1
|
Wang X, Wang J, Wu X, Ning P, Lynch I. Intrinsic linkage of double S-scheme heterojunctions based on Fe@Bi 2MoO 6@BiOI construction for photodegradation of tetracyclines: Enhanced antibiotic mineralization and detoxification. ENVIRONMENTAL RESEARCH 2025; 277:121575. [PMID: 40209988 DOI: 10.1016/j.envres.2025.121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
This paper presents the design and evaluation of a novel photocatalyst, Fe@Bi2MoO6@BiOI, featuring a double S-scheme-type heterojunction aimed at enhancing antibiotic removal and degradation. This innovative configuration promotes a high degree of dispersion of nano-zero-valent iron (NZVI), significantly improving the removal efficiency of antibiotics and the deep mineralization of tetracycline (TC). The optical properties of the NZVI passivation layer were confirmed through characterization techniques, demonstrating energy band structural alignment with Bi2MoO6 and BiOI, which facilitated the effective construction of the heterojunction. The phot catalytic efficiency of the Fe@Bi2MoO6@BiOI catalyst was measured to be 1.24, 3.93, and 4.61 times greater than that of pure Fe0, BiOI, and Bi2MoO6, respectively, achieving a mineralization rate of 75.02 %. This impressive catalytic performance is attributed to the reducing properties of Fe0 and the generation of key reactive species, including •O2-, •OH, and h+. Furthermore, through LC-MS analysis, three degradation pathways for TC were elucidated, revealing that the toxicity of the degraded TC solution was significantly reduced, as confirmed by toxicity assessments and biocultivation experiments. This study underscores the potential of NZVI-based dual S-scheme-type heterojunctions for addressing antibiotic contamination and creatively illustrates the heterogeneous photo-Fenton degradation capabilities of these structures. The results highlight the synergistic effect of dual heterojunctions and provide new ideas for future applications in environmental remediation.
Collapse
Affiliation(s)
- Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jiangang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xi Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Zhang M, Ma J, Du W, Zhou Y, Pang S, Ye Z. A novel environmentally friendly catalyst for the preparation and degradation of DNT in dynamite wastewater: Performance, mechanism and application. ENVIRONMENTAL RESEARCH 2025; 276:121488. [PMID: 40158871 DOI: 10.1016/j.envres.2025.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
This study proposes a novel approach to sustainable recycling through the preparation of a JCA5Fe@CNs catalyst, which demonstrates excellent performance. The catalyst was synthesized by loading nZVI onto biomass carbon-based precursors using a chemical modification-pyrolysis technique, with discarded date palm as the raw material. The new catalysts were prepared for a wide range of pH conditions and neutral conditions were preferred. The catalyst was able to degrade approximately 80 % of 2,4-Dinitrotoluene (2,4-DNT, 20 mg/L) within 5 min, with a maximum degradation rate constant (k) of 1.42162 min-1. Synchrotron radiation and density functional theory (DFT) calculations confirmed that the catalytic performance and stability of nZVI were significantly enhanced when incorporated into date-palm-based biomass carbon carriers. The degradation mechanism of 2,4-DNT was investigated using EPR and quenching experiments, revealing that reactive oxygen species (ROS) generated during the reaction involved both radical and non-radical pathways. HPLC-MS analysis identified several reaction intermediates, and potential degradation pathways for 2,4-DNT were proposed. Finally, a flow wastewater model was constructed to evaluate the catalyst's performance in 2,4-DNT degradation under a flow system, assessing its practical application potential. In conclusion, the JCA5Fe@CNs catalyst, prepared using the modification-pyrolysis strategy, shows promising potential for the treatment of challenging organic wastewater.
Collapse
Affiliation(s)
- Mohe Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China; Ordnance Science and Research Academy of China, Beijing, 100089, China.
| | - Jinmao Ma
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Wuxuan Du
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yujie Zhou
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
3
|
Shu Z, Yang H, Ye S, Li H, Yang Z, Li C, Tan X, Liu S, Wang H. Iron scrap derived nano zero-valent iron/biochar activated persulfate for p-arsanilic acid decontamination with coexisting microplastics. J Environ Sci (China) 2025; 151:733-746. [PMID: 39481977 DOI: 10.1016/j.jes.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 11/03/2024]
Abstract
P-arsanilic acid (AA) has received widespread attention because of its conversion to more toxic inorganic arsenic compounds (arsenate and arsenite) in the natural ecosystems. Its removal process and mechanisms with co-existence of microplastics remain unkown. In this study, biochar loaded with nano zero-valent iron (nZVI) particles (ISBC) was prepared by using iron scrap obtained from a steel works and wood chips collected from a wood processing plant. The advanced oxidation system of sodium persulfate (PDS) activated by ISBC was applied for AA degradation and inorganic arsenic control in aqueous media. More than 99% of the AA was completely degraded by the ISBC/PDS system, and the As(III) on AA was almost completely oxidized to As(V) and finally removed by ISBC. HCO3- inhibited the removal of AA by the ISBC/PDS system, while Cl- had a dual effect that showing inhibition at low concentrations yet promotion at high concentrations. The effect of microplastics on the degradation of AA by the ISBC/PDS system was further investigated due to the potential for combined microplastic and organic arsenic contamination in rural/remote areas. Microplastics were found to have little effect on AA degradation in the ISBC/PDS system, while affect the transport of inorganic arsenic generated from AA degradation. Overall, this study provides new insights and methods for efficient removal of p-arsanilic acid from water with coexisting microplastics.
Collapse
Affiliation(s)
- Zihan Shu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, China
| | - Shujing Ye
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhiming Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chuang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, China.
| | - Shaobo Liu
- School of Architecture and Art, Central South University, Changsha 410083, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
4
|
Fdez-Sanromán A, Rosales E, Pazos M, Sanromán A. One-pot synthesis of bimetallic Fe-Cu metal-organic frameworks composite for the elimination of organic pollutants via peroxymonosulphate activation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10592-10607. [PMID: 37853214 PMCID: PMC11996936 DOI: 10.1007/s11356-023-30026-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
A series of bimetallic of FeCu metal-organic frameworks (MOFs) have been synthesised using a solvothermal process by varying the ratio between the two metals. Further, the bimetallic MOF catalysts were characterised by X-ray powder diffraction, scanning electron microscopy, and infrared spectroscopy techniques. Their catalytic properties for activation of peroxymonosulphate (PMS) have been tested by the removal of a model dye, rhodamine B. As a result, NH2-Fe2.4Cu1-MOF demonstrated the highest degradation, the effect of the ratio NH2-Fe2.4Cu1-MOF/PMS has been studied, and the main reactive species have been assessed. The application of these MOFs in powder form is difficult to handle in successive batch or flow systems. Thus, this study assessed the feasibility of growing NH2-Fe2,4Cu1-MOF on polyacrylonitrile (PAN) spheres using the one-pot solvothermal synthesis method. The optimisation of the catalytic activity of the synthesised composite (NH2-Fe2.4Cu1-MOF@PAN) has been evaluated by response surface methodology using a central composite face-centred experimental design matrix and selecting as independent variables: time, PMS concentration, and catalyst dosage. Based on the results, the optimisation of the operational conditions has been validated. At 2.5 mM PMS, 90 min, and 1.19 g·L-1 of catalyst dosage, maximum degradation (80.92%) has been achieved, which doubles the removal values obtained in previous studies with other MOFs. In addition, under these conditions, the catalyst has been proven to maintain its activity and stability for several cycles without activity loss.
Collapse
Affiliation(s)
- Antía Fdez-Sanromán
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Emilio Rosales
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Marta Pazos
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Angeles Sanromán
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
5
|
Wang X, Zhang P, Wang W, Rončević SAD, Sun H. New Insights into the Role of Crystalline Fe 3P in Phosphatized Zerovalent Iron for Enhancing Advanced Oxidation Processes and Storage Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6319-6330. [PMID: 40107854 DOI: 10.1021/acs.est.4c14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Zerovalent iron (ZVI) is a widely utilized remediation agent for contaminated soil and groundwater; however, it has consistently faced the challenge of balancing catalytic activity with storage stability. Herein, submicron ZVI particles were phosphatized to produce phosphatized ZVI (P-ZVI), which was employed to activate peroxydisulfate (PDS) for phenol degradation. As anticipated, phosphatization significantly enhanced both the storage stability (>10 months vs 1 d) and catalytic activity (4.37 vs 0.12 L m-2 h-1) of ZVI compared to unphosphatized counterparts attributed to the formation of a crystalline Fe3P shell on P-ZVI. This Fe3P shell selectively interacts with H2O/O2/PDS, maintaining the stability of P-ZVI under high humidity and oxygen conditions while creating mass transfer channels that enhance reactivity in the presence of PDS. Characterization results from the reaction process demonstrated that the Fe3P shell activated PDS through both direct (via Fe cations) and indirect pathways (through a phosphorus anion-mediated Fe3+/Fe2+ cycle), generating reactive species and facilitating mass transfer between core Fe0 and external PDS for efficient PDS activation and phenol degradation. This study elucidates how constructing an Fe3P shell can realize selective activation of PDS while simultaneously enhancing both the storage and catalytic stabilities of ZVI, thereby boosting the practical application of PDS-based advanced oxidation processes in various environmental remediation.
Collapse
Affiliation(s)
- Xinhua Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Wenjiang Wang
- CCCC-TDC Environmental Engineering Co.Ltd., Tianjin 300450, China
| | - Srd An D Rončević
- University Novi Sad, Fac Sci, Trg Dositeja Obradovica 3, Novi Sad 21000, Serbia
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
6
|
Luo Q, Zhuang W, Sui M. Combating Antibiotic Resistance in Persulfate-Based Advanced Oxidation Processes: Activation Methods and Energy Consumption. ENVIRONMENTAL RESEARCH 2025; 270:120932. [PMID: 39864723 DOI: 10.1016/j.envres.2025.120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) have become increasing concerning issues, threatening human health. Persulfate-based advanced oxidation processes (PS-AOPs), due to their remarkable potential in combating antibiotic resistance, have garnered significant attention in the field of disinfection in recent years. In this review, we systematically evaluated the efficacy and underlying mechanism of PS integration with various activation methods for the elimination of ARB/ARGs. These approaches encompass physical methods, catalyst activation, and hybrid techniques with photocatalysis, ozonation, and electrochemistry. Additionally, we employed Chick's model and electrical energy per log order (EE/O) to assess the performance and energy efficiency, respectively. This review aims at providing a guide for future investigation on PS-AOPs for antibiotic resistance control.
