1
|
Nayak SPRR, Das A, Ramamurthy K, Pasupuleti M, Rajagopal R, Arockiaraj J. Exposure to bisphenol A and sodium nitrate found in processed meat induces endocrine disruption and dyslipidemia through PI3K/AKT/SREBP pathway in zebrafish larvae. J Nutr Biochem 2025; 140:109887. [PMID: 40023200 DOI: 10.1016/j.jnutbio.2025.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Meat is a staple in many cultural diets, and the consumption of processed meats has increased significantly worldwide. The widespread use of sodium nitrate (NaNO3) as a preservative and the unintentional leaching of bisphenol A (BPA) from packaging into meats have raised health concerns. This study evaluates the combined toxicity of BPA and NaNO3 despite their individual safety assessments. Our findings reveal that coexposure to BPA and NaNO3 at levels found in processed meats induces mortality and malformations in zebrafish larvae. The combined exposure triggers oxidative stress, lipid peroxidation, dyslipidemia, inflammation, and apoptosis. Network toxicology analysis elucidates the molecular mechanisms underlying metabolic dysfunction caused by these substances. Dysregulation of genes related to thyroid function (tsh-β, dio-1, thr-b) and inflammation (tnf-α, il-1β, il-6, nfκb) was observed in the co-exposure group. Additionally, this group exhibited increased lipid accumulation, elevated cholesterol and triglyceride levels, and dysregulation of essential lipid metabolism genes (srebp2, pcsk9). Co-exposure also impaired larval motility and behavior, evidenced by hypolocomotion and reduced acetylcholinesterase levels. Further gene expression analysis showed increased levels of pi3k and akt, two major signaling molecules. Ultimately, the simultaneous exposure to BPA and NaNO3 leads to disruptions in the endocrine system and abnormal lipid levels via activating the PI3K/AKT/SREBP pathway.
Collapse
Affiliation(s)
- Santosh Pushpa Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Anamika Das
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
2
|
Wang Q, Zhang L, Liu M, Zhu W, Sang W, Zhang S, Nie Y, Xie Y, Wang Z. Balancing nitrate removal and energy utilization in pyrite-filled three-dimensional biofilm electrode reactor: Optimal intermittent electric field modulation. BIORESOURCE TECHNOLOGY 2025; 432:132647. [PMID: 40355007 DOI: 10.1016/j.biortech.2025.132647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
This study aimed to optimize the intermittent electric field strategy to achieve high nitrate removal efficiency (NRE) with minimal energy consumption in a novel system coupling pyrite-based autotrophic denitrification with three-dimensional biofilm electrode reactor (P3DBER). The long-term operation demonstrated that medium (3:3 at 20 mA) power on versus off (on/off-ratio) significantly enhanced NRE (95.96 ± 1.46 %) while minimizing energy consumption (0.035 ± 0.002 kW·h/g NO3--N). The system displayed a more stable microbial community (77.30 % positive correlations) under low on/off-ratio (1:5-3:3) conditions, with Thiobacillus (5.68 %-28.47 %), Desulfovibrio (0.17 %-14.40 %), and Desulfomicrobium (0.21 %-13.28 %) as the predominant genera. Functional gene prediction indicated that traditional denitrification (47.95 ± 4.58 %) and dissimilatory nitrate reduction to ammonium (38.44 ± 3.18 %) were the primary nitrate reduction pathways. This study demonstrates that optimizing the on/off-ratio in P3DBER can balance NRE and energy efficiency, offering a promising strategy for designing high-performance and energy-saving wastewater treatment systems.
Collapse
Affiliation(s)
- Qinglong Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Li Zhang
- Zhongrong Hezong Engineering Design Co., Ltd, Chengdu 610017, China
| | - Maochang Liu
- Liaoning Province Chaoyang Ecology and Environment Monitoring Center, Chaoyang 122000, China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Wenjiao Sang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| | - Yuhu Nie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Yufan Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China.
