1
|
Zhang Q, He Y, Zhang J, Li Y, Fang Y, Tan Y. Construction of Brönsted sites on pyrite surface via plasma technology for efficient hydrolysis of microcystins-LR. J Environ Sci (China) 2025; 155:622-632. [PMID: 40246496 DOI: 10.1016/j.jes.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 04/19/2025]
Abstract
Enhancing the catalytic hydrolysis efficiency of microcystins (MCs) at ambient temperature has been a persistent challenge in water treatment. We employed N2/low-temperature plasma technology to modify the surface of natural pyrites (NP), and the resulting nitrogen-modified pyrites (NPN) with a nanorod structure and new Fe-Nx sites are more efficient for the hydrolysis of microcystins-LR (MC-LR). Kinetic experiments revealed that NPN exhibited significantly higher hydrolysis activity (kobs = 0.1471 h-1) than NP (0.0914 h-1). Liquid chromatography-mass spectrometry (LC/MS) for the intermediates produced by hydrolyzing MC-LR, in situ attenuated total reflectance Fourier transform infrared spectroscopy (in situ ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) analysis unfolded that the Fe and N atoms of Fe-Nx sites on the surface act of NPN as Lewis acid and Brönsted basic respectively, selectively breaking amide bond on MC-LR molecule. This study demonstrates the effectiveness of plasma technology in modifying mineral materials to enhance their catalytic activity, providing a new method for eliminating MCs in practical water treatment.
Collapse
Affiliation(s)
- Qing Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yuting He
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Jing Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yadong Li
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yanfen Fang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Yunzhi Tan
- College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
2
|
Xu Y, Wang T, Chen Z, Li Y, Huang D, Guo F, Wang M. Hydrolysis of p-Phenylenediamine Antioxidants: The Reaction Mechanism, Prediction Model, and Potential Impact on Aquatic Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:811-822. [PMID: 39689025 DOI: 10.1021/acs.est.4c10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
While p-phenylenediamine antioxidants (PPDs) pose potential risks to aquatic ecosystems, their environmental persistence and transformation remain ambiguous due to the undefined nature of PPD C-N bond hydrolysis. Here, we investigated the hydrolysis patterns of PPDs by analyzing their hydrolysis half-lives, hydrolysis products around neutral pH (pH 6.0-7.7), and the role of atoms within the C-N bonds in PPDs. Hydrolysis preferentially targets the aromatic secondary amine N with the strongest proton affinity and the C atom of C-N with the highest nucleophilic-attack reactivity. The hydrolysis half-life (t1/2) shortens when the maximum proton affinity of N increases. These results are supported by theoretical calculations, demonstrating a hydrolysis reaction propelled by proton transfer from water to N and complemented by aromatic nucleophilic substitution of N in C-N by water hydroxyl. With the experimental results and the atom reactivity-based predictive model, the t1/2 around neutral pH for 60 PPDs (monitored in environment, commercially available, or under investigation) is determined, showing variations ranging from 2.2 h to 47 days. The model prediction of primary C-N hydrolysis is confirmed through typical PPDs. With the elucidated mechanism and developed model, this research provides new insights into PPD hydrolysis, underscoring its significance in delineating environmental impacts.
