman spectroscopy showed that the Co-Br bond was strongly enriched to the electrode surface, accelerating the electron transfer. The H2O dissociation performance and transition states searching catalyzed by VB12 were calculated by Density Functional Theory (DFT) and proved that the composite electrode can effectively promote atomic H* generation. Material characterization and electrochemical performance tests showed that the VB12 modified electrode had excellent stability and atomic H* catalytic activity. The electrocatalytic debromination of TBAA at VB12 modified electrodes mainly involves two mechanisms, direct reduction by electron transfer and indirect reduction by the strongly reducing atom H*. The results provide an efficient way to achieve safe removal of brominated DBPs from drinking water after chlorination and before human consumption.
Collapse
Affiliation(s)
- Lei Wang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junping Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifei Wu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sinong Huang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Andrea M Dietrich
- Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
Zhang M, Lin K. Insight into the formation of polyhalogenated carbazoles during seawater chlorination. WATER RESEARCH 2023; 238:120009. [PMID: 37146400 DOI: 10.1016/j.watres.2023.120009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Although polyhalogenated carbazoles (PHCZs) have been widely detected in the marine environment, their origin is far from clear. In this study, the formation of PHCZs in the chlorination of seawater containing carbazole and its derivatives was investigated. A total of 14 PHCZs including six commonly found and eight unknown congeners were identified in the chlorination of seawater with carbazole. In addition, this study for the first time demonstrated the production of common PHCZs from the chlorination of seawater with 3-methyl carbazole and 3-formyl carbazole, especially 1,8-dibromo-3,6-dichlorocarbazole from 3-methyl carbazole. The formation of PHCZs in the reaction resulted from the halogenation of carbazole by reactive chlorine species (RCS) and mainly reactive bromine species (RBS), forming from the oxidation of bromide by RCS. Results also indicated that the reaction followed a successive halogenation pattern. A higher content of free chlorine and bromide facilitated the generation of RBS, while a higher concentration of DOC exhibited an inhibitory effect. The effects of free chlorine, bromide, DOC, and temperature on the formation of PHCZs were congener-specific. Given the widespread use of chlorination in seawater disinfection, seawater chlorination might be a potential source of PHCZs in the marine environment.
Collapse
Affiliation(s)
- Meng Zhang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
14
|
Zhong Z, Wu X, Bai M, Huang X, Zheng Q, Ai C. Treatments of orange-spotted grouper (Epinephelus coioides) against Cryptocaryon irritans with •OH, ClO 2 or HCHO: Survival, physiological and histological response. JOURNAL OF FISH DISEASES 2023; 46:215-227. [PMID: 36519440 DOI: 10.1111/jfd.13736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Cryptocaryon irritans causes one of the most serious diseases in various wild and cultured marine fish, leading to mass mortality and economic loss. In this study, hydroxyl radical (•OH) solution produced by strong ionization discharge combined with water jet cavitation effect was injected into orange-spotted grouper (Epinephelus coioides) aquaculture tanks for C. irritans control. The results showed that all C. irritans theronts were inactivated by •OH solution at concentrations of 0.5 mg/L within 2 min. •OH could induce alteration of shape, the absence of motility and macronucleus dispersion in theronts. A possible explanation was that the macronucleus of C. irritans might be damaged by •OH; as a result, its metabolism and life activities were disturbed. The •OH treatment increased the survival rate of E. coioides challenged with C. irritans from 64.7 ± 8.0% (mean ± SD) to 100% and reduced their infection intensity significantly. Stress response biomarkers such as malonaldehyde, glutathione, glutathione peroxidase, superoxide dismutase (SOD) and catalase levels in the gills of E. coioides at different time points were analysed. The SOD activity in the •OH group first decreased and then recovered to the initial level at the end of the experiment. The other stress response biomarkers had no significant difference from that in the uninfected control group after •OH treatment. Additionally, the gill of E. coioides in the •OH group exhibited slight and reversible transformation compared with the uninfected control group. Compared with •OH treatment, chlorine dioxide and formalin treatment reduced the survival rate, induced oxidative damage and changed the histological gill structure in E. coioides. In conclusion, •OH could be applied effectively to control C. irritans infection without affecting the normal physiological condition of E. coioides.
Collapse
Affiliation(s)
- Ziqing Zhong
- College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Xiping Wu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Mindong Bai
- College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaodian Huang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qilin Zheng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Chunxiang Ai
- College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Kinani S, Roumiguières A, Bouchonnet S. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 1: Chlorine Chemistry in Seawater and Its Consequences in Terms of Biocidal Effectiveness and Environmental Impact. Crit Rev Anal Chem 2022; 54:1837-1850. [PMID: 36325800 DOI: 10.1080/10408347.2022.2139590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Seawater chlorination has three main industrial uses: disinfection of water and installations, control of biofouling, and preventing the transport of aquatic invasive species. Once in contact with seawater, chlorine reacts rapidly with water constituents (e.g. bromide ions, ammonia, and nitrogen-containing compounds) to form a range of oxidative species (e.g. bromine and N-haloamines), termed "chlorine-produced oxidants" (CPOs) or "total residual oxidants" (TRO). The chemical nature of CPOs and their concentration are a function of two categories of parameters related to treatment modality (e.g. chlorine dose) and water quality (e.g. temperature, pH, ammonia concentration, and organic constituents). The chlorination process may result in continuous or intermittent releases of CPOs in seawater. The reactivity and potential ecotoxicity of CPO species largely depend on their physical and chemical properties. Therefore, evaluation of the biocidal effectiveness of chlorination and its potential impacts requires not only determining the sum of CPOs (via a bulk parameter), but also their chemical speciation. The aim of this article - which is the first of a trilogy dedicated to the chemical speciation of CPOs in seawater - is to provide an overview of current knowledge about chlorine chemistry in seawater and to discuss the biocidal efficacy and the environmental fate of resulting CPOs. The 2nd and 3rd articles delineate a comprehensive and critical review of analytical methods and approaches for the determination of CPOs in seawater.