Collapse
Affiliation(s)
- Qianqian Luo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Wei Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
7
|
Wang M, Deng M, Zhao G, Fan Y, Liu T, Huang Y, Peng L, Fu H, Fang S. Optimizing the thiosulfate-mediated zerovalent iron/persulfate activation systems: Trade-off between Fe(III)/Fe(II) cycling and quenching effects in environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124817. [PMID: 40086275 DOI: 10.1016/j.jenvman.2025.124817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
The remediation of organic-contaminated water is a critical environmental challenge, and iron-based persulfate (PS) activation processes have emerged as a promising solution. However, the introduction of reductive sulfur species, while accelerating the Fe(III)/Fe(II) redox cycle, may also quench reactive species, potentially compromising the efficiency of Fenton-like systems. Here we systematically investigate the trade-off between accelerated Fe(III)/Fe(II) cycling and quenching effects in the zerovalent iron/PS (ZVI/PS) system using thiosulfate (TSF) as an activator. Our results show that low-level TSF (0.03-1.00 mmol/L) effectively facilitated the removal of naphthalene (Nap) and atrazine (ATZ), respectively. This enhancement is attributed to accelerated ZVI dissolution and FeSx formation, which promote the Fe(III)/Fe(II) cycle, with Fe(IV) was identified as the primary active species. However, high-level TSF (>1.0 mmol/L) drastically reduced Nap removal due to PS consumption and active species elimination. The optimal TSF dosage of 0.20 mmol/L (TSF/PS molar ratio of 1:10) demonstrated robust organic pollutant degradation, achieving a 22-fold increase in the rate constant (kobs) for Nap removal and 0.47-7.5-fold increases for ATZ removal. These findings highlight the potential of the TSF-ZVI/PS system as a versatile and efficient solution for degrading a wide range of organic pollutants, including PAHs and herbicides, in water treatment applications.
Collapse
Affiliation(s)
- Maolin Wang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Mi Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Gang Zhao
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Yanchun Fan
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Tianwen Liu
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Ying Huang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Lan Peng
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Haoyang Fu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore.
| | - Shengqiong Fang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
8
|
Yan J, Guo Z, Sun Y, Yan Z, Liu R, Chen Y, Song J. Mechanism insight into sulfidated nano zero-valent iron/biochar activated persulfate for highly efficient degradation of p-chloroaniline. CHEMOSPHERE 2025; 375:144229. [PMID: 40015011 DOI: 10.1016/j.chemosphere.2025.144229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/21/2025] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Nano zero-valent iron (nZVI) and its composites utilized as persulfate (PS) activators has attracted extensive attention for the complete oxidative degradation of organic contaminants. However, the intrinsic agglomeration and the passivation layer on nZVI surface seriously impeded the electronic transmission performance, which significantly decreased the utilization efficiency of nZVI. Herein, sulfidated nano zero-valent iron/biochar (S-nZVI/BC) was prepared by the co-sulfuration method via liquid phase reduction approach to promote PS activation for p-chloroaniline (PCA) degradation. The PCA removal efficiency reached 96.43% after 10 min of reaction, and the reaction rate constant (k) and the reaction stoichiometric efficiency (RSE) were 0.337 min-1 and 3.50% in the S-nZVI/BC500 activated PS system, which were 10.3 fold and 9.5 fold with respect to nZVI/BC, respectively. The reactive oxygen species (ROSS) of SO4•-, •OH and O2•- were generated and accounted for PCA degradation. The intermediates of p-chloronitrobenzene, chlorobutane, butanol and butyric acid were identified and the oxidative degradation pathways of PCA were proposed. The excellent performance of S-nZVI/BC for PS activation was attributed to the improved electron transfer capacity, enhanced conversion of Fe(III) to Fe(II), lower decomposition energy barrier of PS and less dissociation of Fe atom by S doping. This study provides an insight mechanism into S-nZVI/BC activated PS for highly efficient degradation of PCA in water.
Collapse
Affiliation(s)
- Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zihan Guo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuyuan Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; Changzhou University, Changzhou, 213164, China.
| | - Zichen Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yudong Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing, 210042, China.
| | - Jing Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
9
|
Kim C, Debusmann P, Abdighahroudi MS, Schumacher J, Lutze HV. Fenton-coagulation process for simultaneous abatement of micropollutants and dissolved organic carbon in treated wastewater. WATER RESEARCH 2025; 281:123583. [PMID: 40220649 DOI: 10.1016/j.watres.2025.123583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
This study demonstrates the integration of the Fenton reaction into the flocculation process at circumneutral pH (6-7), offering a practical approach for simultaneous micropollutant and organic matter removal in wastewater treatment. Unlike conventional Fenton oxidation, which requires acidic conditions, this approach allows Fe(II) to react with hydrogen peroxide at near-neutral pH, forming Fe(III) flocs that enhance flocculation while also generating reactive species for pollutant degradation. At pH 6, hydroxyl radicals were the dominant oxidants, whereas at pH 7, additional reactive species likely contributed to micropollutant removal. Bisphenol A and benzoic acid were removed by approximately 90% at 1 mM peroxide and 2 mM iron. In addition to micropollutant degradation, the Fenton-coagulation process achieved substantial dissolved organic carbon (DOC) removal, which was not observed with Fenton oxidation alone or ozonation. DOC removal was up to 51% in Suwannee River Natural Organic Matter solutions, whereas only 30% of DOC was removed from municipal wastewater effluent, likely due to differences in organic matter composition. These findings highlight the potential of Fenton-coagulation as an effective and scalable treatment strategy for wastewater reuse, improving both pollutant degradation and organic matter removal under practical conditions.
Collapse
Affiliation(s)
- Cheolyong Kim
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, Darmstadt 64287, Germany; Department of Environmental Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Philipp Debusmann
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, Darmstadt 64287, Germany
| | - Mohammad Sajjad Abdighahroudi
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, Darmstadt 64287, Germany
| | - Jochen Schumacher
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany; BHU Umwelttechnik GmbH, Einsteinstr. 57, 71229 Leonberg, Germany
| | - Holger V Lutze
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, Darmstadt 64287, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany; Kompetenzzentrum Wasser Hessen, Max-Von-Laue-Straße 13, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
10
|
Hajalilou A. Liquid Metal-Polymer Hydrogel Composites for Sustainable Electronics: A Review. Molecules 2025; 30:905. [PMID: 40005215 PMCID: PMC11858249 DOI: 10.3390/molecules30040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrogels, renowned for their hydrophilic and viscoelastic properties, have emerged as key materials for flexible electronics, including electronic skins, wearable devices, and soft sensors. However, the application of pure double network hydrogel-based composites is limited by their poor chemical stability, low mechanical stretchability, and low sensitivity. Recent research has focused on overcoming these limitations by incorporating conductive fillers, such as liquid metals (LMs), into hydrogel matrices or creating continuous conductive paths through LMs within the polymer matrix. LMs, including eutectic gallium and indium (EGaIn) alloys, offer exceptional electromechanical, electrochemical, thermal conductivity, and self-repairing properties, making them ideal candidates for diverse soft electronic applications. The integration of LMs into hydrogels improves conductivity and mechanical performance while addressing the challenges posed by rigid fillers, such as mismatched compliance with the hydrogel matrix. This review explores the incorporation of LMs into hydrogel composites, the challenges faced in achieving optimal dispersion, and the unique functionalities introduced by these composites. We also discuss recent advances in the use of LM droplets for polymerization processes and their applications in various fields, including tissue engineering, wearable devices, biomedical applications, electromagnetic shielding, energy harvesting, and storage. Additionally, 3D-printable hydrogels are highlighted. Despite the promise of LM-based hydrogels, challenges such as macrophase separation, weak interfacial interactions between LMs and polymer networks, and the difficulty of printing LM inks onto hydrogel substrates limit their broader application. However, this review proposes solutions to these challenges.
Collapse
Affiliation(s)
- Abdollah Hajalilou
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (Nova FCT), 2829-516 Caparica, Portugal
| |
Collapse
|
11
|
Hu X, Xing X, Zhang F, Li B, Chen S, Wang B, Qin J, Miao J. Activation of ClO 2 by Nanoscale Zero-Valent Iron for Efficient Soil Polycyclic Aromatic Hydrocarbon Degradation: New Insight into the Relative Contribution of Fe(IV) and Hydroxyl Radicals. TOXICS 2025; 13:36. [PMID: 39853034 PMCID: PMC11768630 DOI: 10.3390/toxics13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Recently, the activation of chlorine dioxide (ClO2) by metal(oxide) for soil remediation has gained notable attention. However, the related activation mechanisms are still not clear. Herein, the variation of iron species and ClO2, the generated reactive oxygen species, and the toxicity of the degradation intermediates were explored and evaluated with nanoscale zero-valent iron (nFe0) being employed to activate ClO2 for soil polycyclic aromatic hydrocarbon (PAH) removal. With an optimized ClO2/nFe0 molar ratio of 15:1 and a soil/water ratio of 3:1, the degradation efficiency of phenanthrene improved 12% in comparison with that of a ClO2-alone system. The presence of nFe0 significantly promoted ClO2 consumption (improved 85.4%) but restrained ClO2- generation (reduced 22.5%). The surface Fe(II) and soluble Fe(II) in the ClO2/nFe0 system was 2.0-fold and 2.8-fold that in the nFe0 system after 2 min. Electron paramagnetic resonance analysis, along with quenching experiments, revealed that Fe(IV), HOCl, and •OH dominated phenanthrene degradation in a ClO2/nFe0 system, with oxidation contributions, respectively, of 34.3%, 52.8% and 12.9%. The degradation intermediates of PAHs in the ClO2/nFe0 system had lower estimated toxicity than those of the ClO2 system. The lettuces grown in ClO2/nFe0-treated soil displayed better results in bioassay indexes than those grown in ClO2-treated soil. This study offers new perspectives for the remediation of organic-pollutant-contaminated soil by using metal-activated ClO2 technology.
Collapse
Affiliation(s)
- Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (X.H.); (X.X.); (F.Z.); (B.L.); (S.C.); (B.W.)
| | - Xiaorong Xing
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (X.H.); (X.X.); (F.Z.); (B.L.); (S.C.); (B.W.)
| | - Fan Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (X.H.); (X.X.); (F.Z.); (B.L.); (S.C.); (B.W.)
| | - Bingzhi Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (X.H.); (X.X.); (F.Z.); (B.L.); (S.C.); (B.W.)
| | - Senlin Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (X.H.); (X.X.); (F.Z.); (B.L.); (S.C.); (B.W.)
| | - Bo Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (X.H.); (X.X.); (F.Z.); (B.L.); (S.C.); (B.W.)
| | - Jiaolong Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (X.H.); (X.X.); (F.Z.); (B.L.); (S.C.); (B.W.)
| | - Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
12
|
Zou XM, Zhang T, Dong YH, Hu C, Yin L, Zheng YL, Li M, Xiao XY, Hui W. Enhanced removal of sulfonamide antibiotics in water using high-performance S-nZVI/BC derived from rice straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123955. [PMID: 39756288 DOI: 10.1016/j.jenvman.2024.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Sulfonamide antibiotics (SAs) are widely used in the biomedical field but pose an environmental risk as ecotoxic pollutants. Developing eco-friendly methods to degrade SAs into harmless compounds is crucial. In this work, biochar (BC) was prepared from rice straw via pyrolysis and used to support S-nZVI, thereby forming the S-nZVI/BC composites. The results show high SAs removal efficiency (up to 98.3%) at optimal Fe/C and Fe/S molar ratios of 3:1 and 50:1, respectively, with strong tolerance to coexisting ions. Furthermore, the effectiveness of S-nZVI/BC(Fe3/C1, Fe50/S1) sample was validated using five real wastewaters, and the results showed consistent performance, stability and reusability. Mechanistic studies revealed that S-nZVI/BC synergized with persulfate to enhance the reactivity of sulfate-free radical (SO4-·) and Fe2+. The degradation pathways of SAs, involving electrophilic substitution and nucleophilic attack, were elucidated by density functional theory (DFT) calculations. These insights were instrumental in comprehending the degradation mechanism of SAs. Additionally, the degradation dynamics of ten SAs were further analyzed using quantitative structure-activity relationship (QSAR) models and principal component analysis (PCA). Hence, this work highlights the potential of S-nZVI/BC for industrial wastewater treatment, providing insights into the degradation mechanisms and pathways of SAs.