| |
Collapse
|
3
|
Kong W, Jin Y. Environmental exposure to perchlorate, nitrate, and thiocyanate in relation to biological aging in U.S. adults, a cross-sectional NHANES study. Front Public Health 2025; 13:1518254. [PMID: 40171432 PMCID: PMC11958956 DOI: 10.3389/fpubh.2025.1518254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Background Few studies have investigated the associations between perchlorate, nitrate, and thiocyanate (PNT) and biological aging. This study aimed to assess the association between PNT and biological aging among U.S. adults. Methods Utilizing multivariable linear regression and restricted cubic splines (RCS), we analyzed urinary PNT levels' impact on phenotypic age and biological age. Subgroup and sensitivity analyses were also conducted. Weighted Quantile Sum (WQS) and Bayesian Kernel Machine Regression (BKMR) models examined PNT mixtures. Results 8,368 participants were analyzed. Mean phenotypic age was 43.05 ± 0.48 years, mean biological age was 47.08 ± 0.4 years. Multivariable linear regression showed significant negative associations between higher PNT levels and phenotypic age (perchlorate β = -0.6, 95% CI: -0.93 to -0.27; nitrate β = -0.81, 95% CI: -1.19 to -0.42; thiocyanate β = -0.56, 95% CI: -0.77 to -0.34) after covariates adjusted. RCS demonstrated negative nonlinear relationships between PNT exposure and phenotypic age (nonlinear p values: 0.002, <0.001, and <0.001), with stable results in sensitivity analyses. Nitrate exposure showed a significant negative association with biological age (β = -0.78, 95% CI: -1.13 to -0.44), indicating a consistent negative linear relationship observed through RCS and remaining stable across sensitivity analyses. WQS regression revealed a negative association between the mixture and phenotypic age in both positive and negative directions, with a significant negative association with biological age in the negative direction. BKMR analysis revealed a negative association between PNT mixtures and phenotypic age, with nitrate and thiocyanate identified as the primary predictors of phenotypic age. No association found between PNT mixture and biological age. Conclusion Individual or combined PNT are negatively associated with phenotypic age. High nitrate is associated with reduced biological age, showcasing consistent outcomes.
Collapse
Affiliation(s)
- Weiliang Kong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | | |
Collapse
|
4
|
Zhang L, Peng Y, Song Y, Zhang Y, Qin Q, Ying M, Bi Y, Yin P. Associations of Urinary Perchlorate, Nitrate, and Thiocyanate with Female Infertility and Mediation of Obesity: Insights from NHANES 2013-2018. TOXICS 2024; 13:15. [PMID: 39853015 PMCID: PMC11769535 DOI: 10.3390/toxics13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
Classified as endocrine disrupting chemicals (EDCs), perchlorate, nitrate, and thiocyanate have been implicated with obesity and reproductive disorders. This study used three cycles of the National Health and Nutrition Examination Survey (NHANES 2013-2018); 813 women of reproductive age were finally included. We used multivariable logistic regression to analyze the associations between the three anions and obesity and infertility. Subsequently, we performed mediation analysis to explore the potential mediating effect of obesity on infertility in association with anion exposure. Increased concentrations of perchlorate and nitrate showed inverse correlations with the risk of obesity (OR = 0.73, 95% CI: 0.55-0.96; OR = 0.59, 95% CI: 0.40-0.87). Perchlorate was negatively associated with infertility (OR = 0.68, 95% CI: 0.51-0.91), and obesity was a mediator in association between perchlorate and infertility. These findings suggest that women of reproductive age may be protected from obesity and infertility by exposure to perchlorate and nitrate, with obesity acting as a moderating factor in the observed association. This study provides a valuable understanding of the complex links between environmental contaminants, obesity, and reproductive health, and identifies potential strategies to reduce the risk of infertility and improve women's health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (L.Z.); (Y.P.); (Y.S.); (Y.Z.); (Q.Q.); (M.Y.); (Y.B.)
