1
|
Qi X, Jia X, Li M, Ye M, Wei Y, Meng F, Fu S, Xi B. Enhancing CO 2-reduction methanogenesis in microbial electrosynthesis: Role of oxygen-containing groups on carbon-based cathodes. BIORESOURCE TECHNOLOGY 2025; 416:131830. [PMID: 39551393 DOI: 10.1016/j.biortech.2024.131830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Microbial electrosynthesis is a promising technology that recovers energy from wastewater while converting CO2 into CH4. Constructing a biocathode with both strong H2-mediated and direct electron transfer capacities is crucial for efficient startup and long-term stable CH4 production. This study found that introducing carboxyl groups onto the cathode effectively enhanced both electron transfer pathways, improving the reduction rate and coulombic efficiency of CH4 production and increasing the CH4 yield by 2-3 times. Carboxyl groups decreased the overpotential for H2 evolution and increased current density, thereby enhancing H2-mediated electron transfer. Additionally, carboxyl groups increased the relative abundance of Methanosaeta by 3%-10%, doubled the protein content in extracellular polymeric substances, and boosted the expression of cytochrome c-related genes, thereby enhancing direct electron transfer capacity. These findings present a novel and efficient approach for constructing a stable, high-performance biocathode, contributing to energy recovery and CO2 fixation.
Collapse
Affiliation(s)
- Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Xuan Jia
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Meiying Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yufang Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shanfei Fu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
2
|
Wang Z, Zhang J, Zhang Z, Zhang Q, Deng B, Zhang N, Cao Z, Wei G, Xia S. Gas permeable membrane electrode assembly with in situ utilization of authigenic acid and base for transmembrane electro-chemisorption to enhance ammonia recovery from wastewater. WATER RESEARCH 2024; 258:121655. [PMID: 38762914 DOI: 10.1016/j.watres.2024.121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Ammonia recovery from wastewater is of great significance for aquatic ecology safety, human health and carbon emissions reduction. Electrochemical methods have gained increasing attention since the authigenic base and acid of electrochemical systems can be used as stripper and absorbent for transmembrane chemisorption of ammonia, respectively. However, the separation of electrodes and gas permeable membrane (GPM) significantly restricts the ammonia transfer-transformation process and the authigenic acid-base utilization. To break the restrictions, this study developed a gas permeable membrane electrode assembly (GPMEA), which innovatively integrated anode and cathode on each side of GPM through easy phase inversion of polyvinylidene fluoride binder, respectively. With the GPMEA assembled in a stacked transmembrane electro-chemisorption (sTMECS) system, in situ utilization of authigenic acid and base for transmembrane electro-chemisorption of ammonia was achieved to enhance the ammonia recovery from wastewater. At current density of 60 A/m2, the transmembrane ammonia flux of the GPMEA was 693.0 ± 15.0 g N/(m2·d), which was 86 % and 28 % higher than those of separate GPM and membrane cathode, respectively. The specific energy consumption of the GPMEA was 9.7∼16.1 kWh/kg N, which were about 50 % and 25 % lower than that of separate GPM and membrane cathode, respectively. Moreover, the application of GPMEA in the ammonia recovery from wastewater is easy to scale up in the sTMECS system. Accordingly, with the features of excellent performance, energy saving and easy scale-up, the GPMEA showed good prospects in electrochemical ammonia recovery from wastewater.
Collapse
Affiliation(s)
- Zuobin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Research Center of Dredging Technology and Equipment, Key Laboratory of Dredging Technology, CCCC, Shanghai 200082, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiao Zhang
- School of Municipal and Ecological Engineering, Shanghai Urban Construction Vocational College, Shanghai 200432, China
| | - Zhiqiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qingbo Zhang
- National Engineering Research Center of Dredging Technology and Equipment, Key Laboratory of Dredging Technology, CCCC, Shanghai 200082, China
| | - Beiqi Deng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Nan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhiyong Cao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Shi X, Duan Z, Zhou W, Jiang M, Li T, Ma H, Zhu X. Simultaneous removal of multiple heavy metals using single chamber microbial electrolysis cells with biocathode in the micro-aerobic environment. CHEMOSPHERE 2023; 318:137982. [PMID: 36716938 DOI: 10.1016/j.chemosphere.2023.137982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The simultaneous and efficient removal of various heavy metals from wastewater to satisfy the requirements of zero discharge has been a research hotspot and difficult point. In the laboratory scale (0.5 L), the biocathode microbial electrolytic cells (BCMECs) were constructed with the pre-screened heavy metal-tolerant electroactive bacterial, mainly of the Sphingomonas, Azospira and Cupriavidus. The BCMECs system showed a more satisfactory removal effect for multiple heavy metals and organic pollutants. At the auxiliary voltage of 0.9 V and initial concentration of 20 mg L-1, the removal efficiency of Cu, Pb, Zn, Cd and COD were 98.76 ± 0.32%, 98.01 ± 0.76%, 73.58 ± 4.83%, 84.39 ± 5.95%, 77.55 ± 1.51%, respectively. It was found by various characterization techniques (CV, EIS, XPS et al.) that the constructed biocathode has the function of electrocatalytic reduction of heavy metal ions in a micro-aerobic, film-free environment. The positive shift (0.030-0.229 V) of the initial potential for heavy metal reduction and the absence of a significant increase (< 10 Ω) in the interfacial resistance indicated a reduction in the total free energy of the reduction reaction, which promotes the reaction and improves the efficiency of heavy metal removal. Bacterial community analysis revealed that the Proteobacteria has been dominant in different heavy metal environments. With the increase of heavy metal concentration, Sphingomonas, Azospira and Cupriavidus showed stronger tolerance and became the dominant genus. This study emphasized the important performance of biocathodes and the effective treatment of heavy metal wastewaters by BCMECs and provided a reasonable way for industrial and mining enterprises to innovate the water treatment process.