Collapse
Affiliation(s)
- Yuhan Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Tianzhu Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zaiming Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yungui Li
- Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Fangjie Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
3
|
Zhao R, Chen D, Liu H, Tian H, Li R, Huang Y. FePO 4/WB as an efficient heterogeneous Fenton-like catalyst for rapid removal of neonicotinoid insecticides: ROS quantification, mechanistic insights and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135068. [PMID: 39002487 DOI: 10.1016/j.jhazmat.2024.135068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Iron-based catalysts for peroxymonosulfate (PMS) activation hold considerable potential in water treatment. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, an iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of neonicotinoid insecticides (NEOs). Based on electron paramagnetic resonance (EPR) characterization, scavenging experiments, chemical probe approaches, and quantitative tests, both radicals (HO• and SO4⋅-) and non-radicals (1O2 and Fe(IV)) were produced in the FePO4/WB-PMS system, with relative contributions of 3.02 %, 3.58 %, 6.24 %, and 87.16 % to the degradation of imidacloprid (IMI), respectively. Mechanistic studies revealed that tungsten boride (WB) promoted the reduction of FePO4, and the generated Fe(II) dominantly activated PMS through a two-electron transfer to form Fe(IV), while a minority of Fe(II) engaged in a one-electron transfer with PMS to produce SO4⋅-, HO•, and 1O2. In addition, four degradation pathways of NEOs were proposed by analyzing the byproducts using UPLC-Q-TOF-MS/MS. Besides, seed germination experiments revealed the biotoxicity of NEOs was significantly reduced after degradation via the FePO4/WB-PMS system. Meanwhile, the recycling experiments and continuous flow reactor experiments showed that FePO4/WB exhibited high stability. Overall, this study provided a new perspective on water remediation by Fenton-like reaction. ENVIRONMENTAL IMPLICATION: Neonicotinoids (NEOs) are a type of insecticide used widely around the world. They've been found in many aquatic environments, raising concerns about their possible negative effects on the environment and health. Iron-based catalysts for peroxymonosulfate (PMS) activation hold great promise for water purification. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of NEOs. The excellent stability and reusability provided a great prospect for water remediation.
Collapse
Affiliation(s)
- Rongrong Zhao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Danyi Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Honglin Liu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Hailin Tian
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China; College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Ruiping Li
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
4
|
Xu R, Yu X, Jiang C, Wei Q, Wang L. Dye-sensitized NiO photocathode sensor based on signal-sensitive change strategy for MC-LR detection. Mikrochim Acta 2024; 191:567. [PMID: 39196429 DOI: 10.1007/s00604-024-06640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A novel photoelectrochemical (PEC) sensor for the detection of microcystic toxins (MC-LR) was developed on the basis of signal-sensitive change strategy. NiO nanoarray as a basic photoactive material was grown directly on the ITO glass electrode via calcination after hydrothermal reaction, while dye N719 was used to sensitize the electrode for enhancing visible light absorption, and the first signal-on stage was obtained. In the meantime, p-type Cu2O was applied as the signal probe attached to probe DNA (DNA2) to improve the sensitivity, and the second "signal-on" stage appeared because of its synergistic effect with NiO nanoarrays. The PEC signal decreases after the target analyte MC-LR is modified on the electrode due to the stronger affinity between MC-LR and its complementary aptamer DNA; part of the Cu2O-DNA2 will dissociate from the electrode. This sensitive signal change strategy allows the detection limit of the MC-LR sensor to be as low as 1.7 pM, which offers an optional method for the sensitive and selective detection of other target molecules, with potential applications in environmental monitoring and toxin determination.
Collapse
Affiliation(s)
- Rui Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, Shandong, China
| | - Xiaolin Yu
- Jinan Science and Technology Innovation Promotion Center, Jinan, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China.
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, Shandong, China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Le Wang
- Physical Education Department, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| |
Collapse
|
5
|
Pan Y, Rao Z, Yu W, Chen B, Chu C. Water Vapor Condensation Triggers Simultaneous Oxidation and Hydrolysis of Organic Pollutants on Iron Mineral Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12147-12154. [PMID: 38934559 DOI: 10.1021/acs.est.4c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Increasing worldwide contamination with organic chemical compounds is a paramount environmental challenge facing humanity. Once they enter nature, pollutants undergo transformative processes that critically shape their environmental impacts and associated risks. This research unveils previously overlooked yet widespread pathways for the transformations of organic pollutants triggered by water vapor condensation, leading to spontaneous oxidation and hydrolysis of organic pollutants. These transformations exhibit variability through either sequential or parallel hydrolysis and oxidation, contingent upon the functional groups within the organic pollutants. For instance, acetylsalicylic acid on the goethite surface underwent sequential hydrolysis and oxidation that first hydrolyzed to salicylic acid followed by hydroxylation oxidation of the benzene moiety driven by the hydroxyl radical (•OH). In contrast, chloramphenicol underwent parallel oxidation and hydrolysis, forming hydroxylated chloramphenicol and 2-amino-1-(4-nitrophenyl)-1,3-propanediol, respectively. The spontaneous oxidation and hydrolysis occurred consistently on three naturally abundant iron minerals with the key factors being •OH production capacity and surface binding strength. Given the widespread presence of iron minerals on Earth's surface, these spontaneous transformation paths could play a role in the fate and risks of organic pollutants of health concerns.