| |
Collapse
|
5
|
Saputra F, Hu SY, Kishida M. Exposure to nitrate and nitrite disrupts cardiovascular development through estrogen receptor in zebrafish embryos and larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2165-2178. [PMID: 39026114 DOI: 10.1007/s10695-024-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Increasing nitrate concentration on surface and groundwater due to anthropogenic activities is an environmental concern. In this study, Tg(fli1: EGFP) zebrafish embryos were exposed to nitrate (NO3-) and nitrite (NO2-), and their cardiovascular development were investigated. Exposure to 10 mg/L NO3-N and 1 and 10 mg/L NO2-N decreased heart rate at 48-96-h post-fertilization (hpf), ventricular volume, and red blood cell flow rate at 96 hpf. Similar concentrations increased the number of embryos and larvae with pericardial edema and missing intersegmental and parachordal vessels in the caudal region at 48-96 hpf. Addition of ICI 182,720 (ICI) reversed the effects of nitrate and nitrite, suggesting estrogen receptors (ER) are involved. 10 mg/L NO3-N and 1 mg/L NO2-N decreased cardiovascular-related genes, gata4,5,6, hand2, nkx2.5, nkx2.7, tbx2a, tbx2b, and fgf1a. Gene expressions of ovarian aromatase and brain aromatase (cyp19a1a and cyp19a1b, respectively) decreased in the exposed groups, whereas ERs (esr1, esr2a, and esr2b) and nitric oxide synthase 2a (nos2a) increased. The effects on gene expression were also reversed by addition of ICI. Taken together, nitrate and nitrite disrupt cardiovascular system through ER in developing zebrafish, implying that environmental nitrate and nitrite contamination may be harmful to aquatic organisms.
Collapse
Affiliation(s)
- Febriyansyah Saputra
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
6
|
Sinai N, Eterovick PC, Kruger N, Oetken B, Ruthsatz K. Living in a multi-stressor world: nitrate pollution and thermal stress interact to affect amphibian larvae. J Exp Biol 2024; 227:jeb247629. [PMID: 39422187 DOI: 10.1242/jeb.247629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The interaction of widespread stressors such as nitrate pollution and increasing temperatures associated with climate change is likely to affect aquatic ectotherms such as amphibians. The metamorphic and physiological traits of amphibian larvae during the critical onset of metamorphosis are particularly susceptible to these stressors. We used a crossed experimental design subjecting Rana temporaria larvae to four constant rearing temperatures (18, 22, 26, 28°C) crossed with three environmentally relevant nitrate concentrations (0, 50, 100 mg l-1) to investigate the interactive and individual effects of these stressors on metamorphic (i.e. growth and development) and physiological traits (i.e. metabolism and heat tolerance) at the onset of metamorphosis. Larvae exposed to elevated nitrate concentrations and thermal stress displayed increased metabolic rates but decreased developmental rate, highlighting interactive effects of these stressors. However, nitrate pollution alone had no effect on either metamorphic or physiological traits, suggesting that detoxification processes were sufficient to maintain homeostasis but not in combination with increased rearing temperatures. Furthermore, larvae exposed to nitrate displayed diminished abilities to exhibit temperature-induced plasticity in metamorphosis timing and heat tolerance, as well as reduced acclimation capacity in heat tolerance and an increased thermal sensitivity of metabolic rate to higher temperatures. These results highlight the importance of considering the exposure to multiple stressors when investigating how natural populations respond to global change.
Collapse
Affiliation(s)
- Noa Sinai
- Institute of Cell and System Biology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Natasha Kruger
- Animal Behaviour and Wildlife Conservation Group, School of Life Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Ben Oetken
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Cassiani AG, Aloia TPA, Sousa-Vidal ÉK, Podgaec S, Piccinato CDA, Serrano-Nascimento C. Prenatal exposure to nitrate alters uterine morphology and gene expression in adult female F1 generation rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240085. [PMID: 39876961 PMCID: PMC11771761 DOI: 10.20945/2359-4292-2024-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/12/2024] [Indexed: 01/31/2025]
Abstract
Objective Nitrate is ubiquitously found in the environment and is one of the main components of nitrogen fertilizers. Previous studies have shown that nitrate disrupts the reproductive system in aquatic animals, but no study has evaluated the impact of nitrate exposure on the uterus in mammals. This study aimed to evaluate the impact of maternal exposure to nitrate during the prenatal period on uterine morphology and gene expression in adult female F1 rats. Materials and methods Pregnant Wistar rats were either treated with sodium nitrate 20 mg/L or 50 mg/L dissolved in drinking water from the first day of pregnancy until the birth of the offspring or were left untreated. On postnatal day 90, the uteri of female offspring rats were collected for histological and gene expression analyses. Morphometric analyses of the uterine photomicrographs were performed to determine the thickness of the layers of the uterine wall (endometrium, myometrium, and perimetrium) and the number of endometrial glands. Results The highest nitrate dose increased the myometrial thickness of the exposed female rats. Treatment with both nitrate doses reduced the number of endometrial glands compared with no treatment. Additionally, nitrate treatment significantly increased the expression of estrogen receptors and reduced the expression of progesterone receptors in the uterus. Conclusion Our results strongly suggest that prenatal exposure to nitrate programs gene expression and alters the uterine morphology in female F1 rats, potentially increasing their susceptibility to developing uterine diseases during adulthood.