Collapse
Affiliation(s)
- Xiuding Shi
- College of Architecture and Engineering, Yunnan Agricultural University, Kunming 650201, PR China
| | - Zhengyang Duan
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, PR China
| | - Wenyi Zhou
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Tianguo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China.
| | - Hongyan Ma
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Xuan Zhu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| |
Collapse
|
4
|
Song S, Huang L, Zhou P. Efficient H2 production in a ZnFe2O4/g-C3N4 photo-cathode single-chamber microbial electrolysis cell. Appl Microbiol Biotechnol 2022; 107:391-404. [DOI: 10.1007/s00253-022-12293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/13/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
|
5
|
Wang S, Adekunle A, Raghavan V. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115333. [PMID: 35617867 DOI: 10.1016/j.jenvman.2022.115333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) are considered efficient and sustainable technologies for bioenergy generation and simultaneously removal/recovery metal (loid)s from soil and wastewater. However, several current challenges of BES-based metal removal and recovery, especially concentrating target metals from complex contaminated wastewater or soil and their economic feasibility of engineering applications. This review summarized the applications of BES-based metal removal and recovery systems from wastewater and contaminated soil and evaluated their performances on electricity generation and metal removal/recovery efficiency. In addition, an in depth review of several key parameters (BES configurations, electrodes, catalysts, metal concentration, pH value, substrate categories, etc.) of BES-based metal removal and recovery was carried out to facilitate a deep understanding of their development and to suggest strategies for scaling up their specific application fields. Finally, the future intervention on multifunctional BES to improve their performances of mental removal and recovery were revealed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
6
|
N-doped Macroporous Carbon Loading Mo2C as Cathode Electrocatalyst of Hybrid Neutral-alkaline Microbial Electrolysis Cells for H2 Generation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Hwang JH, Fahad S, Ryu H, Rodriguez KL, Domingo JS, Kushima A, Lee WH. Recycling urine for bioelectrochemical hydrogen production using a MoS 2 nano carbon coated electrode in a microbial electrolysis cell. JOURNAL OF POWER SOURCES 2022; 527:1-11. [PMID: 35582347 PMCID: PMC9109132 DOI: 10.1016/j.jpowsour.2022.231209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a novel molybdenum disulfide (MoS2) nano-carbon (NC) coated cathode was developed for hydrogen production in a microbial electrolysis cell (MEC), while treating simulated urine with 2-6 times dilution (conductivity <20 mS cm-1). MoS2 nanoparticles were electrodeposited on the NC coated cathodes at -100, -150 and -200 μA cm-2 and their performances were evaluated in the MEC. The chronopotentiometry (CP) tests showed the improved catalytic activity of MoS2-NC cathodes with much lower cathode overpotential than non-MoS2 coated electrodes. The MoS2-NC200 cathode, electrodeposited at -200 μA cm-2, showed the maximum hydrogen production rate of 0.152 ± 0.002 m3 H2 m-2 d-1 at 0.9V of Eap, which is comparable to the previously reported Pt electrodes. It was found that high solution conductivity over 20 mS cm-1 (>600 mg L-1 NH3-N) can adversely affect the biofilm architecture and the bacterial activity at the anode of the MEC. Exoelectrogenic bacteria for this system at the anode were identified as Tissierella (Clostridia) and Bacteroidetes taxa. Maximum ammonia-nitrogen (NH3-N) and phosphorus (PO4 3--P) removal were 68.7 and 98.6%, respectively. This study showed that the newly fabricated MoS2-NC cathode can be a cost-effective alternative to the Pt cathode for renewable bioelectrochemical hydrogen production from urine.