Collapse
Affiliation(s)
- Xiao-Ming Zou
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Tiao Zhang
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yu-Hua Dong
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Cui Hu
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Li Yin
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yu-Ling Zheng
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Mi Li
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Xiao-Yu Xiao
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| | - Wei Hui
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
13
|
Nguyen QB, Kim C, Hwang I. Roles of silica coating on nanosized zero-valent iron in sequential reduction-oxidation process in a system containing persulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135946. [PMID: 39326144 DOI: 10.1016/j.jhazmat.2024.135946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
A sequential reduction-oxidation process using silica-coated nanosized zero-valent iron (nZVI) particles (nZVI@SiO2) and persulfate for mineralizing recalcitrant compounds was developed, and the effects of the process on nitrobenzene were evaluated. This sequential process significantly enhanced contaminant mineralization, which could not be effectively achieved by reduction or oxidation alone. The nZVI@SiO2 rapidly reduced nitrobenzene to aniline, then the aniline concentration gradually decreased after persulfate had been added and initiated sequential oxidative degradation. The SiO2 coating on the nZVI@SiO2 limited outward mass transfer of reaction products and increased the efficiency with which nitrobenzene was converted into aniline. Slow release of Fe(II) caused by the coating caused persulfate activation and subsequent aniline oxidation to be more sustained and efficient than without the coating. The final nitrobenzene-aniline mineralization efficiency was higher for the nZVI@SiO2/persulfate system than the nZVI/persulfate system. The SiO2 coating of the nZVI@SiO2 particles was an excellent protective layer, protecting the particles from undesirable consumption through reactions with groundwater components. nZVI@SiO2 particle transformations during the sequential process were investigated, and the operating conditions were optimized to maximize the recalcitrant compound removal efficiency. The results indicated that nZVI@SiO2 and persulfate could be used to mineralize organic contaminants in groundwater through sequential reduction-oxidation.
Collapse
Affiliation(s)
- Quoc Bien Nguyen
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Cheolyong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Technical University of Darmstadt, Franziska-Braun-Straße 7, Darmstadt 64287, Germany; Department of Environmental Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Inseong Hwang
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
14
|
Zeng G, Liang D, Fan X, He Y, Zhang R, Lei X, Wei H, Sun D. Activated carbon fiber loaded nano zero-valent iron for Microcystis aeruginosa removal: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2024; 413:131538. [PMID: 39332695 DOI: 10.1016/j.biortech.2024.131538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Cyanobacterial blooms caused by Microcystis aeruginosa threaten environmental safety and daily life. In this study, an activated carbon fiber-supported nano zero-valent iron composite (ACF-nZVI) was developed to remove Microcystis aeruginosa. The results showed that nZVI was evenly distributed on the activated carbon fibers, preventing aggregation and oxidation. ACF-nZVI achieved a removal efficiency of more than 90 % within a pH range of 3-7. During the reaction, H2O2, which was generated by Fe0, was activated to form ·OH and ·O-2, which dismantled antioxidant enzymes and induced lipid peroxidation. Additionally, ACF-nZVI destroyed the cell wall and membrane, resulting in protein and humus leakage and causing 92.34 % cell damage and death. In this study, an environmentally friendly and stable nanomaterial was developed, offering a novel approach for the safe, cost-effective, and efficient removal of cyanobacteria.
Collapse
Affiliation(s)
- Guoming Zeng
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Academy of Science and Technology, Chongqing 401123, China; School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Dong Liang
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xuanhao Fan
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yu He
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Rui Zhang
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Lei
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Haoxuan Wei
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
15
|
Pei Y, Chen J, Cheng W, Huang W, Liu R, Jiang Z. A critical review of nitrate reduction by nano zero-valent iron-based composites for enhancing N 2 selectivity. Dalton Trans 2024; 53:16134-16143. [PMID: 39264277 DOI: 10.1039/d4dt02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Due to the highly reductive capacity of nano zero-valent iron (nZVI) nanoparticles, the reduction of nitrate (NO3--N) is prone to produce ammonia nitrogen (NH4+-N) as a by-product and has low selectivity for nitrogen gas (N2). Water and dissolved oxygen (DO) in the solution consume electrons from nZVI, decreasing the efficiency of NO3--N reduction. In order to overcome the drawbacks of plain nZVI being used to remove NO3--N pollution, nZVI-based multifunctional materials have been constructed to realize the selective conversion of NO3--N to N2 as well as the efficient removal of NO3--N. Therefore, advanced research on the reduction of NO3--N by nZVI-based composites has been comprehensively reviewed. Strategies to improve NO3--N reduction efficiency and N2 selectivity are proposed. Moreover, the shortcomings of iron-based nanomaterials in NO3--N pollution control have been summarized, and some suggestions for future research directions provided.
Collapse
Affiliation(s)
- Yanyan Pei
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Junlan Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Wei Cheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Wenzhong Huang
- Fujian Provincial Institute of Architectural Design and Research Co., Ltd, Fuzhou, Fujian 350001, China
| | - Renyu Liu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| |
Collapse
|
16
|
Chung HS, Jeon D, Hwang I. In situ treatment of contaminated soil using persulfate activated by sulfidated zero-valent iron. CHEMOSPHERE 2024; 366:143440. [PMID: 39369747 DOI: 10.1016/j.chemosphere.2024.143440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Soil contamination with hazardous substances like phenol poses significant environmental and health risks. In situ soil mixing can be a promising technological solution to this challenge. A persulfate and sulfidated zero-valent iron (S-ZVIbm) system for remediating contaminated soil was developed and tested to be suited to in situ soil mixing. S-ZVIbm was synthesized using a ball mill process, and the optimal sulfur to iron molar ratio for effectively removing phenol from soil removal without pyrophoric risks was 0.12. Soil slurry experiments were performed, and the best phenol oxidation results (high stoichiometric efficiency and sustained oxidation after mixing) were achieved at a persulfate to S-ZVIbm molar ratio of 2:1 and a persulfate to phenol molar ratio of 8:1. A high organic matter content of the silty clay fraction of the soil strongly suppressed persulfate activation, so suppressed phenol removal and increased persulfate consumption. Electron spin resonance and radical scavenging tests confirmed that hydroxyl and sulfate radicals were present during the degradation of phenol. While sulfate radicals predominantly facilitated degradation in the soil, both sulfate and hydroxyl radicals were crucial in the aqueous phase in the absence of soil organic matter. In situ soil mixing simulation tests indicated that the persulfate and S-ZVIbm doses and the mixing rate and duration strongly affected the efficacy of the system, and the optimal conditions for phenol removal were determined. The results indicated that the persulfate/S-ZVIbm system could be tuned to achieve sustained persulfate activation and to remediate contaminated soil employing in situ soil mixing technique.
Collapse
Affiliation(s)
- Hyuk Sung Chung
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Daeun Jeon
- National Institute of Chemical Safety, Hazard Management Division, Hwangyeong-ro 42, Seo-gu, Incheon, 404-708, Republic of Korea.
| | - Inseong Hwang
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
17
|
Xu J, Cheng H, Zhang H, Sun C, Tian H, Yang J, Ding Y, Lin X, Wang P, Huang C. Visible light irradiation enhanced sulfidated zero-valent iron/peroxymonosulfate process for organic pollutant degradation. ENVIRONMENTAL RESEARCH 2024; 257:119292. [PMID: 38824982 DOI: 10.1016/j.envres.2024.119292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
This study developed a novel process named sulfidated zero-valent iron/peroxymonosulfate/visible light irradiation (S-mZVI/PMS/vis) for enhanced organic pollutant degradation. The S-mZVI/PMS/vis process exhibited remarkable catalytic activity, achieving a 99.6% rhodamine B (RhB) removal within 10 min. The degradation rate constant of RhB by the S-mZVI/PMS/vis process was found to be 6.49 and 79.84 times higher than that by the S-mZVI/PMS and PMS/vis processes, respectively. Furthermore, the S-mZVI/PMS/vis process worked efficiently across a wide pH range (3.0-9.0), and the result of five-cycle experiments demonstrated the excellent reusability and stability of S-mZVI. Radical quenching tests and electron paramagnetic resonance analysis indicated that ·O2-, 1O2, and h+ significantly contributed to the degradation of RhB through the S-mZVI/PMS/vis process. The visible light irradiation increased the Fe2+ concentration, improved the Fe3+/Fe2+ cycle, and consequently enhanced the PMS decomposition, reactive species production, and RhB degradation. This work offers a promising strategy to highly efficiently activate PMS for organic pollutants elimination from aqueous solutions.
Collapse
Affiliation(s)
- Jialu Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - He Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haoran Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jikun Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yingxin Ding
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xuan Lin
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
18
|
Habib M, Ayaz T, Ali M, Zeeshan M, Sheng X, Fu R, Ullah S, Lyu S. Innovative strategy for the effective utilization of coal waste slag in the Fenton-like process for the degradation of trichloroethylene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121441. [PMID: 38897076 DOI: 10.1016/j.jenvman.2024.121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
In response to environmental concerns at the global level, there is considerable momentum in the exploration of materials derived from waste that are both sustainable and eco-friendly. In this study, CS-Fe (carbon, silica, and iron) composite was synthesized from coal gasification slag (CGS) and innovatively applied as a catalyst to activate PS (persulfate) for the degradation of trichloroethylene (TCE) in water. Scanning electron microscope (SEM), fourier transmission infrared spectroscopy (FTIR), energy dispersive x-ray spectroscopy (EDS), brunauer, emmet, and teller (BET) technique, and x-ray diffractometer (XRD) spectra were employed to investigate the surface morphology and physicochemical composition of the CS-Fe composite. CS-Fe catalyst showed a dual nature by adsorption and degradation of TCE simultaneously, displaying 86.1% TCE removal in 3 h. The synthesized CS-Fe had better adsorption (62.1%) than base material CGS (36.4%) due to a larger BET surface area (770.8 m2 g-1), while 24.0% TCE degradation was recorded upon the activation of PS by CS-Fe. FTIR spectra confirmed the adsorption and degradation of TCE by investigating the used and fresh samples of CS-Fe catalyst. Scavengers and Electron paramagnetic resonance (EPR) analysis confirmed the availability of surface radicals and free radicals facilitated the degradation process. The acidic nature of the solution favored the degradation while the presence of bicarbonate ion (HCO3-) hindered this process. In conclusion, these results for real groundwater, surfactant-added solution, and degradation of other TCE-like pollutants propose that the CS-Fe composite offers an economically viable and favorable catalyst in the remediation of organic contaminants within aqueous solutions. Further investigation into the catalytic potential of coal gasification slag-based carbon materials and their application in Fenton reactions is warranted to effectively address a range of environmental challenges.