Collapse
Affiliation(s)
- Said Kinani
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex 01, France
| | - Adrien Roumiguières
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex 01, France
- Laboratoire de Chimie Moléculaire, CNRS - Institut polytechnique de Paris - Route de Saclay, Palaiseau, France
| | - Stéphane Bouchonnet
- Laboratoire de Chimie Moléculaire, CNRS - Institut polytechnique de Paris - Route de Saclay, Palaiseau, France
| |
Collapse
|
16
|
Apoptosis-Inducing Potential of Selected Bromophenolic Flame Retardants 2,4,6-Tribromophenol and Pentabromophenol in Human Peripheral Blood Mononuclear Cells. Molecules 2022; 27:molecules27165056. [PMID: 36014294 PMCID: PMC9413844 DOI: 10.3390/molecules27165056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: 2,4,6-Tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) are utilized as brominated flame retardants (BFRs) in order to reduce the combustion of materials used in various utility products. The presence of 2,4,6-TBP and PBP has been reported in environmental samples as well as in inhaled air, dust, food, drinking water, and the human body. To date, there are limited data concerning the toxic action of 2,4,6-TBP and particularly PBP, and no study has been conducted to assess the apoptotic mechanism of action of these substances in human leukocytes. (2) Methods: PBMCs were isolated from leukocyte–platelet buffy coat and treated with tested substances in concentrations ranging from 0.01 to 50 µg/mL for 24 h. The apoptotic mechanism of action of the tested BFRs was assessed by the determination of phosphatidylserine exposure on the PBMCs surface, the evaluation of mitochondrial potential and cytosolic calcium ion levels, and the determination of caspase-8, -9, and -3 activation. Moreover, poly (ADP-ribose) polymerase-1 (PARP-1) cleavage, DNA fragmentation, and chromatin condensation were analyzed. (3) Results: 2,4,6-TBP and, more strongly, PBP induced apoptosis in PBMCs, changing all tested parameters. It was also found that the mitochondrial pathway was mainly involved in the apoptosis of PBMCs exposed to the studied compounds. (4) Conclusions: 2,4,6-TBP and PBP triggered apoptosis in human PBMCs, and some observed changes occurred at 2,4,6-TBP concentrations that were detected in humans occupationally exposed to this substance.
Collapse
|
17
|
Mensah AT, Allard S, Berne F, Soreau S, Gallard H. Brominated trihalamines in chlorinated seawaters: Quantification of tribromamine and identification of bromochloramines by Membrane Introduction Mass Spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154667. [PMID: 35314219 DOI: 10.1016/j.scitotenv.2022.154667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
During chlorination of seawater, the presence of bromide and ammonia alters the speciation of the oxidant and lead to the formation of chlorinated and brominated amines. This can affect the effectiveness of the disinfection treatment and the formation of disinfection by-products released to the environment. In this study, a Membrane Introduction Mass Spectrometry (MIMS) analytical method was developed to differentiate brominated trihalamines (i.e. tribromamine NBr3, dibromochloramine NBr2Cl and bromodichloramine NBrCl2) in synthetic and natural chlorinated seawater. A mass-to-charge ratio of m/z = 253 corresponding to the parent ion was used for the quantification of NBr3 in absence of organic matter and the signal of the fragment at m/z = 177 was chosen in presence of high concentration of organic matter. Limits of detection were 0.23 μM (49 μg Cl2/L) and 0.18 μM (38 μg Cl2/L) for m/z 253 and m/z 177, respectively. Both NBr2Cl and NBrCl2 were monitored in chlorinated seawaters with their respective parent ion at m/z = 207 and m/z = 163 but were not quantified. MIMS results also showed that reaction of brominated trihalamines with natural organic matter (NOM) was a minor pathway for 1-2 mg C/L compared to their auto-decomposition in natural or synthetic seawater. Overall, MIMS was able to unambiguously differentiate and monitor brominated trihalamines for the first time in chlorinated seawater, which was not possible by using UV measurement, titration and colorimetric methods.
Collapse
Affiliation(s)
- Anette T Mensah
- Curtin Water Quality Research Centre, Department of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia; Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France
| | - Sébastien Allard
- Curtin Water Quality Research Centre, Department of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Florence Berne
- Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France
| | - Sylvie Soreau
- EDF - Recherche et Développement, Laboratoire National d'Hydraulique et Environnement (LNHE), 6 quai Watier, 78401 Chatou Cedex, France
| | - Hervé Gallard
- Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France.
| |
Collapse
|
18
|
Li T, Shang C, Xiang Y, Yin R, Pan Y, Fan M, Yang X. ClO 2 pre-oxidation changes dissolved organic matter at the molecular level and reduces chloro-organic byproducts and toxicity of water treated by the UV/chlorine process. WATER RESEARCH 2022; 216:118341. [PMID: 35367942 DOI: 10.1016/j.watres.2022.118341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/02/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The formation of undesirable chloro-organic byproducts is of great concern in the UV/chlorine process. In this study, chlorine dioxide (ClO2) pre-oxidation was applied to control the formation of chloro-organic byproducts and the toxicity in UV/chlorine-treated water. The molecular-level changes in dissolved organic matter (DOM) were tracked by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ClO2 pre-oxidation was found to preferentially react with DOM moieties with high aromaticity level and with a carbon number of > 18, producing compounds with a higher degree of oxidation and lower aromaticity. The ClO2-treated DOM was found to be less susceptible to attack by radicals and free chlorine in the UV/chlorine process compared to the raw DOM. ClO2 pre-oxidation resulted in a significant decrease in the number of unknown chloro-organic byproducts (i.e., -17%) and the total intensity of organic chlorine detected by FT-ICR-MS (i.e., -31%). The molecular characteristics, such as O/C, aromaticity index, and the average number of chlorine atoms, of these unknown chloro-organic byproducts generated in the scenarios with and without ClO2 pre-oxidation were also different. Additionally, ClO2 pre-oxidation reduced the genotoxicity (SOS/umu test) and cytotoxicity (Hep G2 cytotoxicity assay) of UV/chlorine-treated water by 26% and 20%, respectively. The findings in this study highlight the merits of ClO2 pre-oxidation for controlling chloro-organic byproducts and reducing the toxicity of water treated by the UV/chlorine process in actual practice.