Collapse
Affiliation(s)
- Jae-Hoon Hwang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Saisaban Fahad
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, USA
| | - Kelsey L. Rodriguez
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Jorge Santo Domingo
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, USA
| | - Akihiro Kushima
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816, USA
- Advanced Materials Processing and Analysis Center, and NanoScience Technology Center, University of Central Florida, Orlando, FL, 32816, USA
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
8
|
Moreno-Jimenez DA, Kim KY. Enhanced wettability improves catalytic activity of nickel-functionalized activated carbon cathode for hydrogen production in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2022; 350:126881. [PMID: 35217164 DOI: 10.1016/j.biortech.2022.126881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
A nickel-functionalized activated carbon (AC/Ni) was recently developed for microbial electrolysis cells (MECs) and showed a great potential for large-scale applications. In this study, the electroactivity of the AC/Ni cathode was significantly improved by increasing the oxygen (16.9%) and nitrogen (124%) containing species on the AC using nitric acid oxidation. The acid-treated AC (t-AC) showed 21% enhanced wettability that consequently reduced the ohmic resistance (6.7%) and the charge transfer resistance (33.3%). As a result, t-AC/Ni achieved peak values of hydrogen production rate (0.35 ± 0.02 L-H2/L-d), energy yield (129 ± 8%), and cathodic hydrogen recovery (93 ± 6%) in MECs. The hydrogen production rate was 84% higher using t-AC/Ni cathode than the control, likely due to the enhanced wettability and a higher fraction of N on the t-AC. Also, the increases in polyvinylidene fluoride (PVDF) binder loadings (from 4.6 mg-PVDF/cm2 to 7.3 mg-PVDF/cm2) demonstrated 47% higher hydrogen productions rates in MECs.
Collapse
Affiliation(s)
- Daniel A Moreno-Jimenez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
9
|
Dai L, Xiang L, Zhang M, Wen Z, Xu Q, Chen K, Zhao Z, Ci S. Asymmetric Neutral‐alkaline Microbial Electrolysis Cells for Hydrogen Production. ChemElectroChem 2022. [DOI: 10.1002/celc.202101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ling Dai
- Nanchang Hangkong University enviromental and chemical engineering school nanchang CHINA
| | - Lijuan Xiang
- Nanchang Hangkong University environment and chemical engineering school CHINA
| | - Mengtian Zhang
- Nanchang Hangkong University environmental and chemical engineering college nanchang CHINA
| | - Zhenhai Wen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Institute of Materials 155 Yangqiao Road West 350002 Fuzhou CHINA
| | - Qiuhua Xu
- Nanchang Hangkong University environmental and chemical engineering college nanchang CHINA
| | - Kai Chen
- Nanchang Hangkong University environmental and chemical engineering college nanchang CHINA
| | - Zhifeng Zhao
- Nanchang Hangkong University enviromental and chemical engineering college nanchang CHINA
| | - Suqin Ci
- Nanchang Hangkong University enviromental and chemical engineering school nanchang CHINA
| |
Collapse
|
10
|
Yu H, Huang L, Zhang G, Zhou P. Physiological metabolism of electrochemically active bacteria directed by combined acetate and Cd(II) in single-chamber microbial electrolysis cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127538. [PMID: 34736191 DOI: 10.1016/j.jhazmat.2021.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
It is of great interest to explore physiological metabolism of electrochemically active bacteria (EAB) for combined organics and heavy metals in single-chamber microbial electrolysis cells (MECs). Four pure culture EAB varying degrees responded to the combined acetate (1.0-5.0 g/L) and Cd(II) (20-150 mg/L) at different initial concentrations in the single-chamber MECs, shown as significant relevance of Cd(II) removal (2.57-7.35 mg/L/h) and H2 production (0-0.0011 m3/m3/h) instead of acetate removal (73-130 mg/L/h), to these EAB species at initial Cd(II) below 120 mg/L and initial acetate below 3.0 g/L. A high initial acetate (5.0 g/L) compensated the Cd(II) inhibition and broadened the removal of Cd(II) to 150 mg/L. These EAB physiologically released variable amounts of extracellular polymeric substances with a compositional diversity in response to the changes of initial Cd(II) and circuital current whereas the activities of typical intracellular enzymes were more apparently altered by the initial Cd(II) than the circuital current. These results provide experimental validation of the presence, the metabolic plasticity and the physiological response of these EAB directed by the changes of initial Cd(II) and acetate concentrations in the single-chamber MECs, deepening our understanding of EAB physiological coping strategies in metallurgical microbial electro-ecological cycles.