Collapse
Affiliation(s)
- Yishuai Pan
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zepeng Rao
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wanchao Yu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Huang S, Wang Q, Fan Z, Xu M, Ji R, Jin X, Gu C. Dry-to-wet fluctuation of moisture contents enhanced the mineralization of chloramphenicol antibiotic. WATER RESEARCH 2023; 240:120103. [PMID: 37247437 DOI: 10.1016/j.watres.2023.120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Due to livestock wastewater irrigation, soil is becoming one of the major sinks of antibiotics in the environment. Recently, it is getting recognized that a variety of minerals under low moisture conditions can induce strong catalytic hydrolysis to antibiotics. However, the relative importance and implication of soil water content (WC) for natural attenuation of soil residual antibiotics has not been well recognized. In order to explore the optimal moisture levels and the key soil properties dominating for the high catalytic hydrolysis activities of soils, this study collected 16 representative soil samples across China, and assessed their performances to degrade chloramphenicol (CAP) under different moisture levels. The results showed that the soils with low organic matter contents (< 20 g/kg) and high amounts of crystalline Fe/Al were particularly effective in catalyzing CAP hydrolysis when exposed to low WC (< 6%, wt/wt), leading to CAP hydrolysis half-lives of <40 d Higher WC greatly suppressed the catalytic activity of the soil. By utilizing this process, it is possible to integrate abiotic and biotic degradation to enhance the mineralization of CAP, attributing to that the hydrolytic products are more available for soil microorganisms. As expected, the soils experienced periodic dry-to-wet moisture conditions (i.e., the WC shifting from 1 to 5% to 20-35%, wt/wt) exhibited higher degradation and mineralization of 14C-CAP, in comparison with the constant wet treatment. Meanwhile, the bacterial community composition and the specific genera showed that the dry-to-wet fluctuation of soil WC relieved the antimicrobial stress to bacterial community. Our study verifies the critical role of soil WC in mediating the natural attenuation of antibiotics, and guides to remove antibiotics from both wastewater and soil.
Collapse
Affiliation(s)
- Shuhan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Qilin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Zhenhui Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Min Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China; School of Environment, Nanjing Normal University, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
7
|
Chen Y, Huang Y, Tian H, Ye L, Li R, Chen C, Dai Z, Huang D. Fluorine-doped BiVO 4 photocatalyst: Preferential cleavage of C-N bond for green degradation of glyphosate. J Environ Sci (China) 2023; 127:60-68. [PMID: 36522089 DOI: 10.1016/j.jes.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 06/17/2023]
Abstract
With increasing concerns on the environment and human health, the degradation of glyphosate through the formation of less toxic intermediates is of great importance. Among the developed methods for the degradation of glyphosate, photodegradation is a clean and efficient strategy. In this work, we report a new photocatalyst by doping F ion on BiVO4 that can efficiently degrade glyphosate and reduce the toxic emissions of aminomethylphosphonic acid (AMPA) through the selective (P)-C-N cleavage in comparison of BiVO4 catalyst. The results demonstrate that the best suppression of AMPA formation was achieved by the catalyst of 0.3F@BiVO4 at pH = 9 (AMPA formation below 10%). In situ attenuated total reflectance Fourier transforms infrared (ATR-FTIR) spectroscopy indicates that the adsorption sites of glyphosate on BiVO4 and 0.3F@BiVO4 are altered due to the difference in electrostatic interactions. Such an absorption alteration leads to the preferential cleavage of the C-N bond on the N-C-P skeleton, thereby inhibiting the formation of toxic AMPA. These results improve our understanding of the photodegradation process of glyphosate catalyzed by BiVO4-based catalysts and pave a safe way for abiotic degradation of glyphosate.