Collapse
Affiliation(s)
- Tao Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengge Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
19
|
Michałowicz J, Włuka A, Bukowska B. A review on environmental occurrence, toxic effects and transformation of man-made bromophenols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152289. [PMID: 34902422 DOI: 10.1016/j.scitotenv.2021.152289] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Brominated phenols (BPs) of anthropogenic origin are aromatic substances widely used in the industry as flame retardants (FRs) and pesticides as well as the components of FRs and polymers. In this review, we have focused on describing 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP), which are the most commonly used in the industry and are the most often detected in the air, aquatic and terrestrial ecosystems and the human body. This review describes human-related sources of these BPs that influence their occurrence in the environment (atmosphere, surface water, sediment, soil, biota), indoor air and dust, food, drinking water and the human organism. Data from in vitro and in vivo studies showing 2,4-DBP, 2,4,6-TBP and PBP toxicity, including their estrogenic activity, effects on development and reproduction, perturbations of cellular redox balance and cytotoxic action have been described. Moreover, the processes of BPs transformation that occur in human and other mammals, plants and bacteria have been discussed. Finally, the effect of abiotic factors (e.g. UV irradiation and temperature) on BPs conversion to highly toxic brominated dioxins and brominated furans as well as polybrominated biphenyls and polybrominated diphenyl ethers has been presented.
Collapse
Affiliation(s)
- Jaromir Michałowicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland.
| | - Anna Włuka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
20
|
Lou X, Liu Z, Fang C, Tang Y, Guan J, Guo Y, Zhang X, Shi Y, Huang D, Cai Y. Fate of sulfamethoxazole and potential formation of haloacetic acids during chlorine disinfection process in aquaculture water. ENVIRONMENTAL RESEARCH 2022; 204:111958. [PMID: 34478721 DOI: 10.1016/j.envres.2021.111958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/30/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
There exist two common processes in fishery culture, i.e. antibiotic addition to reduce disease in fishery, and chlorination disinfection to inhibit infectious pathogenic microorganisms. However, antibiotic residues might play important reverse side roles for both aquaculture water pollution and potential formation of chlorination side products. Herein, the transformation behaviour, intermediates analyses and conversion pathway of antibiotic sulfamethoxazole (SMX), and potential generation of halogenated acetic acids (HAAs) in the process of chlorination in fishery water were examined, and the results revealed that the decomposing of SMX satisfied a pseudo first-order kinetic equation. Both the addition of available chlorine and high temperature had affirmative influences on the decontamination of SMX and production of HAAs, and the near-neutral pHs promoted the removal of SMX and generation of HAAs. Br- was favorable for the removal of SMX and yields of brominated acetic acids (Br-AAs). Based on the identified intermediate products, the transformation path of SMX in chlorination process was propounded, to wit, the C-S and S-N bonds in the SMX molecules were firstly cracked, and the primeval intermediate groups are then transformed to form chloroanilines, chlorophenols, etc., and subsequently, chlorophenols were chlorinated and ring-opened to generate toxic HAAs. This study might be meaningful to evaluate the effective removal of sulfonamide antibiotic residues and the potential generation of halogenated DBPs (H-DBPs) when chlorinated in aquaculture water.
Collapse
Affiliation(s)
- Xiaoyi Lou
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Zhiyuan Liu
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Changling Fang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yunyu Tang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jie Guan
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Yaoguang Guo
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Xuan Zhang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yongfu Shi
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Dongmei Huang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Youqiong Cai
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| |
Collapse
|
21
|
Li J, Xiong Z, Zeng K, Zhong D, Zhang X, Chen W, Nzihou A, Flamant G, Yang H, Chen H. Characteristics and Evolution of Nitrogen in the Heavy Components of Algae Pyrolysis Bio-Oil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6373-6385. [PMID: 33844510 DOI: 10.1021/acs.est.1c00676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Algae pyrolytic bio-oil contains a large quantity of N-containing components (NCCs), which can be processed as valuable chemicals, while the harmful gases can also be released during bio-oil upgrading. However, the characteristics of NCCs in the bio-oil, especially the composition of heavy NCCs (molecular weight ≥200 Da), have not been fully studied due to the limitation of advanced analytical methods. In this study, three kinds of algae rich in lipids, proteins, and carbohydrates were rapidly pyrolyzed (10-25 °C/s) at different temperatures (300-700 °C). The bio-oil was analyzed using a Fourier transform ion cyclotron resonance mass spectrometer equipped with electrospray ionization, and the characteristics and evolution of nitrogen in heavy components were first obtained. The results indicated that the molecular weight of most heavy NCCs was distributed in the 200-400 Da range. N1-3 compounds account for over 60% in lipid and protein-rich samples, while N0 and N4 components are prominent in carbohydrate-rich samples. As temperature increases, most NCCs become more aromatic and contain less O due to the strong Maillard and deoxygenation reactions. Moreover, the heavier NCCs were promoted to form lighter compounds with more nitrogen atoms through decomposition (mainly denitrogenation and deoxygenation). Finally, some strategies to deal with the NCCs for high-quality bio-oil production were proposed.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Zhe Xiong
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Kuo Zeng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 523000, China
| | - Dian Zhong
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Xin Zhang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Wei Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Ange Nzihou
- Université de Toulouse, Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, Albi Cedex 09 F-81013, France
| | - Gilles Flamant
- Processes Materials and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, Odeillo Font Romeu 66120, France
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| |
Collapse
|
22
|
Guo Y, Liu Z, Lou X, Fang C, Wang P, Wu G, Guan J. Insights into antimicrobial agent sulfacetamide transformation during chlorination disinfection process in aquaculture water. RSC Adv 2021; 11:14746-14754. [PMID: 35423964 PMCID: PMC8697773 DOI: 10.1039/d1ra01605a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/13/2021] [Indexed: 12/28/2022] Open
Abstract
Antibiotic addition and chlorination are two common processes in fishery culture. Antibiotic residues not only pollute aquaculture water, but are also one of the potential precursors of disinfection by-products (DBPs) during chlorination. The degradation kinetics, products identification and reaction mechanism of sulfacetamide (SFA), a new sulfonamides antibiotics, and potential formation of haloacetic acids (HAAs) in chlorination were explored. The results showed that the degradation of SFA followed pseudo first-order kinetic model, and chlorinating agent dose, pH of water, water temperature, NH4 +, HCO3 - and humic acid (HA) had various effects on the degradation of SFA and the yields of HAAs. The presence of Br- accelerated both the degradation rate of SFA and more formation of Br-DBPs. Through the identification of intermediate products, we proposed the transformation pathway of SFA during the chlorination disinfection process. Namely, in this NaClO disinfection system, the C-S bond between the sulfonyl group and benzene ring, and S-N bond between sulfonyl and acylamino of SFA were broken, and then the primary formed groups were further oxidized to produce intermediates, such as chloroanilines and chlorophenols. And then chlorophenols were subsequently chlorinated to form toxic HAAs. The present study might be of significance for the evaluation of effective degradation of SFA and potential production of halogenate-DBPs (H-DBPs) during the chlorination disinfection process in aquaculture water.