Collapse
Affiliation(s)
- Haihang Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Ji X, Liu X, Yang W, Xu T, Wang X, Zhang X, Wang L, Mao X, Wang X. Sustainable phosphorus recovery from wastewater and fertilizer production in microbial electrolysis cells using the biochar-based cathode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150881. [PMID: 34627919 DOI: 10.1016/j.scitotenv.2021.150881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Reducing the energy consumption and electrode cost for electrochemical recovery of phosphorus (P) from wastewater is crucial for the large-scale application. In this study, biochar electrodes were investigated as the low-cost cathode in a microbial electrolysis cell (MEC) and this P-enriched biochar electrode was directly retrieved as P fertilizer after wastewater treatment. The Fe2+ salt modified biochar significantly increased the electrochemical performance of MECs due to the improved electrical conductivity and cathodic activity. Compared to the pristine biochar cathode, the current density of the MEC increased from 16.8 ± 0.2 A/m3 to 20.7 ± 0.8 A/m3, and the P removal increased from 28.8% ± 1% to 62.4% ± 3.5%. The power consumption was 0.25 ± 0.01 kWh/kg P which was more than one order of magnitude lower than the previous report. It was also demonstrated that the P enriched biochar amended soil improved the Pakchoi cultivation.
Collapse
Affiliation(s)
- Xiaoyu Ji
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, No. 129 Luoyu Road, Wuhan 430079, China
| | - Xue Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wulin Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tao Xu
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, No. 129 Luoyu Road, Wuhan 430079, China
| | - Xiang Wang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, No. 129 Luoyu Road, Wuhan 430079, China
| | - Xinquan Zhang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, No. 129 Luoyu Road, Wuhan 430079, China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xuhui Mao
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, No. 129 Luoyu Road, Wuhan 430079, China
| | - Xu Wang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, No. 129 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
12
|
Rossi R, Baek G, Logan BE. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1211-1220. [PMID: 34971515 DOI: 10.1021/acs.est.1c06769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen can be electrochemically produced in microbial electrolysis cells (MECs) by current generated from bacterial anodes with a small added voltage. MECs typically use a liquid catholyte containing a buffer or salts. However, anions in these catholytes result in charge being balanced predominantly by ions other than hydroxide or protons, leading to anode acidification. To enhance only hydroxide ion transport to the anode, we developed a novel vapor-fed MEC configuration lacking a catholyte with closely spaced electrodes and an anion exchange membrane to limit the acidification. This MEC design produced a record-high sustained current density of 43.1 ± 0.6 A/m2 and a H2 production rate of 72 ± 2 LH2/L-d (cell voltage of 0.79 ± 0.00 V). There was minimal impact on MEC performance of increased acetate concentrations, solution conductivity, or anolyte buffer capacity at applied voltages up to 1.1 V, as shown by a nearly constant internal resistance of only 6.8 ± 0.3 mΩ m2. At applied external voltages >1.1 V, the buffer capacity impacted performance, with current densities increasing from 28.5 ± 0.6 A/m2 (20 mM phosphate buffer solution (PBS)) to 51 ± 1 A/m2 (100 mM PBS). These results show that a vapor-fed MEC can produce higher and more stable performance than liquid-fed cathodes by enhancing transport of hydroxide ions to the anode.
Collapse
Affiliation(s)
- Ruggero Rossi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gahyun Baek
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Ma S, Yang F, Chen X, Khor CM, Jung B, Iddya A, Sant G, Jassby D. Removal of As(III) by Electrically Conducting Ultrafiltration Membranes. WATER RESEARCH 2021; 204:117592. [PMID: 34469809 DOI: 10.1016/j.watres.2021.117592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
As(III) species are the predominant form of arsenic found in groundwater. However, nanofiltration (NF) and reverse osmosis (RO) membranes are often unable to effectively reject As(III). In this study, we fabricate highly conducting ultrafiltration (UF) membranes for effective As(III) rejection. These membranes consist of a hydrophilic nickel-carbon nanotubes layer deposited on a UF support, and used as cathodes. Applying cathodic potentials significantly increased As(III) rejection in synthetic/real tap water, a result of locally elevated pH that is brought upon through water electrolysis at the membrane/water interface. The elevated pH conditions convert H3ASO3 to H2AsO3-/HAsO32- that are rejected by the negatively charged membranes. In addition, it was found that Mg(OH)2 that precipitates on the membrane can further trap arsenic. Importantly, almost all As(III) passing through the membranes is oxidized to As(V) by hydrogen peroxide produced on the cathode, which significantly decreased its overall toxicity and mobility. Although the high pH along the membrane surface led to mineral scaling, this scale could be partially removed by backwashing the membrane. To the best of our knowledge, this is the first report of effective As(III) removal using low-pressure membranes, with As(III) rejection higher than that achieved by NF and RO, and high water permeance.