Collapse
Affiliation(s)
- Yunlong Chen
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China; College of Biology & Pharmacy, China Three Gorges University, Yichang 443002, China
| | - Hailin Tian
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China; College of Biology & Pharmacy, China Three Gorges University, Yichang 443002, China
| | - Liqun Ye
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Ruiping Li
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Chuncheng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongxu Dai
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Di Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
Guo W, Yan W, Jing C. Production of reactive oxygen species from oxygenation of Fe(II)-carbonate complexes: The critical roles of carbonate. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131529. [PMID: 37126902 DOI: 10.1016/j.jhazmat.2023.131529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
Hydroxyl radicals (•OH) production upon the oxygenation of reduced iron minerals at the oxic/anoxic interface has been well recognized. However, little is known in the influencing environmental factors and the involved mechanisms. In this study, much more •OH could be efficiently produced from oxygenation of Fe(II) with 20-200 mM carbonate. Both carbonate concentration and anoxic reaction time play a critical role in •OH production. High carbonate facilitates the formation of Fe(II)high reactivity, i.e., surface-adsorbed and structural Fe(II) with low crystalline that is reactive toward O2 reaction for •OH production, while long anoxic reaction time enables the transfer from Fe(II)high reactivity to Fe(II)low reactivity, i.e., Fe(II) at interior sites with high crystalline, that is hardly oxidized by O2. Furthermore, the degradation pathway of p-nitrophenol (PNP) is highly dependent on the carbonate concentration that low carbonate facilitates •OH oxidation of PNP (80.2%) while high carbonate enhanced O2•- reduction of PNP (48.7%). Besides, carbonate also influences the structural evolution of Fe mineral during oxygenation by retarding its hydrolysis and following transformation. Our finding sheds new light on understanding the important role of oxyanions such as carbonate in iron redox cycles and directing contaminant attenuation in subsurface environment.
Collapse
Affiliation(s)
- Wen Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Chen M, Hu H, Chen M, Wang C, Wang Q, Zeng C, Shi Q, Song W, Li X, Zhang Q. In-situ production of iron flocculation and reactive oxygen species by electrochemically decomposing siderite: An innovative Fe-EC route to remove trivalent arsenic. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129884. [PMID: 36084465 DOI: 10.1016/j.jhazmat.2022.129884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/28/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The removal of trivalent arsenic (As (III)) from water has received extensive attention from researchers. Iron electrocoagulation (Fe-EC) is an efficient technology for arsenic removal. However, electrode passivation hinders the development and application of Fe-EC. In this work, an innovative Fe-EC route was developed to remove As (III) through an electrochemical-siderite packed column (ESC). Ferrous ions were produced from siderite near the anode, and hydroxide was generated near the cathode during the electrochemical decomposition of siderite. As a result, an effect of Fe-EC-like was obtained. The results showed that an excellent removal performance of As (III) (>99%) was obtained by adjusting the parameters (As (III) concentration at 10 mg/L, pH at 7, Na2SO4 at 10 mM and the hydraulic retention time at 30 min) and the oxidation rate of As (III) reached 84.12%. The mechanism analysis indicated that As (III) was oxidized to As (Ⅴ) by the produced active oxide species and electrode, and then was removed by capturing on the iron oxide precipitates. As (III) was likely to be oxidized in two ways, one by the reactive oxygen species (possibly •OH, Fe(IV) and •O2- species), and another directly by the anode. The long-term effectiveness of arsenic removal demonstrated that ESC process based on the electrochemical-siderite packed column was an appropriate candidate for treating As (III) pollution.
Collapse
Affiliation(s)
- Mengfei Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Huimin Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Min Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Chao Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Qian Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Chaocheng Zeng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Qing Shi
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Weijie Song
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Xuewei Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China.