Collapse
Affiliation(s)
- André Gilberto Cassiani
- Hospital Israelita Albert EinsteinSão PauloSPBrasilHospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | | | - Érica Kássia Sousa-Vidal
- Hospital Israelita Albert EinsteinSão PauloSPBrasilHospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Sérgio Podgaec
- Hospital Israelita Albert EinsteinSão PauloSPBrasilHospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Carla de Azevedo Piccinato
- Hospital Israelita Albert EinsteinSão PauloSPBrasilHospital Israelita Albert Einstein, São Paulo, SP, Brasil
- Universidade de São PauloFaculdade de Medicina de Ribeirão PretoDepartamento de Ginecologia e ObstetríciaRibeirão PretoSPBrasilDepartamento de Ginecologia e Obstetrícia da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | |
Collapse
|
8
|
Tian Y, Ma Y, Wu J, Wu Y, Wu T, Hu Y, Wei J. Ambient PM 2.5 Chemical Composition and Cardiovascular Disease Hospitalizations in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16327-16335. [PMID: 39137068 DOI: 10.1021/acs.est.4c05718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Little is known about the impacts of specific chemical components on cardiovascular hospitalizations. We examined the relationships of PM2.5 chemical composition and daily hospitalizations for cardiovascular disease in 184 Chinese cities. Acute PM2.5 chemical composition exposures were linked to higher cardiovascular disease hospitalizations on the same day and the percentage change of cardiovascular admission was the highest at 1.76% (95% CI, 1.36-2.16%) per interquartile range increase in BC, followed by 1.07% (0.72-1.43%) for SO42-, 1.04% (0.63-1.46%) for NH4+, 0.99% (0.55-1.43%) for NO3-, 0.83% (0.50-1.17%) for OM, and 0.80% (0.34%-1.26%) for Cl-. Similar findings were observed for all cause-specific major cardiovascular diseases, except for heart rhythm disturbances. Short-term exposures to PM2.5 chemical composition were related to higher admissions and showed diverse impacts on major cardiovascular diseases.
Collapse
Affiliation(s)
- Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030 Wuhan, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030 Wuhan, China
| | - Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, 100191 Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, 100191 Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, 100191 Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, 100191 Beijing, China
- Medical Informatics Center, Peking University, No.38 Xueyuan Road, 100191 Beijing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
9
|
Liu N, Meng F, Zhang L, Qin Y, Xue H, Liang Z. Toxicity threshold and ecological risk of nitrate in rivers based on endocrine-disrupting effects: A case study in the Luan River basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172859. [PMID: 38692316 DOI: 10.1016/j.scitotenv.2024.172859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Nitrate, as a crucial nutrient, is consistently targeted for controlling water eutrophication globally. However, there is considerable evidence suggesting that nitrate has endocrine-disrupting potential on aquatic organisms. In this study, the sensitivity of various adverse effects to nitrate nitrogen (nitrate-N) was compared, and a toxicity threshold based on endocrine-disrupting effects was derived. The spatiotemporal variations of nitrate-N concentrations in the Luan River basin were investigated, and the associated aquatic ecological risks were evaluated using a comprehensive approach. The results showed that reproduction and development were the most sensitive endpoints to nitrate, and their distribution exhibited significant differences compared to behavior. The derived threshold based on endocrine-disrupting effects was 0.65 mgL-1, providing adequate protection for the aquatic ecosystem. In the Luan River basin, the mean nitrate-N concentrations during winter (4.4 mgL-1) were significantly higher than those observed in spring (0.7 mgL-1) and summer (1.2 mgL-1). Tributary inputs had an important influence on the spatial characteristics of nitrate-N in the mainstream, primarily due to agricultural and population-related contamination. The risk quotients (RQ) during winter, summer, and spring were evaluated as 6.7, 1.8, and 1.1, respectively, and the frequency of exposure concentrations exceeding the threshold was 100 %, 64.3 %, and 42.5 %, respectively. At the ecosystem level, nitrate posed intermediate risks to aquatic organisms during winter and summer in the Luan River basin and at the national scale in China. We suggest that nitrate pollution control should not solely focus on water eutrophication but also consider the endocrine disruptive effect on aquatic animals.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fansheng Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Lingsong Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yaqiang Qin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hao Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhuming Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