Collapse
Affiliation(s)
- Yaoguang Guo
- School of Environmental and Materials Engineering, Shanghai Polytechnic University Shanghai 201209 China
| | - Zhiyuan Liu
- School of Environmental and Materials Engineering, Shanghai Polytechnic University Shanghai 201209 China
- Laboratory of Quality Safety and Processing for Aquatic Product, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences Shanghai 200090 China
| | - Xiaoyi Lou
- Laboratory of Quality Safety and Processing for Aquatic Product, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences Shanghai 200090 China
| | - Changling Fang
- Laboratory of Quality Safety and Processing for Aquatic Product, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences Shanghai 200090 China
| | - Pu Wang
- School of Environmental and Materials Engineering, Shanghai Polytechnic University Shanghai 201209 China
| | - Genying Wu
- Longquan Branch of Lishui Municipal Ecological Environment Bureau Longquan 323700 China
| | - Jie Guan
- School of Environmental and Materials Engineering, Shanghai Polytechnic University Shanghai 201209 China
| |
Collapse
|
23
|
Ruan X, Xiang Y, Shang C, Cheng S, Liu J, Hao Z, Yang X. Molecular characterization of transformation and halogenation of natural organic matter during the UV/chlorine AOP using FT-ICR mass spectrometry. J Environ Sci (China) 2021; 102:24-36. [PMID: 33637249 DOI: 10.1016/j.jes.2020.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
UV/chlorine process, as an emerging advanced oxidation process (AOP), was effective for removing micro-pollutants via various reactive radicals, but it also led to the changes of natural organic matter (NOM) and formation of disinfection byproducts (DBPs). By using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), the transformation of Suwannee River NOM (SRNOM) and the formation of chlorinated DBPs (Cl-DBPs) in the UV/chlorine AOP and subsequent post-chlorination were tracked and compared with dark chlorination. In comparison to dark chlorination, the involvement of ClO•, Cl•, and HO• in the UV/chlorine AOP promoted the transformation of NOM by removing the compounds owning higher aromaticity (AImod) value and DBE (double-bond equivalence)/C ratio and causing the decrease in the proportion of aromatic compounds. Meanwhile, more compounds which contained only C, H, O, N atoms (CHON) were observed after the UV/chlorine AOP compared with dark chlorination via photolysis of organic chloramines or radical reactions. A total of 833 compounds contained C, H, O, Cl atoms (CHOCl) were observed after the UV/chlorine AOP, higher than 789 CHOCl compounds in dark chlorination, and one-chlorine-containing components were the dominant species. The different products from chlorine substitution reactions (SR) and addition reactions (AR) suggested that SR often occurred in the precursors owning higher H/C ratio and AR often occurred in the precursors owning higher aromaticity. Post-chlorination further caused the cleavages of NOM structures into small molecular weight compounds, removed CHON compounds and enhanced the formation of Cl-DBPs. The results provide information about NOM transformation and Cl-DBPs formation at molecular levels in the UV/chlorine AOP.
Collapse
Affiliation(s)
- Xiaoxue Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Cao D, Hao Z, Hu M, Geng F, Rao Z, Niu H, Shi Y, Cai Y, Zhou Y, Liu J, Kang Y. A feasible strategy to improve confident elemental composition determination of compounds in complex organic mixture such as natural organic matter by FTICR-MS without internal calibration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142255. [PMID: 33181978 DOI: 10.1016/j.scitotenv.2020.142255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Confident elemental composition determination of compounds in complex samples such as natural organic matter (NOM) by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is challenging due to the interference between multiple components in these samples during detection. Here the performance of Solarix 15T-FTICR-MS in terms of accurate relative natural isotope abundance (RIA) and mass measurements for elemental composition determination of compounds in complex samples such as NOM was systematically evaluated. The optimal sweep excitation power values ranging from 20% to 22% was found to significantly diminish the underestimation of RIA measurement for 13C1 peaks of NOM components by FTICR-MS. Random error was found to be one of the main sources for the RIA errors of 13C1 peaks with S/N ratios <25. The mean averaged RIA errors of less than 10% could be obtained by averaging the measured RIAs of each 13C1 peaks in five replicated runs. By adjusting the total ion abundance of NOM complex sample between 3.8-E7 and 1.4-E8 which was simultaneously similar to that of external calibrant during detection, mass errors of lower than 1 ppm for NOM components with m/z lower than 700 Da could be obtained without internal calibration. Meanwhile, a linear correlation between mass errors of ions in NOM complex sample and their m/z values could be obtained. The mass error deviation derived from the linearity was firstly used as new criterion to reduce the number of false formula candidates. A novel strategy of combination of high mass accuracy, high spectral accuracy, and mass error deviation for elemental composition determination of unknown compounds in complex sample such as NOM by FTICR-MS was proposed and applied for different complex samples. Compared to the traditional method, about one fold increasement in the number of the unique formula assignments for measured ions was obtained by using our strategy.