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China.
| |
Collapse
|
10
|
Sun S, Tang Q, Xu H, Gao Y, Zhang W, Zhou L, Li Y, Wang J, Song C. A comprehensive review on the photocatalytic inactivation of Microcystis aeruginosa: Performance, development, and mechanisms. CHEMOSPHERE 2023; 312:137239. [PMID: 36379431 DOI: 10.1016/j.chemosphere.2022.137239] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Harmful algae blooms (HABs), caused by severe eutrophication and extreme weather, have spread all over the world, posing adverse effects on eco-environment and human health. Microcystis aeruginosa is the dominant harmful cyanobacterial species when HABs occur, and the toxic metabolites produced by it, microcystins, are even fatal to humans. Photocatalytic technology has received wide attention from researchers for its clean and energy-efficient features, while the basic mechanisms and modification methods of photocatalysts have also been widely reported. In recent years, photocatalytic technology has shown great promise in the inhibition of HABs. In this article, we systematically reviewed the progress in photocatalytic performance and algae removal efficiency, discuss the damage mechanisms of photocatalysts for algae removal, including physical damage and various oxidative stresses, and also explore the degradation rates and possible pathways of microcystins. It can be concluded that during the photocatalytic process, the cytoarchitectural integrity of algae cells was damaged, a variety of important protein and enzyme systems were disrupted, and the antioxidant systems collapsed due to the continuous attack of ROS, which adversely affected the normal physiological activities and growth, resulting in the inactivation of algae cells. Moreover, photocatalysts have a degrading effect on microcystins, thus reducing the adverse effects of HAB. Finally, a brief summary of future research priorities regarding the photocatalytic degradation of algae cells is presented. This study helps to enhance the understanding of the destruction mechanism of Microcystis aeruginosa during the photocatalytic process, and provides a reference for the photodegradation of HAB in water bodies.
Collapse
Affiliation(s)
- Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China.
| | - Qingxin Tang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Hui Xu
- Shenzhen General Integrated Transportation and Municipal Engineering Design & Research Institute Co. Ltd., Shenzhen, 518000, China.
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Chuxuan Song
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| |
Collapse
|
11
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
12
|
Wang C, Liang S, Bai L, Gu X, Jin X, Xian Z, Wu B, Ok YS, Li K, Wang R, Zhong H, Gu C. Structure-dependent surface catalytic degradation of cephalosporin antibiotics on the aged polyvinyl chloride microplastics. WATER RESEARCH 2021; 206:117732. [PMID: 34637972 DOI: 10.1016/j.watres.2021.117732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have been recognized as a global concern due to their potential health effect, as MPs could adsorb and carry various pollutants in aquatic environment. In the present study, a new environmental behavior related to polyvinyl chloride microplastics (PVC-MPs) and the underlying mechanism were described. Our results showed that the photo-aged PVC-MPs could affect the transformation of cephalosporin antibiotics. For instance, the presence of altered PVC-MPs significantly accelerated the hydrolysis of cefazolin (CFZ), but exhibited negligible effect on the degradation of cephalexin (CFX). As indicated by in situ Fourier transform infrared spectra and theoretical calculations, hydrogen bonds could be formed between β-lactam carbonyl of CFZ and the oxygen-containing moieties on the aged PVC-MP surfaces. The hydrogen-bonding was able to significantly increase the positive atomic Mulliken charge on the β-lactam carbonyl carbon, thus narrowing the energy gap of CFZ hydrolysis and subsequently enhancing the disruption of β-lactam ring. While for CFX, instead of the β-lactam carbonyl, the amide amino group was involved in the hydrogen-bonding due to the structural difference. Therefore, in addition to increasing the adsorption capacity, the aged PVC-MPs could act as the catalyst to mediate the transformation of antibiotics. Our study would help improve the understanding for interactions between contaminants and MPs in natural environments.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Sijia Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lihua Bai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xinyue Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zeyu Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Kan Li
- Yixing Environmental Research Institute of Nanjing University, Yixing 214200, PR. China
| | - Rui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
13
|
Wu D, Huang S, Zhang X, Ren H, Jin X, Gu C. Iron Minerals Mediated Interfacial Hydrolysis of Chloramphenicol Antibiotic under Limited Moisture Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9569-9578. [PMID: 33740378 DOI: 10.1021/acs.est.1c01016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron minerals are important soil components; however, little information is available for the transformation of antibiotics on iron mineral surfaces, especially under limited moisture conditions. In this study, we investigated the catalytic performance of four iron minerals (maghemite, hematite, goethite, and siderite) for the hydrolysis of chloramphenicol (CAP) antibiotic at different moisture conditions. All the iron oxides could efficiently catalyze CAP hydrolysis with the half-lives <6 days when the surface water content was limited, which was controlled by the atmospheric relative humidity of 33-76%. Different minerals exhibited distinctive catalytic processes, depending on the surface properties. H-bonding or Lewis acid catalysis was proposed for surface hydrolytic reaction on iron oxides, which however was almost completely inhibited when the surface water content was >10 wt % due to the competition of water molecules for surface reactive sites. For siderite, the CAP hydrolysis was resistant to excessive surface water. A bidentate H-bonding interaction mechanism would account for CAP hydrolysis on siderite. The results of this study highlight the importance of surface moisture on the catalytic performance of iron minerals. The current study also reveals a potential degradation pathway for antibiotics in natural soil, which has been neglected before.