Collapse
Affiliation(s)
- Shengcun Ma
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fan Yang
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xin Chen
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Laboratory for the Chemistry of Construction Materials (LC2), University of California, Los Angeles, CA, United States; Institute for Carbon Management (ICM), University of California, Los Angeles, CA, United States
| | - Chia Miang Khor
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bongyeon Jung
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Arpita Iddya
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gaurav Sant
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Laboratory for the Chemistry of Construction Materials (LC2), University of California, Los Angeles, CA, United States; Institute for Carbon Management (ICM), University of California, Los Angeles, CA, United States; Department of Materials Science and Engineering, University of California, Los Angeles, CA, United States; California Nano systems Institute (CNSI), University of California, Los Angeles, CA, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Institute for Carbon Management (ICM), University of California, Los Angeles, CA, United States.
| |
Collapse
|
14
|
Cui W, Lu Y, Zeng C, Yao J, Liu G, Luo H, Zhang R. Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146597. [PMID: 34030325 DOI: 10.1016/j.scitotenv.2021.146597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to investigate the performance of single-chamber MEC under applied voltages higher than that for water electrolysis. With different acetate concentrations (1.0-2.0 g/L), the MEC was tested under applied voltages from 0.8 to 2.2 V within 2600 h (54 cycles). Results showed that the MEC was stably operated for the first time within 20 cycles under 2.0 and 2.2 V, compared with the control MEC with significant water electrolysis. The maximum current density reached 27.8 ± 1.4 A/m2 under 2.0 V, which was about three times as that under 0.8 V. The anode potential in the MEC could be kept at 0.832 ± 0.110 V (vs. Ag/AgCl) under 2.2 V, thus without water electrolysis in the MEC. High applied voltage of 1.6 V combined with alkaline solution (pH = 11.2) could result in high hydrogen production and high current density. The maximum current density of MEC at 1.6 V and pH = 11.2 reached 42.0 ± 10.0 A/m2, which was 1.85 times as that at 1.6 V and pH = 7.0. The average hydrogen content reached 97.2% of the total biogas throughout all the cycles, indicating that the methanogenesis was successfully inhibited in the MEC at 1.6 V and pH = 11.2. With high hydrogen production rate and current density, the size and investment of MEC could be significantly reduced under high applied voltages. Our results should be useful for extending the range of applied voltages in the MEC.
Collapse
Affiliation(s)
- Wanjun Cui
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaobin Lu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Cuiping Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jialiang Yao
- The Affiliated High School of South China Normal University, Guangzhou 510630, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
15
|
Kim KY, Moreno-Jimenez DA, Efstathiadis H. Electrochemical Ammonia Recovery from Anaerobic Centrate Using a Nickel-Functionalized Activated Carbon Membrane Electrode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7674-7680. [PMID: 33970609 DOI: 10.1021/acs.est.1c01703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia (NH3) recovery from used water (previously wastewater) is highly desirable to depart from fossil fuel-dependent NH3 production and curb nitrogen emission to the environment. Electrochemical NH3 recovery is promising since it can simply convert aqueous NH4+ to gaseous NH3 using cathodic reactions (OH- generation). However, the use of a separated electrode and membrane imposes high resistances to the cathodic reaction and NH3 transfer. This study examined an activated carbon (AC)-based membrane electrode functionalized with nickel to electrochemically recover NH3 from synthetic anaerobic centrate. The membrane electrode was fabricated using nickel-adsorbed AC powder and a polyvinylidene fluoride (PVDF) binder, and the PVDF membrane layer was formed at the electrode surface by phase inversion. The NH3-N recovery flux of 50.3 ± 0.4 gNH3-N/m2/d was produced at 17.1 A/m2 with a recovery solution at pH 7, and NH3-N fluxes and energy consumptions were improved as the recovery solution became acidic (62.2 ± 2.1 gNH3-N/m2/d with 16.0 ± 1.6 kWh/kgNH3-N at pH 2). Increasing PVDF loadings did not impact the electrochemical performances of the Ni/AC-PVDF electrode, but slightly lower (7%) NH3-N fluxes were obtained with higher PVDF loadings. Ni dissolution (3.7-6.0% loss) was affected by the recovery solution pH, but it did not impact the performances over the cycles.
Collapse
Affiliation(s)
- Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Daniel A Moreno-Jimenez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Harry Efstathiadis
- College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
16
|
Estrada-Arriaga EB, Reynoso-Deloya MG, Guillén-Garcés RA, Falcón-Rojas A, García-Sánchez L. Enhanced methane production and organic matter removal from tequila vinasses by anaerobic digestion assisted via bioelectrochemical power-to-gas. BIORESOURCE TECHNOLOGY 2021; 320:124344. [PMID: 33166883 DOI: 10.1016/j.biortech.2020.124344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 05/21/2023]
Abstract
In this study, showed a strategy to generate methane and remove organic matter removal from tequila vinasses through of anaerobic digestion assisted via bioelectrochemical power to-gas. Specific methanogenic activity (SMA) assays in batch mode were tested and a single-stage bioelectrochemical upflow anaerobic sludge blanket reactor (UASB) was evaluated to generate methane during tequila vinasses treatment. The results showed that the methane production in the bioelectrochemical UASB reactor applied at low voltage of 0.5 V and under HRT of 7 d was higher than the in the conventional UASB reactor. The specific methane production rate in bioelectrochemical UASB reactor was up to 2.9 NL CH4/L d, with a maximum methane yield of 0.32 NL CH4/g CODremoved. Similar COD removals were observed in the bioelectrochemical UASB reactor and conventional reactors (92-93%). High carbon dioxide reduction and hydrogen production were observed in the bioelectrochemical UASB reactor.