Collapse
Affiliation(s)
- Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ming Hu
- Central Lab, Navy General Hospital, PLA, 6 Fucheng Road, Haidian District, Beijing 100048, China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Yiqi Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| |
Collapse
|
25
|
Yang Z, Sun PF, Li X, Gan B, Wang L, Song X, Park HD, Tang CY. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15563-15583. [PMID: 33213143 DOI: 10.1021/acs.est.0c05377] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The separation properties of polyamide reverse osmosis and nanofiltration membranes, widely applied for desalination and water reuse, are constrained by the permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes incorporating nanomaterials exhibit enhanced water permeance, their rejection is only moderately improved or even impaired due to agglomeration of nanomaterials and formation of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) has emerged in recent years. These novel TFNi membranes show extraordinary improvement in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. Such enhancements can be achieved by a wide selection of nanomaterials, ranging from nanoparticles, one-/two-dimensional materials, to interfacial coatings. The use of nanostructured interlayers not only improves the formation of polyamide rejection layers but also provides an optimized water transport path, which enables TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy metals and micropollutants, which is critical for many environmental applications. This review critically examines the recent developments of TFNi membranes and discusses the underlying mechanisms and design criteria. Their potential environmental applications are also highlighted.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| |
Collapse
|
26
|
Spectral and mass spectrometric characteristics of different molecular weight fractions of dissolved organic matter. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Xiang Y, Gonsior M, Schmitt-Kopplin P, Shang C. Influence of the UV/H 2O 2 Advanced Oxidation Process on Dissolved Organic Matter and the Connection between Elemental Composition and Disinfection Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14964-14973. [PMID: 33179505 DOI: 10.1021/acs.est.0c03220] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The UV/H2O2 process is a promising advanced oxidation process (AOP) for micropollutant abatement in drinking water treatment and water reuse plants. However, during micropollutant degradation by the AOP, dissolved organic matter (DOM) and the disinfection byproduct (DBP) formation potential may also be altered. This study investigated the influence of the UV/H2O2 AOP on the elemental composition and DBP formation potential of two DOM isolates by using ultrahigh-resolution mass spectrometry (UHRMS). After the AOP, 629 new chemical formulas with an increased degree of oxidation and decreased aromaticity were obtained. Such alterations led to the formation of 226 unknown DBPs with decreased aromaticity indices (AImod) in the subsequent 3-day chlorination. Links between the unknown DBPs and the corresponding precursors in DOM were visualized by network computational analysis. The analysis gave three zones in the van Krevelen diagram based on the possibility of the C7-22HnOm formulas located in each zone to link to the corresponding DBPs. A further investigation with two model compounds reconfirmed the hydroxylation and ring cleavage of DOM by HO· attack during the AOP and the influence on DBP formation. These results obtained from UHRMS build the connection between the elemental composition of DOM and the formation potential of DBPs.
Collapse
Affiliation(s)
- Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong SAR
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, United States
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Neuherberg 85764, Germany
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 80333, Germany
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong SAR
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong SAR
| |
Collapse
|
28
|
Chen H, Lin T, Zhang S, Chen W, Xu H, Tao H. Covalent organic frameworks as an efficient adsorbent for controlling the formation of disinfection by-products (DBPs) in chlorinated drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141138. [PMID: 32795759 DOI: 10.1016/j.scitotenv.2020.141138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
2,5-Dimethyl-p-phenylenediamine-1,3,5-triformylphloroglucinol covalent organic frameworks (PATP COF) were prepared and used as novel adsorbent for controlling the formation potential (FP) and reducing the toxic potential of both carbonaceous disinfection by-products (C-DBPs) and nitrogenous DBPs (N-DBPs) during their subsequent chlorination. During the PATP COF adsorption pretreatment process, the FP of C-DBPs, N-DBPs and total organic halogen (TOX) were reduced by 86.5, 75.4 and 81.1%, respectively. These removal efficiencies were significantly higher when compared with those obtained using a traditional activated carbon (AC) adsorption pretreatment process (42.7, 19.4 and 28.7%, respectively). By comprehensive toxicity calculations, a significant reduction in both the acute and chronic toxic potential of C-DBPs and N-DBPs were observed during the PATP COF adsorption process (with reduction rates of ~85 and ~ 75% observed for the C-DBPs and N-DBPs, respectively), which were comparable to the removal efficiencies observed for C-DBPs FP and N-DBPs FP by weight, suggesting the simultaneous and effective control of DBPs FP and their toxic potential. Cycling tests and stability trial also showed the excellent reusability, wide pH adaptability, and high stability of PATP COF, demonstrating its great potential application to the treatment of drinking water.
Collapse
Affiliation(s)
- Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shisheng Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
29
|
Zhang X, Han J, Zhang X, Shen J, Chen Z, Chu W, Kang J, Zhao S, Zhou Y. Application of Fourier transform ion cyclotron resonance mass spectrometry to characterize natural organic matter. CHEMOSPHERE 2020; 260:127458. [PMID: 32693253 DOI: 10.1016/j.chemosphere.2020.127458] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Advances in the ultra-high-resolution mass spectroscopy lead to a deep insight into the molecular characterization of natural organic matter (NOM). Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been used as one of the most powerful tools to decipher NOM molecules. In FTICR-MS analysis, the matrix effects caused by the co-occurring inorganic substances in water samples greatly affect the ionization of NOM molecules. The inherent complexity of NOM may hinder its component classification and formula assignment. In this study, basic principles and recent advances for sample separation and purification approaches, ionization methods, and the evolutions in formula assignment and data exploitation of the FTICR-MS analysis were reviewed. The complementary characterization methods for FTICR-MS were also reviewed. By coupling with other developed/developing characterization methods, the statistical confidence for inferring the NOM compositions by FTICR-MS was greatly improved. Despite that the refined separation procedures and advanced data processing methods for NOM molecules have been exploited, the big challenge for interpreting NOM molecules is to give the basic structures of them. Online share of the FTICR-MS data, further optimizing the FTICR-MS technique, and coupling this technique with more characterization methods would be beneficial to improving the understanding of the composition and property of NOM.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China.