Collapse
Affiliation(s)
- Dingding Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Shuhan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| |
Collapse
|
14
|
Wang S, Jiao Y, Rao Z. Selective removal of common cyanotoxins: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28865-28875. [PMID: 33842999 DOI: 10.1007/s11356-021-13798-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The development of cyanobacterial blooms can have adverse effects on water bodies and may produce cyanotoxins. Several physical and chemical methods have been applied to remove cyanotoxins, but they have been significantly challenged due to extensive energy footprint and over-used chemicals, which limits practical application on a large scale. Selective removal has been regarded as the most promising approach recently for the elimination of prevalent and major bloom-forming cyanotoxins (e.g., microcystins and cylindrospermopsin) as natural organic matters and radical scavengers are ineluctably present in real scenarios. This paper reviews current advancements in research on selective oxidation and adsorption of cyanotoxins. Its goal is to provide comprehensive information on the treatment mechanism and the process feasibility involved in the cyanotoxin removal from real-world waters. Moreover, perspectives of cyanotoxin control and in situ selective elimination approaches are also reviewed. It is expected that the information gathered and discussed in this review can provide a useful and novel reference and direction for future pilot-scale applications.
Collapse
Affiliation(s)
- Shulian Wang
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China
| | - Yiying Jiao
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China
| | - Zhi Rao
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
15
|
Wang S, Zhang H, Ge H, Shi Y, Li Z. Photodegradation of microcystin-LR by pyridyl iron porphyrin immobilized on NaY zeolite. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:121-130. [PMID: 32293595 DOI: 10.2166/wst.2020.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel photocatalyst, FeTPyPY, was prepared by immobilizing water-soluble tetra(4-pyridyl)phenyl iron-porphyrin (FeTPyP) on NaY zeolite to degrade microcystin-LR (MC-LR), one of the most toxic microcystins (MCs). UV-Vis analysis, UV-Vis diffuse reflectance spectroscopy, infrared spectroscopy, cyclic voltammetry and transmission electron microscopy were employed to characterize immobilized FeTPyPY. Under visible light (λ ≥ 420 nm), MC-LR was degraded utilizing immobilized FeTPyPY by activating molecular oxygen. The results showed that 85% of MC-LR was efficiently degraded by FeTPyPY with loading amount 100:1 (mNaY:mFeTPyP) after 300 min of visible light illumination. Moreover, FeTPyPY was stable in the degradation system with pH 7.0. The degradation mechanism was evaluated using electron spin resonance, and the results demonstrated that highly reactive oxygen species (•OH radical) were generated in the system to degrade MC-LR. Therefore, immobilized FeTPyPY was available to break down the toxic groups within MC-LR by utilizing environmental •OH radical under circumneutral condition.