Collapse
Affiliation(s)
- Mudassir Habib
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Tehreem Ayaz
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meesam Ali
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, 60000, Pakistan
| | - Muhammad Zeeshan
- College of Engineering and Computing, University of South Carolina, Columbia, SC, 29201, USA
| | - Xianxian Sheng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Rongbing Fu
- Center for Environmental Risk Management & Remediation of Soil & Groundwater, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Siraj Ullah
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
19
|
Peng Z, Xi Y, Zhang Z, Su Z, Xu W, Zhang C, Li X. Removal of ciprofloxacin by biosulfurized nano zero-valent iron (BP-S-nZVI) activated peroxomonosulfate: Influencing factors and degradation mechanism. CHEMOSPHERE 2024; 362:142557. [PMID: 38852632 DOI: 10.1016/j.chemosphere.2024.142557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Agglomeration and passivation restrict the using zero-valent iron nanoparticles (nZVI). Enhancing the reactivity of nZVI is often accomplished by sulfurization. In this work, nZVI was sulfurized using SRB to produce biosulfurized nano zero-valent iron (BP-S-nZVI), which was then utilized as a catalyst to investigating its performance in an advanced oxidation process based on activated peroxomonosulfate (PMS). When the S/Fe was 0.05, 0.4 g/L of catalyst and 0.5 mM PMS were added to a 20 mg/L ciprofloxacin solution. In 120 min, a 90.4% clearance rate was reached. When the initial pH of the solution was within the range of 3-11, all exhibited acceptable degradation performance and were minimally affected by co-existing anions. In this activation system, hydroxyl, superoxide and sulfate radicals (•OH, O2•- and SO4•-, respectively) have been proven to be the main active species. Seven intermediates in the degradation process of CIP were identified by LC-MS analysis and two possible degradation pathways were proposed. In addition, the degradation rate of CIP was still able to reach 87.0% after five cycles, and the removal rate remained unchanged in the CIP solution with actual water samples as background. This study demonstrated that BP-S-nZVI as a catalyst for the activation of PMS for CIP degradation can still show good reactivity, which provides more possibilities for the practical application of BP-S-nZVI in the degradation of pollutants.
Collapse
Affiliation(s)
- Zheng Peng
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanni Xi
- Hunan Provincial Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410014, China
| | - Zhuang Zhang
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
20
|
Wu S, Qi Y, Guo Y, Zhu Q, Pan W, Wang C, Sun H. The role of iron materials in the abiotic transformation and biotransformation of polybrominated diphenyl ethers (PBDEs): A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134594. [PMID: 38754233 DOI: 10.1016/j.jhazmat.2024.134594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs), widely used as flame retardants, easily enter the environment, thus posing environmental and health risks. Iron materials play a key role during the migration and transformation of PBDEs. This article reviews the processes and mechanisms of adsorption, degradation, and biological uptake and transformation of PBDEs affected by iron materials in the environment. Iron materials can effectively adsorb PBDEs through hydrophobic interactions, π-π interactions, hydrogen/halogen bonds, electrostatic interactions, coordination interactions, and pore filling interactions. In addition, they are beneficial for the photodegradation, reduction debromination, and advanced oxidation degradation and debromination of PBDEs. The iron material-microorganism coupling technology affects the uptake and transformation of PBDEs. In addition, iron materials can reduce the uptake of PBDEs in plants, affecting their bioavailability. The species, concentration, and size of iron materials affect plant physiology. Overall, iron materials play a bidirectional role in the biological uptake and transformation of PBDEs. It is necessary to strengthen the positive role of iron materials in reducing the environmental and health risks caused by PBDEs. This article provides innovative ideas for the rational use of iron materials in controlling the migration and transformation of PBDEs in the environment.
Collapse
Affiliation(s)
- Sai Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yaxin Guo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Weijie Pan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Wang Y, Hu X, Chen X, Ren Z, Li Y, Miao J, He Y, Zhang P, Li C, Zhu Q. Potential of metallurgical iron-containing solid waste-based catalysts as activator of persulfate for organic pollutants degradation. CHEMOSPHERE 2024; 359:142276. [PMID: 38761830 DOI: 10.1016/j.chemosphere.2024.142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
The production of solid wastes in the metallurgical industry has significant implications for land resources and environmental pollution. To address this issue, it is crucial to explore the potential of recycling these solid wastes to reduce land occupation while protecting the environment and promoting resource utilization. Steel slag, red mud, copper slag and steel picking waste liquor are examples of solid wastes generated during the metallurgical process that possess high iron content and Fe species, making them excellent catalysts for persulfate-based advanced oxidation processes (PS-AOPs). This review elucidates the catalytic mechanisms and pathways of Fe2+ and Fe0 in the activation PS. Additionally, it underscores the potential of metallurgical iron-containing solid waste (MISW) as a catalyst for PS activation, offering a viable strategy for its high-value utilization. Lastly, the article provides an outlook towards future challenges and prospects for MISW in PS activation for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Yang Wang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Xin Hu
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Xingyue Chen
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Zhifeng Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Yihong Li
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Jing Miao
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Yibo He
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Peng Zhang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China.
| | - Chen Li
- Shanxi Province Science and Technology Achievement Transfer and Transformation Promotion and Data Monitoring Center, Taiyuan, 030024, Shanxi, China.
| | - Qiang Zhu
- Australia Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| |
Collapse
|
22
|
Wang Y, Tian H, Zhang C, Xu J, Liu X, Ma F, Wei X, Sun Y. Degradation and mechanism of PAHs by Fe-based activated persulfate: Effect of temperature and noble metal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172768. [PMID: 38670359 DOI: 10.1016/j.scitotenv.2024.172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The accumulation of contaminants like PAHs in soil due to industrialization, urbanization, and intensified agriculture poses environmental challenges, owing to their persistence, hydrophobic nature, and toxicity. Thus, the degradation of PAHs has attracted worldwide attention in soil remediation. This study explored the effect of noble metal and temperature on the degradation of various polycyclic aromatic hydrocarbons (PAHs) in soil, as well as the types of reactive radicals generated and mechanism. The Fe-Pd/AC and Fe-Pt/AC activated persulfate exhibited high removal efficiency of 19 kinds of PAHs, about 79.95 % and 83.36 %, respectively. Fe-Pt/AC-activated persulfate exhibits superior degradation efficiency than that on Fe-Pd/AC-activated persulfate, due to the higher specific surface area and dispersity of Pt particles, thereby resulting in increased reactive radicals (·OH, SO4-· and ·OOH). Additionally, thermal activation enhances the degradation of PAHs, with initial efficiencies of 64.20 % and 55.49 % on Fe-Pd/AC- and Fe-Pt/AC-activated persulfate systems respectively, increasing to 76.05 % and 73.14 % with elevated temperatures from 21.5 to 50 °C. Metal and thermal activation facilitate S2O82- activation, generating reactive radicals, crucial for the degradation of PAHs via ring opening and oxygen hydrogenation reactions, yielding low-ring oxygen-containing derivatives such as organic acids, keto compounds, ethers, and esters. Furthermore, understanding the impact of parameters such as activation temperature and the types of noble metals on the degradation of PAHs within the activated persulfate system provides a theoretical foundation for the remediation of PAH-contaminated soil.
Collapse
Affiliation(s)
- Ye Wang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Huifang Tian
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Congcong Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Jingyu Xu
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xingshuang Liu
- College of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinqing Wei
- Tianjin JC Environmental Services, Tianjin 300202, China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China; Research Center for Advanced Energy and Carbon Neutrality, Beihang University, Beijing 100191, China; College of Environment and Ecology, Hainan University, Haikou 570228, China.
| |
Collapse
|
23
|
Bai C, Zhang Y, Liu Q, Zhu C, Li J, Chen R. Interfacial complexation between Fe 3+ and Bi 2MoO 6 promote efficient persulfate activation via Fe 3+/Fe 2+ cycle for organic contaminates degradation upon visible light irradiation. J Colloid Interface Sci 2024; 664:238-250. [PMID: 38461790 DOI: 10.1016/j.jcis.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
To address the observed decrease in efficiency during Fe2+-mediated persulfate (PDS) activation caused by slow electron transfer rates and challenges in cycling between Fe3+/Fe2+ states, we devised a strategy to establish interfacial complexation between Fe3+ and Bi2MoO6 in the presence of PDS. The proposed approach facilitates more efficient capture of photogenerated electrons, thereby accelerating the rate-limiting reduction process of the Fe3+/Fe2+ cycle under visible light irradiation and promoting PDS activation. The Bi2MoO6/Fe3+/PDS/Vis system demonstrates complete degradation of organic pollutants, including Atrazine (ATZ), carbamazepine (CBZ), bisphenol A (BPA), and 2,4-dichlorophenol (DCP) at a concentration of 10 mg/L within a rapid reaction time of 30 min. Radical scavenging experiments and electron paramagnetic resonance spectra (EPR) confirm that the sulfate radical (•SO4-) is the dominant species responsible for organic contaminant degradation. The real-time conversion process between Fe3+ and Fe2+ was monitored by observing changes in iron species forms and concentrations within the reaction system. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy verify the formation of a complexation between Fe3+ and Bi2MoO6, facilitating anchoring of Fe3+ onto material surface. Based on these findings, we propose a reliable mechanism for the activation reaction. This work presents a promising heterogeneous PDS activation method based on Fe3+/Fe2+ cycle for water treatment.
Collapse
Affiliation(s)
- Chengbo Bai
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yuhan Zhang
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Qiong Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Chengxin Zhu
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China
| | - Rong Chen
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China.
| |
Collapse
|
24
|
Xue C, Peng Y, Zheng B, Fang Z, Wang Y, Yi Y. Sodium salt promoted the generation of nano zero valent iron by carbothermal reduction: For activating peroxydisulfate to degrade antibiotic. BIORESOURCE TECHNOLOGY 2024; 402:130755. [PMID: 38688394 DOI: 10.1016/j.biortech.2024.130755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Carbothermal reduction is a promising method for the industrial preparation of nano-zero-valent iron. Preparing it also involves very high pyrolysis temperatures, which leads to a significant amount of energy consumption. The temperature required for the preparation of nano-zero-valent iron by carbothermal reduction was reduced by 200 °C by the addition of sodium salt. Carbon-loaded nano zero-valent iron (Fe0/CB-Na) was prepared by carbothermal reduction through the addition of sodium salt. The results showed that Fe0/CB-Na@700 had the same activation performance as Fe0/CB@900 and the newly prepared nano-zero-valent iron. The addition of sodium salt promoted the transfer of oxygen from the iron oxide to the carbon structure during the roasting process so that the iron oxide was reduced to as much Fe0 as possible. Thus, sodium salts were optimized for the preparation of nano-zero-valent iron by carbothermal reduction through interfacial amorphization and oxygen transfer, thus reducing the preparation cost.
Collapse
Affiliation(s)
- Chengjie Xue
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yifu Peng
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bin Zheng
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| | - Yanan Wang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuchen Yi
- School of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
25
|
Han Y, Tai M, Yao Y, Li J, Wu Y, Hu B, Ma Y, Liu C. Iron-decorated covalent organic framework as efficient catalyst for activating peroxydisulfate to degrade 2,4-dichlorophenol: Performance and mechanism insight. J Colloid Interface Sci 2024; 663:238-250. [PMID: 38401444 DOI: 10.1016/j.jcis.2024.02.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Herein, a novel two-dimensional double-pore covalent organic framework (JLNU-305) was synthesized using N,N,N',N'-tetrakis(4-aminophenyl)-1,4-phenylenediamine (TAPD) and 2,2'-bipyridine-5,5'-dicarboxaldehyde (BPDA). The extended π-π conjugated structure and nitrogen-riched pyridine in JLNU-305 (JLNU = Jilin Normal University) provide abundant binding sites for Fe doping. The obtained JLNU-305-Fe exhibited high and recycled catalytic efficiency for peroxydisulfate (PDS) activation to completely degrade 10 mg/L 2,4-dichlorophenol (2,4-DCP) within 8 min. The JLNU-305-Fe/PDS system showed excellent catalytic activity and cyclic stability. The capture experiments and electron paramagnetic resonance (ESR) analysis indicated that the catalytic behavior of JLNU-305-Fe/PDS is contributed to the synergistic effect between free radicals and non-free radicals. It is the first time to activate PDS for covalent organic frameworks (COFs) being used to degrade 2,4-DCP, which has a great potential for development and practical application in related water environment remediation.