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
30
|
Fu QL, Fujii M, Kwon E. Development and Application of a High-Precision Algorithm for Nontarget Identification of Organohalogens Based on Ultrahigh-Resolution Mass Spectrometry. Anal Chem 2020; 92:13989-13996. [PMID: 32942845 DOI: 10.1021/acs.analchem.0c02899] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brominated and/or chlorinated organic compounds (referred to as organohalogens) are frequently detected in natural and engineered environments. However, ultrahigh-resolution mass spectrometry (UHR-MS)-based nontargeted identification of organohalogens remains challenging because of the coexistence of a vast number of halogenated and nonhalogenated organic molecules. In this study, a new algorithm, namely, the NOMDBP code, was developed to simultaneously identify organohalogens and non-organohalogens from the UHR-MS spectra of natural and engineered waters. In addition to isotopic patterns, for the first time, three optional filter rules [i.e., selection for minimum nonoxygen heteroatoms, inspection of the presence of newly formed halogenated disinfection byproducts (Xn-DBPs), and of their precursors] were incorporated into our code, which can accurately identify DBP-associated peaks and further elucidate Xn-DBP generation and transformation mechanisms. The formula assignment ratio against 2815 previously reported organohalogens, and their 11,583 isotopologues exceeded 97%. Application of our algorithm to disinfected natural organic matter indicated that oxygen-containing Xn-DBP species accounted for a majority of the Xn-DBPs. Furthermore, brominated Xn-DBPs (Br-DBPs) were characterized by a higher degree of unsaturation compared to chlorinated Xn-DBPs. In addition to electrophilic substitution and electrophilic addition reactions, the decomposition/transformation pathway was found to be another important mechanism in Br-DBP formation. The results of this study highlight the superior potential of our code for the efficient detection of yet unknown organohalogens (including organohalogens bearing nonoxygen heteroatoms) in a nontargeted manner and for the identification of their generation mechanism occurring during the disinfection process.
Collapse
Affiliation(s)
- Qing-Long Fu
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
31
|
Romano A, Urtiaga AM, Ortiz I. Optimized energy consumption in electrochemical-based regeneration of RAS water. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Liu X, Liu R, Zhu B, Ruan T, Jiang G. Characterization of Carbonyl Disinfection By-Products During Ozonation, Chlorination, and Chloramination of Dissolved Organic Matters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2218-2227. [PMID: 31961661 DOI: 10.1021/acs.est.9b04875] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbonyl compounds are an important class of by-products that are generated in disinfection reactions. These chemicals are ingredients contributing to toxicology in the drinking water system, the compositions and structures of which are worthy of attention. In this study, a chemical derivatization method based on simultaneous light/heavy isotope labeling was established for general recognition of carbonyl compounds and carbonyl disinfection by-products (DBPs) as per the humic substance reference standard (Suwannee river fulvic acid II, SRFA) before and after ozonation, chlorination, and chloramination. Decomposition of macromolecular components into polar carbonyl species was observed to be the most prominent pathway in ozone treatment due to the efficient reactivity of ozone with phenols and alkoxy aromatic rings. As a result, alteration of molecular characteristics was noticed. For instance, ozone-induced carbonyl DBPs in the highly oxygenated compound classes (0.67 ≤ O/C ≤ 1.2, 0.6 < H/C ≤ 1.5) possessed higher O/C but contained less oxygen numbers and carbon numbers. Cl/Br-carbonyl-DBPs were identified after chlorination and chloramination, and I-carbonyl-DBPs were found in ozone and chloramine treatments. Several major halogenated carbonyl homologues were further recognized, including halogenated 4-oxobutenoic acid analogues, halogenated 2,5-dioxohex-3-enoic acid analogues, and halogenated 4-cyclopentene-1,3-diones analogues. These findings illustrate the presence of abundant carbonyl DBPs in water disinfection, and hence their impacts on human health deserve further investigation.
Collapse
Affiliation(s)
- Xueke Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ruirui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
33
|
Hao Z, Shi F, Cao D, Liu J, Jiang G. Freezing-Induced Bromate Reduction by Dissolved Organic Matter and the Formation of Organobromine Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1668-1676. [PMID: 31935071 DOI: 10.1021/acs.est.9b07902] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The freezing-induced acceleration of bromate reduction by humic substances (HS) contributes to HS bromination and the formation of organobromine compounds (OBCs). Herein, we report the enhanced reduction of bromate by dissolved organic matter and the formation of large amounts of OBCs in freezing solutions. After 48 h of freezing process, 78.1-100% of bromate was reduced by DOM at different initial concentrations of bromate and DOM in acidic solutions (pH 3 and 4). Bromide was one of the main reduction products, and it accounted for 30.9-47.8% of the total bromine content. Except for bromide, a large amount of OBCs formed by brominating DOM with reactive bromine species, like hypobromite, were detected. The conversion of bromate to OBCs, calculated as the total organobromine content to the initial bromate content, ranged from 28.2 to 52.5% and was mainly dependent on the bromate/DOM content. About 110-603 species of OBCs were detected by Fourier transform ion cyclotron resonance mass spectrometry, and they were primarily highly unsaturated and phenolic compounds. By analyzing the spectral variation before and after the freezing process, we found the disappearance of 900 compounds containing only C, H, and O with a low carbon oxidation state that was regarded as the main reductant of bromate. Our findings call for further investigation of the processes and the effects of bromate formation in aqueous environments.