Collapse
Affiliation(s)
- Edson Baltazar Estrada-Arriaga
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos C.P. 62550, Mexico.
| | - Ma Guadalupe Reynoso-Deloya
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, Paseo Cuauhnahuac 8532, Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Rosa Angélica Guillén-Garcés
- Universidad Politécnica del Estado de Morelos, Paseo Cuauhnáhuac 566, Lomas del Texcal, Jiutepec, Morelos 62550, Mexico
| | - Axel Falcón-Rojas
- Subcoordinación de Tecnologías Apropiadas, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Liliana García-Sánchez
- Subcoordinación de Tecnologías Apropiadas, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| |
Collapse
|
17
|
Lu S, Lu B, Tan G, Moe W, Xu W, Wang Y, Xing D, Zhu X. Mo 2N nanobelt cathodes for efficient hydrogen production in microbial electrolysis cells with shaped biofilm microbiome. Biosens Bioelectron 2020; 167:112491. [PMID: 32798808 DOI: 10.1016/j.bios.2020.112491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
High cost platinum (Pt) catalysts limit the application of microbial electrolysis cells (MECs) for hydrogen (H2) production. Here, inexpensive and efficient Mo2N nanobelt cathodes were prepared using an ethanol method with minimized catalyst and binder loadings. The chronopotentiometry tests demonstrated that the Mo2N nanobelt cathodes had similar catalytic activities for H2 evolution compared to that of Pt/C (10 wt%). The H2 production rates (0.39 vs. 0.37 m3-H2/m3/d), coulombic efficiencies (90% vs. 77%), and overall hydrogen recovery (74% vs. 70%) of MECs with the Mo2N nanobelt cathodes were also comparable to those with Pt/C cathodes. However, the cost of Mo2N nanobelt catalyst ($ 31/m2) was much less than that of Pt/C catalysts ($ 1930/m2). Furthermore, the biofilm microbiomes at electrodes were studied using the PacBio sequencing of full-length 16S rRNA gene. It indicated Stenotrophomonas nitritireducens as a putative electroactive bacterium dominating the anode biofilm microbiomes. The majority of dominant species in the Mo2N and Pt/C cathode communities belonged to Stenotrophomonas nitritireducens, Stenotrophomonas maltophilia, and Comamonas testosterone. The dominant populations in the cathode biofilms were shaped by the cathode materials. This study demonstrated Mo2N nanobelt catalyst as an alternative to Pt catalyst for H2 production in MECs.
Collapse
Affiliation(s)
- Sidan Lu
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guangcai Tan
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - William Moe
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Wangwang Xu
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ying Wang
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiuping Zhu
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
18
|
Zhou R, Zhou S, He C. Quantitative evaluation of effects of different cathode materials on performance in Cd(II)-reduced microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2020; 307:123198. [PMID: 32217438 DOI: 10.1016/j.biortech.2020.123198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Three materials including stainless steel woven mesh (SSM), nickel foam (NF) and carbon cloth (CC) were conducted as cathode in Cd(II)-reduced microbial electrolysis cells (MECs), respectively. By using electrode potential slope (EPS) method, the experimental open circuit potentials of three cathodes were similar, while the SSM cathode showed the smallest resistance (6 ± 1 mΩ m2), following by NF cathode (18 ± 2 mΩ m2) and CC cathode (32 ± 5 mΩ m2). These values were analyzed to predicte higher current density and more positive cathode potential in the MEC with SSM cathode under subsequent operating conditions. Electrochemical performance was more likely to be limited by current density than cathode potential. Accordingly, the MEC with SSM cathode obtained better system performance than that with other cathodes. This study further expands the application of EPS method that quantitatively evaluating and effectively selecting cathode materials for better system performance in Cd(II)-reduced MECs.