Collapse
Affiliation(s)
- Yuhang Han
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Meng Tai
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Yuxin Yao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Jingyang Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yuanyuan Wu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Bo Hu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China.
| | - Yunchao Ma
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China.
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
26
|
Hübner U, Spahr S, Lutze H, Wieland A, Rüting S, Gernjak W, Wenk J. Advanced oxidation processes for water and wastewater treatment - Guidance for systematic future research. Heliyon 2024; 10:e30402. [PMID: 38726145 PMCID: PMC11079112 DOI: 10.1016/j.heliyon.2024.e30402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced oxidation processes (AOPs) are a growing research field with a large variety of different process variants and materials being tested at laboratory scale. However, despite extensive research in recent years and decades, many variants have not been transitioned to pilot- and full-scale operation. One major concern are the inconsistent experimental approaches applied across different studies that impede identification, comparison, and upscaling of the most promising AOPs. The aim of this tutorial review is to streamline future studies on the development of new solutions and materials for advanced oxidation by providing guidance for comparable and scalable oxidation experiments. We discuss recent developments in catalytic, ozone-based, radiation-driven, and other AOPs, and outline future perspectives and research needs. Since standardized experimental procedures are not available for most AOPs, we propose basic rules and key parameters for lab-scale evaluation of new AOPs including selection of suitable probe compounds and scavengers for the measurement of (major) reactive species. A two-phase approach to assess new AOP concepts is proposed, consisting of (i) basic research and proof-of-concept (technology readiness levels (TRL) 1-3), followed by (ii) process development in the intended water matrix including a cost comparison with an established process, applying comparable and scalable parameters such as UV fluence or ozone consumption (TRL 3-5). Subsequent demonstration of the new process (TRL 6-7) is briefly discussed, too. Finally, we highlight important research tools for a thorough mechanistic process evaluation and risk assessment including screening for transformation products that should be based on chemical logic and combined with complementary tools (mass balance, chemical calculations).
Collapse
Affiliation(s)
- Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Stephanie Spahr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Holger Lutze
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| | - Arne Wieland
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Steffen Rüting
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jannis Wenk
- University of Bath, Department of Chemical Engineering and Water Innovation & Research Centre (WIRC@Bath), Bath, BA2 7AY, United Kingdom
| |
Collapse
|
27
|
Kheirandish M, Javanmard Dakheli M, Mizani M, Salehirad A. Mechanical properties, sustained release, and oxygen scavenging properties of nanocomposite films loaded with bimetallic nanoparticles (Fe 2O 3/TiO 2) in extra virgin olive oil. J Food Sci 2024; 89:2879-2894. [PMID: 38602044 DOI: 10.1111/1750-3841.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
The aim of this study was the synthesis of bimetallic nanoparticles based on Fe2O3/TiO2 and its use in the poly(lactic acid) (PLA) films as an oxygen scavenger in extra virgin olive oil (EVOO) packaging. Bimetallic nanocomposites were prepared by two different precipitation methods (precipitation with ammonia and sodium hydroxide). The characteristics of bimetallic nanoparticles precipitated with sodium hydroxide (Na-Ti0.01Fe0.048O0.08) and bimetallic nanoparticles precipitated with ammonia (NH-Ti0.01Fe0.022O0.09) were compared. Relative amounts of elements in bimetallic nanocomposites and their morphological characteristics were determined using field emission scanning electron microscopy coupled with energy-dispersive X-ray spectrometer. Porosity volume and surface area of bimetallic nanoparticles were calculated using adsorption-desorption isotherms and the Brunauer-Emmett-Teller method. The formation/characterization of bimetallic nanoparticles and their location in the matrix of PLA-based nanocomposite film was studied using X-ray diffraction and Fourier transform infrared. In nanocomposite films based on PLA, bimetallic nanoparticles lead to better oxidative stability (peroxide value, p-anisidine index, K232, and K270) of the EVOO and oxygen scavenging during storage compared to free nanoparticles. Mechanical properties of nanocomposite films were improved due to bimetallic nanoparticles, which were better for Na-Ti0.01Fe0.048O0.08. In vitro release modeling of the bimetallic nanoparticles in EVOO proved that Fickian diffusion is the dominant mechanism, and the Peleg model was the best description of the release behavior of nanoparticles.
Collapse
Affiliation(s)
- Mahsa Kheirandish
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Javanmard Dakheli
- Department of Chemical Technologies, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Maryam Mizani
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Salehirad
- Department of Chemical Technologies, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| |
Collapse
|
28
|
Qiu R, Chen A, Zhang P, Tang X, Wang C, Sun H. Preparation of novel Fe-containing zeolite-A for KN-R decolorization by Fenton-like reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28525-28537. [PMID: 38558348 DOI: 10.1007/s11356-024-33023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Herein, novel catalysts of Fe-containing zeolite-A (Fe/zeolite-A) were synthesized by exchanging iron ions into zeolite-A framework, and short-chain organic acids (SCOAs) were employed as chelating agents. Reactive Brilliant Blue KN-R (KN-R) was used as a model pollutant to evaluate the performance of these catalysts based on the heterogeneous Fenton reaction. The results showed that Fe-OA/3A, which applied zeolite-3A as the supporter and oxalic as the chelating agent, presented the most prominent KN-R decolorization efficiency. Under the initial pH of 2.5, 0.4 mM KN-R could be totally decolorized within 20 min. However, the mineralization efficiency of KN-R was only 58.2%. Therefore, anthraquinone dyes were introduced to modify zeolite-3A. As a result, the mineralization efficiency of KN-R was elevated to 92.7% when using Alizarin Violet (AV) as the modifier. Moreover, the modified catalysts exhibited excellent stability, the KN-R decolorization efficiency could be maintained above 95.0% within 20 min after operating for nine cycles. The mechanism revealed that the Fe(II)/Fe(III) cycle was accelerated by AV-modified catalyst thus prompting the KN-R decolorization in Fenton-like system. These findings provide new insights for preparing catalysts with excellent activity and stability for dye wastewater treatment.
Collapse
Affiliation(s)
- Rui Qiu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Aiyin Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Xuejiao Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Cuiping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China.
| |
Collapse
|
29
|
Wang S, Hu J, Wang J. Enhanced uranium removal from aqueous solution by core-shell Fe 0@Fe 3O 4: Insight into the synergistic effect of Fe 0 and Fe 3O 4. CHEMOSPHERE 2024; 354:141730. [PMID: 38492682 DOI: 10.1016/j.chemosphere.2024.141730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
In this study, Fe0@Fe3O4 was synthesized and used to remove U(VI) from groundwater. Different experimental conditions and cycling experiments were used to investigate the performance of Fe0@Fe3O4 in the U(VI) removal, and the XRD, TEM, XPS and XANES techniques were employed to characterize the Fe0@Fe3O4. The results showed that the U(VI) removal efficiency of Fe0@Fe3O4 was 48.5 mg/g that was higher than the sum of removal efficiency of Fe0 and Fe3O4. The uranium on the surface of Fe0@Fe3O4 mainly existed as U(IV), followed by U(VI) and U(V). The Fe0 content decreased after reaction, while the Fe3O4 content increased. Based on the results of experiments and characterization, the enhanced removal efficiency of Fe0@Fe3O4 was attributed to the synergistic effect of Fe0 and Fe3O4 in which Fe3O4 accelerated the Fe0 corrosion that promoted the progressively formation of Fe(II) that promoted the reduction of adsorbed U(VI) to U(IV) and incorporated U(VI) to U(V). The performance of Fe0@Fe3O4 at near-neutrality condition was better than at acidic and alkalic conditions. The chloride ions, sulfate ions and nitrate ions showed minor effect on the Fe0@Fe3O4 performance, while carbonate ions exhibited significant inhibition. The metal cations showed different effect on the Fe0@Fe3O4 performance. The removal efficiency of Fe0@Fe3O4 decreased with the number of cycling experiment. Ionizing radiation could regenerate the used Fe0@Fe3O4. This study provides insight into the U(VI) removal by Fe0@Fe3O4 in aqueous solution.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jun Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
30
|
Chen J, Yang Z, Li W, Yang Y, Zhu F, Huo Z, Zhou Q. MXene-supported MIL-88A(Fe) as persulfate activator for removal of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25273-25286. [PMID: 38467998 DOI: 10.1007/s11356-024-32677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
The poor conductivity, poor stability, and agglomeration of iron-based metal organic framework MIL-88A(Fe) limit its application as persulfate (PS) activator in water purification. Herein, MXene-supported MIL-88A(Fe) composites (M88A/MX) were synthesized to enhance its adsorption and catalytic capability for tetracycline (TC) removal. Scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) were used to characterize prepared materials, confirming the successful attachment of MIL-88A(Fe) to the surface of MXene. M88A/MX-0.2 composites, prepared with 0.2 g MXene addition, exhibit optimal degradation efficiency, reaching 98% under conditions of 0.2 g/L M88A/MX-0.2, 1.0 mM PS, 20 ppm TC, and pH 5. The degradation rate constants of M88A/MX-0.2 were 0.03217 min-1, which was much higher than that of MIL-88A(Fe) (0.00159 min-1) and MXene (0.00626 min-1). The removal effects of reaction parameters, such as dosage of M88A/MX-0.2 and PS; initial solution pH; and the presence of the common co-existing constituents (humic acid and the inorganic anions) were investigated in detail. Additionally, the reuse of M88A/MX-0.2 showed that the composites had good cycling stability by recurrent experiments. The results of electron paramagnetic resonance (EPR) and quenching experiments indicated that ·OH, ·SO4-, and ·O2- were involved in the M88A/MX-0.2/PS system where persulfate oxidation process was activated with prepared M88A/MX-0.2. In addition, the intermediates of photocatalytic degradation were determined by HPLC-MS, and the possible degradation pathways of the target molecules were inferred. This study offered a new avenue for sulfate-based degradation of Fe-based metal organic framework.