Collapse
Affiliation(s)
- Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Fengqiong Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| |
Collapse
|
34
|
Mangalgiri KP, Patton S, Wu L, Xu S, Ishida KP, Liu H. Optimizing Potable Water Reuse Systems: Chloramines or Hydrogen Peroxide for UV-Based Advanced Oxidation Process? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13323-13331. [PMID: 31635452 DOI: 10.1021/acs.est.9b03062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The tapping of municipal wastewater for potable reuse significantly enhances drinking water supply in drought-stricken regions worldwide. Membrane-based potable reuse treatment trains commonly employ ultraviolet-based advanced oxidation processes (UV-AOPs) to degrade trace organic contaminants in water to produce high-quality recycled water. Hydrogen peroxide (H2O2) is used as the default photo-oxidant. Meanwhile, chloramines, which are added to prevent biofouling, pass through the membranes and impact the treatment efficiency of UV-AOP. Water reuse facilities therefore face the dilemma of optimizing H2O2 (an added photo-oxidant) and chloramines (a carry-over photo-oxidant) doses. Utilizing a uniquely designed pilot-scale reactor and real-time recycled water, we evaluated treatment efficiencies of UV-AOP on six important indicator contaminants, with monochloramine (NH2Cl) and H2O2 as photo-oxidants. Hydroxyl radical (HO•) and reactive chlorine species, such as the chlorine atom (Cl•) and chlorine dimer (Cl2•-), were the major reactive species. Overall, radicals generated from photolysis of NH2Cl alone achieved removal of indicator compounds, which can be further improved by optimizing UV fluence, i.e., the UV dose. Furthermore, the addition of H2O2 enhanced HO• formation and improved contaminant removal. However, the addition of H2O2, when the background NH2Cl level was above 2 mg L-1 (as Cl2), provided limited improvement in treatment efficiency. These trade-offs between chloramine and H2O2 as oxidants, and the recommended optimization of the associated effective UV fluence, are critical for energy-efficient and cost-effective potable reuse to address the challenges of global water scarcity.
Collapse
Affiliation(s)
- Kiranmayi P Mangalgiri
- Department of Chemical and Environmental Engineering , University of California , Riverside , California 92521 , United States
| | - Samuel Patton
- Department of Chemical and Environmental Engineering , University of California , Riverside , California 92521 , United States
- Program of Environmental Toxicology , University of California , Riverside , California 92521 , United States
| | - Liang Wu
- Department of Chemical and Environmental Engineering , University of California , Riverside , California 92521 , United States
- Program of Environmental Toxicology , University of California , Riverside , California 92521 , United States
| | - Shanhui Xu
- Department of Chemical and Environmental Engineering , University of California , Riverside , California 92521 , United States
| | - Kenneth P Ishida
- Research & Development Department , Orange County Water District , Fountain Valley , California 92708 , United States
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering , University of California , Riverside , California 92521 , United States
- Program of Environmental Toxicology , University of California , Riverside , California 92521 , United States
| |
Collapse
|
35
|
Ziegler G, Gonsior M, Fisher DJ, Schmitt-Kopplin P, Tamburri MN. Formation of Brominated Organic Compounds and Molecular Transformations in Dissolved Organic Matter (DOM) after Ballast Water Treatment with Sodium Dichloroisocyanurate Dihydrate (DICD). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8006-8016. [PMID: 31194530 DOI: 10.1021/acs.est.9b01064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Estuarine water treated with a ballast water management system (BWMS) using a solution of dissolved dichloroisocyanurate dihydrate (DICD) resulted in the formation of newly described brominated disinfection byproducts (Br-DBPs). Analysis of dissolved organic matter (DOM) in untreated water with ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) identified 3897 m/z ions and their exact molecular formulas. After DICD treatment, a total of 213 halogenated molecular ions with relative abundance of at least 1% were assigned and confirmed using isotope simulation. Halogenated ions were assigned in four DBP elemental groups including CHOBr (180), CHONBr (13), CHOCl (16), and CHOBrCl (4). Forty-nine of the 197 brominated formulas have not been previously reported. We also were able to tentatively assign possible structures to the formula C3HBr3N2 due to very limited isomeric possibilities. The tentatively assigned compound found at 6.4% relative abundance was identified as either tribromoimidazole or tribromopyrazole. Our results show the formation of complex halogenated DBPs that are formed in the treatment of water with a novel BWMS that employs granular DICD as a biocide. The toxicological and mutagenic properties as well as the fate of these newly identified brominated DBPs are unknown.
Collapse
Affiliation(s)
- Gregory Ziegler
- University of Maryland , College of Agriculture and Natural Resources, Wye Research and Education Center , Queenstown , Maryland 21658 , United States
| | - Michael Gonsior
- University of Maryland Center for Environmental Science , Chesapeake Biological Laboratory , Solomons , Maryland 20688 , United States
| | - Daniel J Fisher
- University of Maryland , College of Agriculture and Natural Resources, Wye Research and Education Center , Queenstown , Maryland 21658 , United States
- University of Maryland , College of Agriculture and Natural Resources, Department of Environmental Science and Technology , College Park , Maryland 20742 , United States
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen , Research Unit Analytical BioGeoChemistry , D-85764 Neuherberg , Germany
- Technische Universität München , Chair of Analytical Food Chemistry , D-85354 Freising-Weihenstephan , Germany
| | - Mario N Tamburri
- University of Maryland Center for Environmental Science , Chesapeake Biological Laboratory , Solomons , Maryland 20688 , United States
| |
Collapse
|
36
|
Yang X, Ou W, Xi Y, Chen J, Liu H. Emerging Polar Phenolic Disinfection Byproducts Are High-Affinity Human Transthyretin Disruptors: An in Vitro and in Silico Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7019-7028. [PMID: 31117532 DOI: 10.1021/acs.est.9b00218] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phenolic disinfection byproducts (phenolic-DBPs) have been identified in recent years. However, the toxicity data for phenolic-DBPs are scarce, hampering their risk assessment and the development of regulations on the acceptable concentration of phenolic-DBPs in water. In this study, the binding potency and underlying interaction mechanism between human transthyretin (hTTR) and five groups of representative phenolic-DBPs (2,4,6-trihalo-phenols, 2,6-dihalo-4-nitrophenols, 3,5-dihalo-4-hydroxybenzaldehydes, 3,5-dihalo-4-hydroxybenzoic acids, halo-salicylic acids) were determined and probed by competitive fluorescence displacement assay integrated with in silico methods. Experimental results implied that 2,4,6-trihalo-phenols, 2,6-dihalo-4-nitrophenols, and 3,5-dihalo-4-hydroxybenzaldehydes have a high binding affinity with hTTR. The hTTR binding potency of the chemicals with electron-withdrawing groups on their molecular structures were higher than that with electron-donor groups. Molecular modeling methods were used to decipher the binding mechanism between model compounds and hTTR. The results documented that ionic pair, hydrogen bonding and hydrophobic interactions were dominant interactions. Finally, a mechanism-based model for predicting the hTTR binding affinity was developed. The determination coefficient ( R2), leave-one-out cross validation Q2 ( QLOO2), bootstrapping coefficient ( QBOOT2), external validation coefficient ( QEXT2) and concordance correlation coefficient ( CCC) of the developed model met the acceptable criteria ( Q2 > 0.600, R2 > 0.700, CCC > 0.850), implying that the model had good goodness-of-fit, robustness, and external prediction performances. All the results indicated that the phenolic-DBPs have the hTTR disrupting effects, and further studies are needed to investigate their other mechanism of endocrine disruption.