Collapse
Affiliation(s)
- Ruikang Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Chunqiu He
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
19
|
Zhao J, Feng K, Liu SH, Lin CW, Zhang S, Li S, Li W, Chen J. Kinetics of biocathodic electron transfer in a bioelectrochemical system coupled with chemical absorption for NO removal. CHEMOSPHERE 2020; 249:126095. [PMID: 32044608 DOI: 10.1016/j.chemosphere.2020.126095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
A microbial electrolysis cell (MEC) has been developing for enhanced absorbent regeneration in a chemical absorption-biological reduction integrated process for NO removal. In this work, the kinetics of electron transfer involved in the biocathodes along Fe(III)EDTA and Fe(II)EDTA-NO reduction was analyzed simultaneously. A modified Nernst-Monod kinetics considering the Faraday efficiency was applied to describe the electron transfer kinetics of Fe(III)EDTA reduction. The effects of substrate concentration, biocathodic potential on current density predicted by the model have been validated by the experimental results. Furthermore, extended from the kinetics of Fe(III)EDTA reduction, the electron transfer kinetics of Fe(II)EDTA-NO reduction was developed with a semi-experimental method, while both direct electrochemical and bioelectrochemical processes were taken into consideration at the same time. It was revealed that the developed model could simulate the electron transfer kinetics well. This work could not only help advance the biocathodic reduction ability and the utilization efficiency of electric power, but also provide insights into the industrial scale-up and application of the system.
Collapse
Affiliation(s)
- Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Ke Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, 123 University Rd., Sec. 3, Douliu, Yunlin, 64002, Taiwan
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, 123 University Rd., Sec. 3, Douliu, Yunlin, 64002, Taiwan
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China.
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
20
|
Hou Y, Yuan G, Qin S, Tu L, Yan Y, Yu Z, Lin H, Chen Y, Zhu H, Song H, Wang S. Photocathode optimization and microbial community in the solar-illuminated bio-photoelectrochemical system for nitrofurazone degradation. BIORESOURCE TECHNOLOGY 2020; 302:122761. [PMID: 32004815 DOI: 10.1016/j.biortech.2020.122761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 05/03/2023]
Abstract
To further enhance the bio-photoelectrochemical system (BPES) performance for nitrofurazone (NFZ) degradation and current output, the g-C3N4/CdS photocathode was optimized, and microbial community shift from inoculation to the BPES was analyzed. Results showed that photocathode with g-C3N4/CdS (mass ratio of 1:9) loading of 7.5 mg/cm2 exhibited the best performance, with NFZ removal of 83.14% (within 4 h) and current of ~9 mA in the BPES. Proteobacteria accounted for the largest proportion: 66.53% (inoculation), 71.89% (microbial electrolysis cell (MEC) anode), 74.67% (BPES anode) and 57.31% (BPES cathode), respectively. In addition, Geobacter was the most dominant genus in MEC and BPES anode and cathode, which occupied 31.64%, 67.73% and 41.34%, respectively. The microbial compositions of BPES anode and cathode were similar, but different from that of MEC anode. Notably, Rhodopseudomonas, a photosynthetic species, was detected in the BPES. Cognition of microbial community in the BPES is important for advancing its development.
Collapse
Affiliation(s)
- Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Guiyun Yuan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shanming Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Lingli Tu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yimin Yan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hongfei Lin
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, China
| | - Yongli Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, China
| | - Hongxiang Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
21
|
Song X, Huang L, Lu H, Zhou P, Wang M, Li N. An external magnetic field for efficient acetate production from inorganic carbon in Serratia marcescens catalyzed cathode of microbial electrosynthesis system. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Jia X, Li M, Wang Y, Wu Y, Zhu L, Wang X, Zhao Y. Enhancement of hydrogen production and energy recovery through electro-fermentation from the dark fermentation effluent of food waste. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2019; 1:100006. [PMCID: PMC9488049 DOI: 10.1016/j.ese.2019.100006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 06/11/2023]
Abstract
To enhance hydrogen production efficiency and energy recovery, a sequential dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from food waste. The hydrogen production, electrochemical performance and microbial community dynamics were investigated during startup of the MEC that was inoculated with different sludges. Results suggest that biogas production rates and hydrogen proportions were 0.83 L/L d and 92.58%, respectively, using anaerobic digested sludge, which is higher than that of the anaerobic granular sludge (0.55 L/L d and 86.21%). The microbial community were predominated by bacterial genus Acetobacterium, Geobacter, Desulfovibrio, and archaeal genus Methanobrevibacter in electrode biofilms and the community structure was relatively stable both in anode and cathode. The sequential system obtained a 53.8% energy recovery rate and enhanced soluble chemical oxygen demand (sCOD) removal rate of 44.3%. This research demonstrated an important approach to utilize dark fermentation effluent to maximize the conversion of fermentation byproducts into hydrogen. Sequential dark fermentation and microbial electrolysis cell was evaluated. The best bio-electrochemical performance with anaerobic digested sludge in the microbial electrolysis cells startup. Acetobacterium, Geobacte and Methanobrevibacter were the dominant genera in electrode biofilms. 53.8% energy recovery was achieved in the sequential electro-fermentation process.