Collapse
Affiliation(s)
- Junxia Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Zhenzhen Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Weigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuying Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
31
|
Wang X, Huang P, Zhang P, Wang C, He F, Sun H. Synthesis of stabilized zero-valent iron particles and role investigation of humic acid-Fe x+ shell in Fenton-like reactions and surface stability control. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133296. [PMID: 38141302 DOI: 10.1016/j.jhazmat.2023.133296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Herein, a novel humic acid-Fex+ complex-coated ZVI (HA-Fex+@ZVI) was synthesized and used to activate peroxydisulfate (PDS) for phenol degradation. The HA-Fex+ shell selectively reacted with PDS rather than O2, leading to the formation of modified ZVI with excellent surface stability in storage and ultraefficient PDS activation in advanced oxidation processes (AOPs). As a result, the phenol degradation and PDS activation efficiencies of HA-Fex+@ZVI/PDS were ∼14.4 and ∼1.8 times higher than those of ZVI/PDS, respectively. Mechanistic explorations revealed that the replacement of the HA-Fex+ shell relative to the original passivation layer of ZVI greatly changed the SO4•- generation pathway from a heterogeneous process to a homogeneous process, resulting from the slow exposure of Fe0 (generating dissolved Fe2+) and the depolymerized HA (enhancing the Fe3+/Fe2+ cycle). Based on experimental analysis and density functional theory (DFT) calculations, the Fe3+ in HA-Fex+ could be reduced to Fe2+ by PDS, resulting in the disintegration of the HA-Fex+ shell and exposure of Fe0 core active sites. Furthermore, compared to similar catalysts synthesized with commercial HA and traditional chemicals, HA-Fex+@ZVI synthesized with multiple waste biomasses exhibited better performance. This research provides valuable insights for designing ZVI-based catalysts with excellent storage stability and ultraefficient PDS catalytic activity for AOPs.
Collapse
Affiliation(s)
- Xinhua Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Peng Huang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Cuiping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Feng He
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
32
|
Gao X, Dai C, Tian X, Nie Y, Shi J. Self-acclimation mechanism of pyrite to sulfamethoxazole concentration in terms of degradation behavior and toxicity effects caused by reactive oxygen species. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132962. [PMID: 37976862 DOI: 10.1016/j.jhazmat.2023.132962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Pyrite has been extensively tested for oxidizing contaminants via the activation of water molecule or dissolved oxygen, while the changing of oxidation species induced by contaminant's concentration has been largely underestimated. In this study, we revealed a self-acclimation mechanism of pyrite in terms of •OH conversion to 1O2 during the sulfamethoxazole (SMX) degradation process under oxic conditions. Two reaction stages of SMX degradation by pyrite were observed. The SMX concentration decreased by 70% rapidly in the first 12 h after the reaction was initiated, then, the removal rate began to decrease as the SMX concentration decreased. Importantly, •OH and O2•- were the dominant oxidizing species in stage one, while 1O2 was responsible for the further degradation of SMX in stage two. The self-acclimated mechanism of pyrite was proven to be caused by the conversion of oxidative species at the surface of pyrite. This process can overcome the shortages of •OH such as ultrashort lifetime and limited effective diffusion in the decontamination of micropollutant. Moreover, different reactive oxygen species will lead to different degradation pathways and environmental toxicity while degrading pollutants. This finding of oxidizing species' self-acclimation mechanism should be of concern when using pyrite for water treatment.
Collapse
Affiliation(s)
- Xuyun Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Jianbo Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
33
|
Che M, Su H, Si H, Guo B, Huang R, Zhao J, Su R. Efficient composite chlorinated ethenes removal using gallic acid to enhance Fe/Ni nanoparticles activated persulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9421-9432. [PMID: 38191731 DOI: 10.1007/s11356-024-31823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
As the representative volatile chlorinated hydrocarbons detected in wastewater, the removal of composite chlorinated ethenes is a major challenge in wastewater treatment. In the present study, an efficient removal system for composite chlorinated ethenes was reported, in which gallic acid was used to enhance the activation of persulfate by Fe/Ni nanoparticles. The influences of gallic acid-Fe/Ni and persulfate concentrations, initial pH value, reaction temperature, inorganic anions, and natural organic matters were evaluated in the composite chlorinated ethenes removal. Our results showed that the gallic acid-Fe/Ni-persulfate system with 9.0 mM of gallic acid-Fe/Ni and 30.0 mM of persulfate yielded about 100% trichloroethylene removal and 97.3%-98.6% perchloroethylene removal in the pH range of 3.0-12.0. Electron paramagnetic resonance analysis and radical quenching experiments indicated that SO4•- and •OH were the predominant radical species under acidic and alkaline conditions. Ultraviolet visible spectroscopy and inductively coupled plasma optical emission spectrometer tests revealed the Fe-gallic acid chelation could regulate the concentration of iron ions and improve the reactivity of gallic acid-Fe/Ni. These results demonstrated that the gallic acid-Fe/Ni-persulfate system was a promising strategy for treating composite chlorinated ethenes-containing wastewater.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Hongjian Su
- 514 Brigade of North China Geological Exploration Bureau, Chengde, 067000, People's Republic of China
| | - Huimin Si
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Bin Guo
- 514 Brigade of North China Geological Exploration Bureau, Chengde, 067000, People's Republic of China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jing Zhao
- 514 Brigade of North China Geological Exploration Bureau, Chengde, 067000, People's Republic of China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
34
|
Li K, Xu W, Song H, Bi F, Li Y, Jiang Z, Tao Y, Qu J, Zhang Y. Superior reduction and immobilization of Cr(VI) in soil utilizing sulfide nanoscale zero-valent iron supported by phosphoric acid-modified biochar: Efficiency and mechanism investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168133. [PMID: 37890623 DOI: 10.1016/j.scitotenv.2023.168133] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
A novel strategy was proposed to remediate Cr(VI)-contaminated soil via phosphoric acid-modified biochar supported sulfide nanoscale zero-valent iron (SnZVI@PBC). Results of characterizations revealed that FeSX shell existed in outer layer of nZVI to prevent its oxidation after sulfidation modification, and SnZVI was effectively dispersed owing to the support of PBC, accelerating the electron transport for Cr(VI) reduction. The SnZVI@PBC presented pH-dependence and fast capture for Cr(VI) with outstanding binding amount of 335.55 mg/g. More importantly, the Cr(VI) content declined from 1300.75 to 223.30 mg/kg with conversion into stable Cr(III) in soil after 42 d of remediation with 2.0 % SnZVI@PBC under 60 % moisture content. Furthermore, leaching experiments showed that SnZVI@PBC could effectively immobilize Cr(VI), decreasing its migration and harmful risks to plants and human. Particularly, the fractions of exchangeable and carbonate-bound Cr decreased by 96.77 % and 83.60 %, which transformed to relatively stable fractions. Interestingly, the presence of humic acid, and the freezing-thawing/wetting-drying process promoted the immobilization performance of SnZVI@PBC for Cr(VI). SnZVI@PBC could alleviate the migration and poisonousness of Cr(VI) in soil primarily via reduction, co-precipitation, pore filling, and electrostatic attraction. Overall, SnZVI@PBC could be considered as a feasible amendment with superior reducing capacity and immobilization performance for Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Kaige Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Weijie Xu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Haijiao Song
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuhui Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China.
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
35
|
Liu Y, Liu S, Chen M, Bai Y, Liu Y, Mei J, Lai B. Enhanced TC degradation by persulfate activation with carbon-coated CuFe 2O 4: The radical and non-radical co-dominant mechanism, DFT calculations and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132417. [PMID: 37774605 DOI: 10.1016/j.jhazmat.2023.132417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Facing the constraints of critical agglomeration and poor reusability of CuFe2O4 in catalytic applications, the feasibility of synthesizing a composite catalyst using carbon coating technology for efficient TC removal with enhanced PDS activity was investigated. The composite catalyst (CuFe2O4@C) can stimulate both radical (SO4•- and HO•) and non-radical (1O2) pathways to dominate the catalytic reaction for removing 95.7% of the TC in 60 min. Meanwhile, the defective structure of the external carbon layer protected the internal CuFe2O4 from excessive oxidation, allowing the CuFe2O4@C to maintain over 90% TC removal after 5 cycles with less interference from inorganic anions, demonstrating significant catalytic performance and satisfactory reusability. Finally, the DFT calculations and TEST evaluation were performed to discuss the structural properties of TC and its toxicity assessment during the whole degradation process, while three possible degradation pathways were proposed. Significantly, the carbon-coated composite catalysts of potential universal applicability for multi-pathway PDS activation offered an attractive new strategy for the effective degradation of antibiotic wastewater.
Collapse
Affiliation(s)
- Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China.
| | - Shumeng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Mingyan Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yang Bai
- State Key Lab Oil & Gas Reservoir Geol & Exploita, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yan Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Jiahao Mei
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Bo Lai
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
36
|
Tian K, Shen T, Xu P, Wang J, Shi F, Cao M, Zhang G, Zheng Q, Zhang G. Exploring the mechanism of norfloxacin removal and active species evolution by coupling persulfate activation with biochar hybridized Fe 3O 4 composites. CHEMOSPHERE 2024; 347:140666. [PMID: 37952816 DOI: 10.1016/j.chemosphere.2023.140666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
In situ growth of dispersed active sites on substrates is a strategy for designing highly efficient catalysts for sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs). Here, magnetic biochar composite (Fe3O4/BC) was fabricated as an activator to trigger PDS (peroxydisulfate) for norfloxacin (NOR) removal, achieving reliable NOR removal efficiency (>90%) within 10 min. Based on the synergistic effect between Fe3O4 and BC, the removal rate increases to 0.0265 L mg-1 min-1. Fe3O4/BC exhibited decent adaptability, stability, and recyclability toward affecting factors variation during PDS activation, attributed to the synergistic effect between Fe3O4 and BC. The electron transfer of magnetic Fe3O4 coupled with the adsorption and conduction function of carbon skeleton, which overcomes typical problems as crystal agglomeration, metal leaching, and catalysts recovery etc. The electron-rich Fe(II) sites promote the radical pathway by generating reactive oxygen species (ROS, •OH, SO4•- and O2•-), and radicals evolution contributing to the form of 1O2 in non-radical pathway. Under the effect of multipath in NOR degradation, HPLC-QTOF-MS spectroscopy and DFT calculation revealed the possible degradation pathway of NOR. In addition, according to toxicity prediction, the overall NOR contamination toxicity of NOR was effectively alleviated by Fe3O4/BC + PDS system. Overall, this study presents a promising composite in PDS activation and views the active species evolution in the NOR removal system, which is crucial for mechanism study in relevant research in the future.
Collapse
Affiliation(s)
- Ke Tian
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinyi Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengyin Shi
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Menghan Cao
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guodong Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257029, China
| | - Qingzhu Zheng
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guangshan Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
37
|
Angkaew A, Chokejaroenrat C, Angkaew M, Satapanajaru T, Sakulthaew C. Persulfate activation using leonardite char-supported nano zero-valent iron composites for styrene-contaminated soil and water remediation. ENVIRONMENTAL RESEARCH 2024; 240:117486. [PMID: 37914017 DOI: 10.1016/j.envres.2023.117486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Effective in-situ technology to treat carcinogenic compounds in contaminated areas poses a major challenge. Our objective was to load nano-zero-valent iron (nZVI) onto leonardite char (LNDC), an alternative carbon source from industrial waste, for use as a persulfate (PS) activator for styrene treatment in soil and water. By adding a surfactant during synthesis, cetyltrimethylammonium bromide (CTAB) promotes a flower-like morphology and the nZVI formation in smaller sizes. Results showed that nZVI plays a crucial role in PS activation in both homogeneous and heterogeneous reactions to generate reactive oxygen species (ROS), which can remove 98% of styrene within 20 min. Quenching experiments indicated that singlet oxygen (1O2), superoxide radicals (O2•-), and sulfate radicals (SO4•-) were the main species working together to degrade styrene. XPS analysis also revealed a role of surface oxygen-containing groups (i.e., CO, C-OH) in activating PS for SO4•- and 1O2 generation. The possible reaction mechanism of PS activation by LNDC-CTAB-nZVI composite and factors affecting treatment efficiency (i.e., PS concentration, catalyst dosage, pH, and humic acid) were illustrated. The molarity/molality ratio of PS to nZVI should be set greater than 1 for effective styrene removal. GC-MS analysis showed that styrene was degraded to a less toxic benzaldehyde intermediate. However, the excessive use of PS and catalysts can harm plant growth, requiring a combining approach to achieve safer use for real applications. Overall results supported the use of the LNDC-CTAB-nZVI/PS system as an efficient in-situ treatment technology for soil and water remediation.