Collapse
Affiliation(s)
- Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- Nanjing Institute of Environmental Science , Ministry of Ecology and Environment of the People's Republic of China , Nanjing 210042 , China
| | - Wang Ou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Yue Xi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| |
Collapse
|
37
|
Zhang B, Shan C, Hao Z, Liu J, Wu B, Pan B. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity. WATER RESEARCH 2019; 157:472-482. [PMID: 30981978 DOI: 10.1016/j.watres.2019.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 05/21/2023]
Abstract
As one of the key economic modes in China, chemical industry park (CIP) has made great contribution to the Chinese rapid economic growth. Concomitantly, how to effectively and safely dispose of the CIP wastewater (CIPWW) has been an unavoidable issue. Molecular transformation of dissolved organic matter (DOM) in CIPWW treatment is essential to optimize the employed process and to provide solid basis for risk evaluation of the discharged effluent as well. In this study, electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) was used to characterize the molecular transformation of DOM during full-scale treatment of integrated chemical wastewater in a centralized wastewater treatment plant (CWWTP), where the combined process follows hydrolysis/acidification (HA)-flocculation/precipitation (FP)-A2/O-membrane bioreactor (MBR)-ultrafiltration (UF)-reverse osmosis (RO). Compared to municipal wastewater, DOM in CIPWW exhibited higher unsaturation degree, lower molecular weight, and higher toxicity. In FP unit, DOM of C<24 and higher nominal oxidation state of carbon (NOSC) values was preferentially removed. The HA and anaerobic units are capable of significantly degrading DOM, resulting in great changes in molecular composition of DOM. However, the anoxic, oxic, and MBR units only lead to a slight change of the molecular formulae. The terminal units of UF and RO can remove most DOM, with the concentration of dissolved organic carbon (DOC) declining by 19.2% and 94.6% respectively. The correlation between spectral indexes and acute toxicity with the molecular formulae of DOM suggested that polyphenols and highly unsaturated phenols were positively correlated with the specific UV absorbance at 254 nm (SUVA254). In addition, both compounds (0.32 < O/C < 0.63) as well as the aliphatic ones (0.22 < O/C < 0.56) presented positive correlation with acute toxicity. Further, the pairwise correlation analysis illustrated that SUVA254, O/Cwa, double bond equivalence (DBEwa), and NOSCwa were positively correlated with each other, whereas the acute toxicity was positively correlated with humification index (HIX), O/Cwa, and DBEwa.
Collapse
Affiliation(s)
- Bingliang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
38
|
Padhi RK, Subramanian S, Satpathy KK. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO 2-,andClO 3-) during treatment of different source water with chlorine and chlorine dioxide. CHEMOSPHERE 2019; 218:540-550. [PMID: 30500715 DOI: 10.1016/j.chemosphere.2018.11.100] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Formation potential and speciation characteristics of two important groups of disinfection byproducts (DBPs), namely, trihalomethanes (THMs) and haloacetic acids (HAAS), during Cl2 and ClO2 treatment of water samples collected from three different sources, namely, sea, river, and reservoir, were investigated with reference to key controlling parameters. Formation of inorganic DBPs such as chlorate and chlorite was evaluated. Dissolved organic carbon (DOC) and UV absorbance (UV254) of the sea, river, and reservoir samples were 3.35 ± 0.05, 3.12 ± 0.05, and 3.23 ± 0.05 mg/L and 0.062 ± 0.01, 0.074 ± 0.01, and 0.055 ± 0.01 cm-1, respectively. For Cl2 and ClO2 treatments, the respective formation potential of THMs and HAAs from the three water sources studied exhibited unidentical trend suggesting that higher THM formation was not necessarily associated with higher HAA formation. On chlorination, the concentrations of total HAAs formed were 9.8 μg/L (sea), 12.8 μg/L (river), and 20.6 μg/L (reservoir) and total THM yields were 38.3 μg/L (sea), 18.8 μg/L (river), and 21.5 μg/L (reservoir) for a Cl2 dose of 1 mg/L and 30 min reaction time. The trend of formation of THMs and HAAs for Cl2 treatment was similar to that for ClO2 treatment. However, the amount of HAAs (3.5 μg/L (sea), 1.8 μg/L (river), and 1.9 μg/L (reservoir)) and THMs (not detected) formed was much lower than that formed during chlorination. Regardless of source water type, di-HAAs were the most favored HAAs, followed by tri-HAAs with a small amount of mono-HAAs formed for both Cl2 and ClO2 treatment. Chlorination yielded more THMs than HAAs, whereas it was reverse for chlorine dioxide treatment. Irrespective of treatment with ClO2 or Cl2, seawater samples showed the highest bromine incorporation percentage (BIP) in both THMs and HAAs followed by that for river and reservoir water samples. HAAs were found to be always associated with lower amount of BIP than THMs.
Collapse
Affiliation(s)
- R K Padhi
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102, India; Health Safety and Environment Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
| | - S Subramanian
- Health Safety and Environment Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India
| | - K K Satpathy
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102, India; Health Safety and Environment Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
| |
Collapse
|