Collapse
Affiliation(s)
- Xuan Jia
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yanan Wu
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xue Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yujiao Zhao
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
23
|
Wang X, Rossi R, Yan Z, Yang W, Hickner MA, Mallouk TE, Logan BE. Balancing Water Dissociation and Current Densities To Enable Sustainable Hydrogen Production with Bipolar Membranes in Microbial Electrolysis Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14761-14768. [PMID: 31713416 DOI: 10.1021/acs.est.9b05024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen production using two-chamber microbial electrolysis cells (MECs) is usually adversely impacted by a rapid rise in catholyte pH because of proton consumption for the hydrogen evolution reaction. While using a bipolar membrane (BPM) will maintain a more constant electrolyte pH, the large voltage loss across this membrane reduces performance. To overcome these limitations, we used an acidic catholyte to compensate for the potential loss incurred by using a BPM. A hydrogen production rate of 1.2 ± 0.7 L-H2/L/d (jmax = 10 ± 0.4 A/m2) was obtained using a Pt cathode and BPM with a pH difference (ΔpH = 6.1) between the two chambers. This production rate was 2.8 times greater than that of a conventional MEC with an anion exchange membrane (AEM, 0.43 ± 0.1 L-H2/L/d, jmax = 6.5 ± 0.3 A/m2). The catholyte pH gradually increased to 11 ± 0.3 over 9 days using the BPM and Pt/C, which decreased current production (jmax = 2.5 ± 0.3 A/m2). However, this performance was much better than that obtained using an AEM as the catholyte pH increased to 10 ± 0.4 after just one day. The use of an activated carbon cathode with the BPM enabled stable performance over a longer period of 12 days, although it reduced the hydrogen production rate (0.45 ± 0.1 L-H2/L/d).
Collapse
Affiliation(s)
- Xu Wang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy , Wuhan University , No. 129 Luoyu Road , Wuhan 430079 , P. R. China
| | | | | | | | | | | | | |
Collapse
|
24
|
Kim KY, Habas SE, Schaidle JA, Logan BE. Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2019; 293:122067. [PMID: 31499330 DOI: 10.1016/j.biortech.2019.122067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Transition metal phosphide catalysts such as nickel phosphide (Ni2P) have shown excellent activities for the hydrogen evolution reaction, but they have primarily been studied in strongly acidic or alkaline electrolytes. In microbial electrolysis cells (MECs), however, the electrolyte is usually a neutral pH to support the bacteria. Carbon-supported phase-pure Ni2P nanoparticle catalysts (Ni2P/C) were synthesized using solution-phase methods and their performance was compared to Pt/C and Ni/C catalysts in MECs. The Ni2P/C produced a similar quantity of hydrogen over a 24 h cycle (0.29 ± 0.04 L-H2/L-reactor) as that obtained using Pt/C (0.32 ± 0.03 L-H2/L) or Ni/C (0.29 ± 0.02 L-H2/L). The mass normalized current density of the Ni2P/C was 14 times higher than that of the Ni/C, and the Ni2P/C exhibited stable performance over 11 days. Ni2P/C may therefore be a useful alternative to Pt/C or other Ni-based catalysts in MECs due to its chemical stability over time.
Collapse
Affiliation(s)
- Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States; Department of Civil and Environmental Engineering, The Pennsylvania State University, 231Q Sackett Building, University Park, PA 16802, United States.
| | - Susan E Habas
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Joshua A Schaidle
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 231Q Sackett Building, University Park, PA 16802, United States
| |
Collapse
|
25
|
Cario BP, Rossi R, Kim KY, Logan BE. Applying the electrode potential slope method as a tool to quantitatively evaluate the performance of individual microbial electrolysis cell components. BIORESOURCE TECHNOLOGY 2019; 287:121418. [PMID: 31078815 DOI: 10.1016/j.biortech.2019.121418] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Improving the design of microbial electrolysis cells (MECs) requires better identification of the specific factors that limit performance. The contributions of the electrodes, solution, and membrane to internal resistance were quantified here using the newly-developed electrode potential slope (EPS) method. The largest portion of total internal resistance (120 ± 0 mΩ m2) was associated with the carbon felt anode (71 ± 5 mΩ m2, 59% of total), likely due to substrate and ion mass transfer limitations arising from stagnant fluid conditions and placement of the electrode against the anion exchange membrane. The anode resistance was followed by the solution (25 mΩ m2) and cathode (18 ± 2 mΩ m2) resistances, and a negligible membrane resistance. Wide adoption and application of the EPS method will enable direct comparison between the performance of the components of MECs with different solution characteristics, electrode size and spacing, reactor architecture, and operating conditions.
Collapse
Affiliation(s)
- Benjamin P Cario
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 231Q Sackett Building, University Park, PA 16802, USA
| | - Ruggero Rossi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 231Q Sackett Building, University Park, PA 16802, USA
| | - Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 231Q Sackett Building, University Park, PA 16802, USA.
| |
Collapse
|
26
|
Wang W, Zhang B, He Z. Bioelectrochemical deposition of palladium nanoparticles as catalysts by Shewanella oneidensis MR-1 towards enhanced hydrogen production in microbial electrolysis cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|