Collapse
Affiliation(s)
- Athaphon Angkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - Matura Angkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand; Center of Research and Academic Services, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - Tunlawit Satapanajaru
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - Chainarong Sakulthaew
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
38
|
Li JY, Liu ZQ, Cui YH, Yang SQ, Gu J, Ma J. Abatement of Aromatic Contaminants from Wastewater by a Heat/Persulfate Process Based on a Polymerization Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18575-18585. [PMID: 36642924 DOI: 10.1021/acs.est.2c06137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel approach to the abatement of pollutants consisting of their conversion to separable solid polymers is explored by a heat/persulfate (PDS) process for the treatment of high-temperature wastewaters. During this process, a simultaneous decontamination and carbon recovery can be achieved with minimal use of PDS, which is significantly different from conventional degradation processes. The feasibility of this process is demonstrated by eight kinds of typical organic pollutants and by a real coking wastewater. For the treatment of the selected pollutants, 30.2-91.9% DOC abatement was achieved with 24.8-91.2% carbon recovery; meanwhile, only 5.2-47.0% of PDS was consumed compared to a conventional degradation process. For the treatment of a real coking wastewater, 71.0% DOC abatement was achieved with 66.0% carbon recovery. With phenol as a representative compound, our polymerization-based heat/PDS process is applicable in a wide pH range (3.5-9.0) with a carbon recovery of >87%. Both SO4•- and HO• can be initiators for polymerization, with different contribution ratios under various conditions. Phenol monomers are semioxidized to form phenolic radicals, which are polymerized via chain transfer or chain growth processes to form separable solid phenol polymers, benzenediol polymers, and cross-linked polymers.
Collapse
Affiliation(s)
- Jia-Ying Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, Jiangsu, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| |
Collapse
|
39
|
Xue Y, Kamali M, Liyakat A, Bruggeman M, Muhammad Z, Rossi B, Costa MEV, Appels L, Dewil R. A walnut shell biochar-nano zero-valent iron composite membrane for the degradation of carbamazepine via persulfate activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165535. [PMID: 37453707 DOI: 10.1016/j.scitotenv.2023.165535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, novel walnut shell biochar-nano zero-valent iron nanocomposites (WSBC-nZVI) were synthesized using a combined pyrolysis/reduction process. WSBC-nZVI displayed a high removal efficiency (86 %) for carbamazepine (CBZ) compared with walnut shell biochar (70 %) and nano zero-valent iron (76 %) in the presence of persulfate (PS) (0.5 g/L catalyst, 10 mg/L CBZ, 1 mM persulfate). Subsequently, WSBC-nZVI was applied for the fabrication of the membrane using a phase inversion method. The membrane demonstrated an excellent removal efficiency of 91 % for CBZ in a dead-end system (2 mg/L CBZ, 1 mM persulfate). In addition, the effect of various operating conditions on the degradation efficiency in the membrane/persulfate system was investigated. The optimum pH was close to neutral, and an increase in CBZ concentration from 1 mg/L to 10 mg/L led to a drop in removal efficiency from 100 % to 24 %. The degradation mechanisms indicated that oxidative species, including 1O2, OH, SO4-, and O2-, all contribute to the degradation of CBZ, while the role of 1O2 is highlighted. The CBZ degradation products were also investigated, and the possible pathways and the predicted toxicity of intermediates were proposed. Furthermore, the practical use of the membrane was validated by the treatment of real wastewater.
Collapse
Affiliation(s)
- Yongtao Xue
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Alina Liyakat
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Maud Bruggeman
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Zeeshan Muhammad
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Barbara Rossi
- University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Maria Elisabete V Costa
- University of Aveiro, Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, 3810-193 Aveiro, Portugal
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom.
| |
Collapse
|
40
|
Song L, Lin L, Wei W, Zhang S, Wan L, Lou Z, Yu J, Xu X. Zero-valent iron-peroxydisulfate as synergistic co-milling agents for enhanced mechanochemical destruction of 2,4-dichlorophenol: Coupling reduction with oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118571. [PMID: 37421725 DOI: 10.1016/j.jenvman.2023.118571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Mechanochemical (MC) remediation with zero-valent iron (ZVI) as co-milling agent enables the non-combustion and solvent-free disposal of solid halogenated organic pollutants (HOPs) via solid-phase reaction, but suffers from incomplete dechlorination (especially for less chlorinated chemicals). Herein, a reduction-oxidation coupling strategy using ZVI and peroxydisulfate as synergistic (ZVI-PDS) co-milling agents was investigated, with 2,4-dichlorophenol (2,4-DCP) as probe contaminant. By revisiting the MC destruction process of 2,4-DCP by ZVI, the contribution of both reductive and oxidative routes is confirmed, and the inefficient •OH generation is addressed. With ball-to-material and reagent-to-pollutant mass ratios of 30:1 and 13:1, respectively, ZVI-PDS achieves higher dechlorination ratio (86.8%) for 2,4-DCP within 5 h, outcompeting sole ZVI (40.3%) or PDS (33.9%), due to the accumulation of numerous SO4•-. As suggested by a two-compartment kinetic model, the optimal ZVI/PDS molar ratio of 4:1 is determined, which balances the relative contribution of reductive/oxidative routes and leads to a maximum mineralization efficiency of 77.4%. The analysis on product distribution verifies the generation of dechlorinated, ring-opening and minor coupling products (with low acute toxicity). This work validates the necessity to couple reduction with oxidation in MC destruction for solid HOPs, and may provide information on reagent formulation.
Collapse
Affiliation(s)
- Ludi Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lvren Lin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenjia Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shengkun Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lei Wan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zimo Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jianming Yu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Song M, Nguyen QB, Kim C, Hwang I. Sustained activation of persulfate by slow release of Fe(II) from silica-coated nanosized zero-valent iron for in situ chemical oxidation. WATER RESEARCH 2023; 246:120715. [PMID: 37862874 DOI: 10.1016/j.watres.2023.120715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
Sustained activation of persulfate through the slow release of Fe(II) from silica-coated nanosized zero-valent iron (nZVI) particles (nZVI@SiO2) was investigated. Slow release of Fe(II) prevented radical scavenging by excess Fe(II) and increased the radical yield, which improved the stoichiometric efficiency of phenol degradation. Sulfate and hydroxyl radicals were found to be the main oxidative species produced during phenol degradation and were found to make comparable contributions to oxidation. The nZVI@SiO2 particle silica shell thickness controlled the release of Fe(II) and therefore the sustained activation of persulfate and was strongly affected by the synthesis conditions, including the [Si]/[Fe] ratio and silica supply rate. Optimal sustained phenol degradation was achieved when nZVI@SiO2 particles were synthesized using a [Si]/[Fe] ratio of 0.5 and a tetraethyl orthosilicate supply rate of 0.5 mL/min, and this was attributed to the nZVI@SiO2 particles giving an optimal Fe(II) release rate and therefore a high persulfate activation rate and a high phenol removal efficiency. Sustained persulfate activation induced by Fe(II) being slowly released was described well by single-stage first-order kinetics rather than two-stage first-order kinetics typical of unmodified nZVI/persulfate systems. Persulfate was found still to be activated by iron (oxyhydr)oxides minerals after the nZVI@SiO2 particles had been exhausted but the persulfate sustained activation induced by the slow release of Fe(II) played a crucial role in determining the overall degradation efficiency. The results highlight the importance of the slow release of Fe(II) from nZVI-based materials for in situ chemical oxidation through sustained persulfate activation.
Collapse
Affiliation(s)
- Minjoo Song
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Korea Testing Certification Institute, 20, Gukgasandan-daero 40-gil, Guji-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Quoc Bien Nguyen
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Cheolyong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Technical University of Darmstadt, Franziska-Braun-Straße 7, Darmstadt 64287, Germany; Department of Environmental Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Inseong Hwang
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
42
|
Yan Y, Wei Z, Duan X, Long M, Spinney R, Dionysiou DD, Xiao R, Alvarez PJJ. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12153-12179. [PMID: 37535865 DOI: 10.1021/acs.est.3c05153] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, United States
| |
Collapse
|
43
|
Xue C, Yi Y, Zhou L, Fang Z. Simultaneous remediation of co-contaminated soil by ball-milled zero-valent iron coupled with persulfate oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:118004. [PMID: 37119628 DOI: 10.1016/j.jenvman.2023.118004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
The problem of co-contaminated soil at e-waste dismantling sites is serious and constitutes a critical threat to human health and the ecological environment. Zero-valent iron (ZVI) has been proven to be effective in the stabilization of heavy metals and the removal of halogenated organic compounds (HOCs) from soils. However, for the remediation of co-contamination of heavy metals with HOCs, ZVI has disadvantages such as high remediation cost and inability to take into account both pollutants, which limits its large-scale application. In this paper, boric acid and commercial zero-valent iron (cZVI) were used as raw materials to prepare boric acid-modified zero-valent iron (B-ZVIbm) through a high-energy ball milling strategy. B-ZVIbm coupled with persulfate (PS) to achieve simultaneous remediation of co-contaminated soil. The synergistic treatment of PS and B-ZVIbm resulted in the removal efficiency of 81.3% for decabromodiphenyl ether (BDE209) and the stabilization efficiencies of 96.5%, 99.8%, and 28.8% for Cu, Pb, and Cd respectively in the co-contaminated soil. A series of physical and chemical characterization methods showed that the oxide coat on the surface of B-ZVIbm could be replaced by borides during ball milling. The boride coat facilitated the exposure of the Fe0 core, promoted the corrosion of ZVI and the orderly release of Fe2+. The analysis of the morphological transformation of heavy metals in soils revealed that most of the heavy metals in the exchangeable, carbonate-bound state were transformed into the residue state, which was the key mechanism for the remediation of heavy metal-contaminated soils with B-ZVIbm. The analysis of BDE209 degradation products showed that BDE209 was degraded to lower brominated products and further mineralized by ZVI reduction and free radical oxidation. In general, B-ZVIbm coupled with PS is a good recipe for synergistic remediation of co-contaminated soils with heavy metals and HOCs.