Collapse
Affiliation(s)
- Shulian Wang
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail: ; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Huiqin Zhang
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail:
| | - Hongmei Ge
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail:
| | - Yafei Shi
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail:
| | - Zhu Li
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail:
| |
Collapse
|
16
|
Li J, Liu A, Wang Y, Zhai S, Ma D, Chen C. Noble-metal-free TiO 2 photocatalysis for selective CC reduction of α,β-enones by CF 3SO 3H modification. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00596g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The highly selective CC reduction of α,β-enones was realized by CF3SO3H-modifying noble-metal-free TiO2 photocatalysis.
Collapse
Affiliation(s)
- Jundan Li
- Department of Chemistry
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing
- P. R. China
| | - Anan Liu
- Basic Experimental Center for Natural Science
- University of Science and Technology Beijing
- Beijing
- P.R. China
| | - Yi Wang
- Department of Chemistry
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing
- P. R. China
| | - Shan Zhai
- Department of Chemistry
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing
- P. R. China
| | - Dongge Ma
- Department of Chemistry
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing
- P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
17
|
Xu Q, Fan J, Yan H, Ahmad S, Zhao Z, Yin C, Liu X, Liu Y, Zhang H. Structural basis of microcystinase activity for biodegrading microcystin-LR. CHEMOSPHERE 2019; 236:124281. [PMID: 31310980 DOI: 10.1016/j.chemosphere.2019.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Microcystinase (MlrA) catalyzes the first and most important biodegradation step of hepatotoxic microcystin-LR (MC-LR) produced and released from cyanobacterial cells, and the underlying catalytic mechanism is not completely understood yet. MlrA was postulated previously to be a metalloprotease with an active site of H260AIH263NE265, a variant of the common metal-binding motif of HEXXH. Through comparison with representative modes in HEXXH-containing metalloproteases, molecular dynamics simulation, homology modeling, and docking, the active sites of MlrA involved in the MC-LR biodegradation by Sphingomonas sp. USTB-05 were predicted. Site-directed mutants of MlrA were constructed for verification then. The results show that MlrA is likely not a metalloprotease, but a glutamate protease belonging to type II CAAX prenyl endopeptidases. Combined with the biodegradation of MC-LR by MlrA and its mutants, a complete enzymatic mechanism for MC-LR biodegradation by MlrA is proposed: Glu172 and His205 activate a water molecule facilitating a nucleophilic attack on the Adda-Arg peptide bond of MC-LR; Trp176 and Trp201 contact the carboxylate side chain of Glu172and, by raising its pKa potentially, accelerate the reaction rates; His260 and Asn264 (located in the previous postulated active center of H260AIH263NE265) function as an oxyanion hole to stabilize the transition states. This study reveals the enzymatic mechanism of MlrA for catalyzing MC-LR in both the representative modes and the experiments of site-directed mutagenesis.
Collapse
Affiliation(s)
- Qianqian Xu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Jinhui Fan
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Hai Yan
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083, Beijing, China.
| | - Shahbaz Ahmad
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Zhenzhen Zhao
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Chunhua Yin
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Xiaolu Liu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Yang Liu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083, Beijing, China.