Collapse
Affiliation(s)
- Chengjie Xue
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Long Zhou
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| |
Collapse
|
44
|
Luo Y, Pang J, Peng C, Ye J, Long B, Tong J, Shi J. Cr(VI) Reduction and Fe(II) Regeneration by Penicillium oxalicum SL2-Enhanced Nanoscale Zero-Valent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37474249 DOI: 10.1021/acs.est.3c01390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Nanoscale zero-valent iron (nZVI) faces significant challenges in Cr(VI) remediation through aggregation and passivation. This study identified a Cr(VI)-resistant filamentous fungus (Penicillium oxalicum SL2) for nZVI activation and elucidated the synergistic mechanism in chromium remediation. P. oxalicum SL2 and nZVI synergistically and effectively removed Cr(VI), mainly by extracellular nonenzymatic reduction (89.1%). P. oxalicum SL2 exhibited marked iron precipitate solubilization and Fe(II) regeneration capabilities. The existence of the Fe(II)-Cr(V)-oxalate complex (HCrFeC4O9) indicated that in addition to directly reducing Cr(VI), iron ions generated by nZVI stimulated Cr(VI) reduction by organic acids secreted by P. oxalicum SL2. RNA sequencing and bioinformatics analysis revealed that P. oxalicum SL2 inhibited phosphate transport channels to suppress Cr(VI) transport, facilitated iron and siderophore transport to store Fe, activated the glyoxylate cycle to survive harsh environments, and enhanced organic acid and riboflavin secretion to reduce Cr(VI). Cr(VI) exposure also stimulated the antioxidative system, promoting catalase activity and maintaining the intracellular thiol/disulfide balance. Cr(VI)/Fe(III) reductases played crucial roles in the intracellular reduction of chromium and iron, while nZVI decreased cellular oxidative stress and alleviated Cr(VI) toxicity to P. oxalicum SL2. Overall, the P. oxalicum SL2-nZVI synergistic system is a promising approach for regenerating Fe(II) while reducing Cr(VI).
Collapse
Affiliation(s)
- Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jien Ye
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Bibo Long
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
45
|
Zhou CS, Cao GL, Wu XK, Liu BF, Qi QY, Ma WL. Removal of antibiotic resistant bacteria and genes by nanoscale zero-valent iron activated persulfate: Implication for the contribution of pH decrease. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131343. [PMID: 37027910 DOI: 10.1016/j.jhazmat.2023.131343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The mechanism of removing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by persulfate was attributed to the generation of reactive oxygen species (ROS). However, the potential contribution of decreased pH in persulfate system to ARB and ARGs removal has rarely been reported. Here, the efficiency and mechanism of removing ARB and ARGs by nanoscale zero-valent iron activated persulfate (nZVI/PS) were investigated. Results showed that the ARB (2 × 108 CFU/mL) could be completely inactivated within 5 min, and the removal efficiencies of sul1 and intI1 were 98.95% and 99.64% by nZVI/20 mM PS, respectively. Investigation of mechanism revealed that hydroxyl radicals was the dominant ROS of nZVI/PS in removing ARB and ARGs. Importantly, the pH of nZVI/PS system was greatly decreased, even to 2.9 in nZVI/20 mM PS system. Impressively, when the pH of the bacterial suspension was adjusted to 2.9, the removal efficiency of ARB, sul1 and intI1 were 60.33%, 73.76% and 71.51% within 30 min, respectively. Further excitation-emission-matrix analysis confirmed that decreased pH contributed to ARB damage. The above results on the effect of pH indicated that the decreased pH of nZVI/PS system also made an important contribution for the removal of ARB and ARGs.
Collapse
Affiliation(s)
- Chun-Shuang Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiu-Kun Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Yue Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
46
|
Zhang K, Huang D, Zhang Y, El Houda Bouroubi N, Chen P, Ganbold N, He P, Liu J, Fang Y, Gan M, Zhu J, Yang B. Natural mineral-derived Fe/Mn-BC as efficient peroxydisulfate activator for 2,4-dichlorophenol removal from wastewater: Performance and sustainable catalytic mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117540. [PMID: 36841004 DOI: 10.1016/j.jenvman.2023.117540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Iron and manganese oxides/biochar composite materials (Fe/Mn-BC) are promising catalysts in the field of advanced oxidation. High purity chemical reagents are popular precursors for preparing Fe/Mn-BC, while the potential of low-cost natural minerals as precursors has been neglected. In this study, high-efficiency Fe/Mn-BC was synthesized by one-step pyrolysis method using hematite, phosphoromanganese, and bagasse. The synthesized Fe/Mn-BC removed 83.7% 2, 4-dichlorophenol (2, 4-DCP) within 30 min, about 8.8 and 10.6 times better than biochar (BC) and Fe/Mn complex, respectively. The removal of 2, 4-DCP in the Fe/Mn-BC + peroxydisulfate (PDS) system was influenced by catalyst dosage, PDS concentration, initial pH, organic acids, and chromium. Sulfate radical (SO4•-) and hydroxyl radicals (•OH) generated by Fe/Mn-BC-activated PDS have similar contribution to the degradation of 2,4-DCP. A possible removal mechanism of 2, 4-DCP in the Fe/Mn-BC + PDS system was proposed based on Electron Spin Resonance spectroscopy, free radical quenching experiments, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical measurement. Fe0 and Fe(II) in Fe/Mn-BC play significant role in catalytic degradation of 2, 4-DCP at the early stage of the reaction (within 0-5 min). Then, the interaction between Mn and BC or structural Mn and structural Fe gradually became dominant in the later stage. Similarly, the electron transfer promoted by biochar also played an important role in this catalysis. This discovery provided a new strategy for developing iron and manganese oxides/biochar composite materials to activate PDS for the elimination of refractory organic pollutants.
Collapse
Affiliation(s)
- Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Dongli Huang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ying Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Nour El Houda Bouroubi
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Pan Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Naranchimeg Ganbold
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Junwu Liu
- Hunan Engineering Technology Research Center for Treatment and Recycling of Heavy Pollution Industrial Wastewater, China
| | - Yingchun Fang
- Hunan Engineering Technology Research Center for Treatment and Recycling of Heavy Pollution Industrial Wastewater, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Baojun Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
47
|
Han M, Wang H, Jin W, Chu W, Xu Z. The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation. J Environ Sci (China) 2023; 128:181-202. [PMID: 36801034 DOI: 10.1016/j.jes.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/18/2023]
Abstract
Many studies have successfully built iron-mediated materials to activate or catalyze Fenton-like reactions, with applications in water and wastewater treatment being investigated. However, the developed materials are rarely compared with each other regarding their performance of organic contaminant removal. In this review, the recent advances of Fenton-like processes in homogeneous and heterogeneous ways are summarized, especially the performance and mechanism of activators including ferrous iron, zero valent iron, iron oxides, iron-loaded carbon, zeolite, and metal organic framework materials. Also, this work mainly compares three O-O bond containing oxidants including hydrogen dioxide, persulfate, and percarbonate, which are environmental-friendly oxidants and feasible for in-situ chemical oxidation. The influence of reaction conditions, catalyst properties and benefits are analyzed and compared. In addition, the challenges and strategies of these oxidants in applications and the major mechanisms of the oxidation process have been discussed. This work can help understand the mechanistic insights of variable Fenton-like reactions, the role of emerging iron-based materials, and provide guidance for choosing appropriate technologies when facing real-world water and wastewater applications.
Collapse
Affiliation(s)
- Mengqi Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China.
| |
Collapse
|
48
|
Huang P, Zhang P, Wang C, Du X, Jia H, Sun H. P-doped biochar regulates nZVI nanocracks formation for superefficient persulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:130999. [PMID: 36848845 DOI: 10.1016/j.jhazmat.2023.130999] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In this study, a novel P-doped biochar loaded with nano zero-valent iron (nZVI) composite (nZVI@P-BC), with abundant nanocracks from inside to outside in nZVI particles, was designed for ultra-efficient persulfate (PS) activation and gamma-hexachlorocyclohexane (γ-HCH) degradation. Results showed that P-doping treatment significantly enhanced specific surface area, hydrophobicity and adsorption capacity of biochar. Systematic characterizations revealed that the additional electrostatic stress and continuously generated multiple new nucleation sites of P-doped biochar were the main mechanism for the formation of nanocracked structure. nZVI@P-BC with KH2PO4 as P precursor showed superefficient PS activation and γ-HCH degradation, by which 92.6 % of 10 mg/L γ-HCH was removed within 10 min using 1.25 g/L catalyst and 4 mM PS, being 10.5-fold greater than that of without P-doping. Electron spin resonance and radical quenching test showed that •OH and 1O2 were the dominant active species, and further revealed that the unique nanocracked nZVI, high adsorption capacity and abundant P sites in nZVI@P-BC enhanced their generation and mediated extra direct surface electron transfer. nZVI@P-BC also exhibited high tolerance to different anions, humic acid and wide pH conditions. This work provides a new strategy and mechanism insight for the rational design of nZVI and diversified application of biochar.
Collapse
Affiliation(s)
- Peng Huang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Cuiping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
49
|
Zhong C, Jiang Y, Liu Q, Sun X, Yu J. Natural siderite derivatives activated peroxydisulfate toward oxidation of organic contaminant: A green soil remediation strategy. J Environ Sci (China) 2023; 127:615-627. [PMID: 36522091 DOI: 10.1016/j.jes.2022.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/17/2023]
Abstract
Natural siderite (FeCO3), simulated synthetic siderite and nZVI/FeCO3 composite were used as green and easily available iron-based catalysts in peroxydisulfate activation for remediating 2-chlorophenol as the target contaminant and this technique can effectively degrade organic pollutants in the soil. The key reaction parameters such as catalysts dosage, oxidant concentration and pH, were investigated to evaluate the catalytic performance of different materials in catalytic systems. The buffering property of natural soil conduced satisfactory degradation performance in a wide pH range (3-10). Both the main non-radical of 1O2 and free radicals of SO4·- and OH· were evidenced by quenching experiment and electron paramagnetic resonance. The reduction of nZVI on FFC surface not only has the advantage for electronic transfer to promote the circulation of Fe(III) to Fe(II), but also can directly dechlorinate. Furthermore, the intermediates were comprehensively analyzed by GC-MS and a potential removal mechanism of three oxidant system for 2-CP soil degradation was obtained. Briefly, this research provides a new perspective for organic contaminate soil treatment using natural siderite or simulated synthetic siderite as efficient and environmental catalytic material.
Collapse
Affiliation(s)
- Chengwei Zhong
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China
| | - Yinying Jiang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China
| | - Quanfeng Liu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China
| | - Xiaoshuang Sun
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin 644000, China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
50
|
Dan H, Gao Y, Feng L, Yin W, Xu X, Gao B, Yue Q. Super-amphiphilic graphene promotes peroxymonosulfate-based emulsion catalysis for efficient oil purification. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130469. [PMID: 36463736 DOI: 10.1016/j.jhazmat.2022.130469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Oil fractions containing highly toxic and hazardous organic contaminants can not only cause severe environmental disasters, but also an undesired waste of resources. Given the exceptional performance of persulfates in the removal of persistent and refractory organic pollutants from aqueous media, herein, a peroxymonosulfate-based Pickering emulsion catalytic (PPEC) system was constructed for the hazardous oil purification, using super-amphiphilic graphene as a solid emulsifier and a heterogeneous catalyst simultaneously. Combined detailed instrumental analysis with theoretical calculations, we find that the incorporation of pyridinic N and its oxide significantly facilitated the formation of super-amphiphilic graphene and successfully induced the formation of Pickering emulsion. In addition to stabilizing the PPEC system, super-amphiphilic graphene can also achieve efficient removal of Sudan III (simulated lipophilic organic pollutant) by activating peroxymonosulfate (PMS) to generate •O2- and 1O2. Results showed that 80 mg/L Sudan III (20 mL) could be fully degraded within 30 min using 10 mL 5 mmol PMS. More significantly, our proposed PPEC system also exhibited excellent property in the purification of practical waste engine oil. This study provides new insights into the purification and recovery of waste oil.
Collapse
Affiliation(s)
- Hongbing Dan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Lidong Feng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Xing Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|