| |
Collapse
|
18
|
Catalytic hydrolysis of microcystin-LR peptides on the surface of naturally occurring minerals. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Jin X, Wu D, Ling J, Wang C, Liu C, Gu C. Hydrolysis of Chloramphenicol Catalyzed by Clay Minerals under Nonaqueous Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10645-10653. [PMID: 31401828 DOI: 10.1021/acs.est.9b02119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soil contamination with antibiotics has raised great environmental concerns, while the abiotic degradation of antibiotics on drought soil particles has been largely ignored. In this study, we examined the transformation of chloramphenicol (CAP) on phyllosilicates under nonaqueous conditions. A significant hydrolysis of CAP mediated by kaolinite occurred under moderate relative humidities (RH: 33-76%) with the half-lives of 10-20 days. By contrast, incubation with montmorillonite did not result in detectable degradation of CAP. Infrared and Raman spectroscopies together with density functional theory calculations suggested that the surface-catalyzed CAP hydrolysis was mainly attributed to the basal plane hydroxyl groups of kaolinite, which formed hydrogen-bond interactions with the carbonyl of CAP such that the hydrolysis activation energy of CAP was greatly reduced. Neither the Brønsted nor the Lewis acidity was the determinant for the hydrolysis reaction. The surface moisture content played an essential role in CAP hydrolysis. Specifically, water facilitated the mass transfer of CAP over the low-RH range, whereas excessive water competed for the reactive hydroxyl sites. These results highlight an important but long-overlooked abiotic transformation pathway for antibiotics in field soil, where the soil moisture is low and the microbial activity is suppressed.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Dingding Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Jingyi Ling
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
20
|
Sheng F, Ling J, Wang C, Jin X, Gu X, Li H, Zhao J, Wang Y, Gu C. Rapid Hydrolysis of Penicillin Antibiotics Mediated by Adsorbed Zinc on Goethite Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10705-10713. [PMID: 31416303 DOI: 10.1021/acs.est.9b02666] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The soil environment is an important sink for penicillin antibiotics released from animal manure and wastewater, but the mineral-catalyzed transformation of penicillins in soil has not been well studied. To simulate this environmental process, we systematically investigated the behavior of penicillin G and amoxicillin, the two most widely-used penicillin antibiotics, in the presence of goethite and metal ions. The results demonstrated that Zn ions significantly promoted the hydrolysis of penicillins in goethite suspensions, as evidenced by the degradation rate nearly 3 orders of magnitude higher than that of the non-Zn-containing control. The spectroscopic analysis indicated that the specific complexation between penicillins, adsorbed Zn, and goethite was responsible for the enhanced degradation. Metastable interactions, involving hydrogen bonds between carbonyl groups in the β-lactam ring and the double/triple hydroxyl groups on goethite surface, and coordination bonding between carboxyl groups and surface irons were proposed to stabilize the ternary reaction intermediates. Moreover, the surface zinc-hydroxide might act as powerful nucleophile to rapidly rupture the β-lactam ring in penicillins. This study is among the first to identify the synergic roles of Zn ion and goethite in facilitating penicillin degradation and provides insights into β-lactam antibiotics to assess their environmental risk in soil.
Collapse
Affiliation(s)
- Feng Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Jingyi Ling
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Hong Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , P. R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
21
|
Abstract
Cylindrospermopsin (CYN) is a cyanobacterial toxin released from eutrophic water. It persistently remains in the environment because its degradation under solar light is extremely low. In this study, pyrite, an abundant mineral, was investigated as a catalyst for decomposing and detoxifying CYN in water. A detailed examination of intermediates provided insights into the degradation pathway. Electron spin resonance spectra revealed that H2O2 and hydroxyl radicals (•OH) were generated at the pyrite surface while promoting the recycling of Fe(III) into Fe(II) during the degradation process. This degradation system could be uniquely efficient in the presence of relatively high levels of natural organic matter because the structure of the uracil ring is decomposed to detoxify CYN. This work confirms a new approach to selectively and effectively detoxifying CYN in water using an inexpensive, environmentally friendly, and bio-compatible mineral.
Collapse
|
22
|
Li K, Liang Y, Yang J, Yang G, Xu R, Xie X. α-Ferrous oxalate dihydrate: an Fe-based one-dimensional metal organic framework with extraordinary photocatalytic and Fenton activities. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01779d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Fe(ii)-based metal organic framework, α-ferrous oxalate dihydrate (α-FOD), with remarkable n-type semiconductor characteristics has been successfully prepared for use as a bifunctional catalyst in both photocatalysis and Fenton oxidation.
Collapse
Affiliation(s)
- Kai Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- China University of Geosciences
- Wuhan 430074
- China
- Faculty of Materials Science and Chemistry
| | - Yujun Liang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- China University of Geosciences
- Wuhan 430074
- China
- Faculty of Materials Science and Chemistry
| | - Jian Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- China University of Geosciences
- Wuhan 430074
- China
- Faculty of Materials Science and Chemistry
| | - Gui Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- China University of Geosciences
- Wuhan 430074
- China
- Faculty of Materials Science and Chemistry
| | - Rui Xu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|