10
|
Ma X, Zhong J, Wang R, Li D, Li K, Luo L, Li C. Zeolitic imidazolate framework derived Fe catalyst electrocatalytic-driven atomic hydrogen for efficient reduction of nitrate to N 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134354. [PMID: 38653134 DOI: 10.1016/j.jhazmat.2024.134354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Excessive discharge of nitrogen-containing chemical products into the natural water environment leads to the serious environmental problem of nitrate-nitrogen pollution, threatening the ecological balance and human health. In this study, we propose an efficient denitrification electrochemical method utilizing iron-doped zeolite imidazolium framework derived defective nitrogen-doped carbon (d-FeNC) catalysts. The d-FeNC catalyst exhibited 97 % nitrate removal efficiency and 94 % total nitrogen (TN) removal, and the reaction rate constant was increased from 0.73 h-1 of the Fe-undoped electrocatalyst (d-NC) to 1.11 h-1. The successful synthesis of d-FeNC with carbon defect sites and encapsulated Fe was confirmed by in-depth characterization. In situ electron paramagnetic resonance (EPR) analysis in conjunction with cyclic voltammetry (CV) tests confirmed the carbon substrates with defect enhanced the trapping of atomic hydrogen (H*) on the catalyst surface. Density functional theory (DFT) calculations clarified the doping of Fe facilitated the adsorption of nitrate, resulting in contact of H* with nitrate on the catalyst surface. In the synergy of the defective state organic framework and metal Fe, H* and nitrate realized a collision process. The electrochemical denitrification system achieved an excellent nitrate removal capacity of 7587 mgN·g-1cat in high-concentration nitrate solution and showed excellent stability under various conditions. Overall, this study underscores the potential of defective iron-doped carbon catalysts for efficient electrocatalytic denitrification, providing a promising approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Xi Ma
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Jiapeng Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongyue Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dexuan Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lijun Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China.
| | - Chuanhao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Petit P, Chamot S, Al-Salameh A, Cancé C, Desailloud R, Bonneterre V. Farming activity and risk of treated thyroid disorders: Insights from the TRACTOR project, a nationwide cohort study. ENVIRONMENTAL RESEARCH 2024; 249:118458. [PMID: 38365059 DOI: 10.1016/j.envres.2024.118458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Epidemiological data regarding thyroid diseases are lacking, in particular for occupationally exposed populations. OBJECTIVES To compare the risk of hypothyroidism and hyperthyroidism between farming activities within the complete population of French farm managers (FMs). METHODS Digital health data from retrospective administrative databases, including insurance claims and electronic health/medical records, was employed. This cohort data spanned the entirety of French farm managers (FMs) who had undertaken work at least once from 2002 to 2016. Survival analysis with the time to initial medication reimbursement as timescale was used to examine the association (hazard ratio, HR) between 26 specific farming activities and both treated hypothyroidism and hyperthyroidism. A distinct model was developed for each farming activity, comparing FMs who had never engaged in the specific farming activity between 2002 and 2016 with those who had. All analyses were adjusted for potential confounders (e.g., age), and sensitivity analyses were conducted. RESULTS Among 1088561 FMs (mean age 46.6 [SD 14.1]; 31% females), there were 31834 hypothyroidism cases (75% females) and 620 hyperthyroidism cases (67% females), respectively. The highest risks were observed for cattle activities for both hyperthyroidism (HR ranging from 1.75 to 2.42) and hypothyroidism (HR ranging from 1.41 to 1.44). For hypothyroidism, higher risks were also observed for several animal farming activities (pig, poultry, and rabbit), as well as fruit arboriculture (HR = 1.22 [1.14-1.31]). The lowest risks were observed for activities involving horses. Sex differences in the risk of hypothyroidism were observed for eight activities, with the risk being higher for males (HR = 1.09 [1.01-1.20]) than females in viticulture (HR = 0.97 [0.93-1.00]). The risk of hyperthyroidism was two times higher for male dairy farmers than females. DISCUSSION Our findings offer a comprehensive overview of thyroid disease risks within the FM community. Thyroid ailments might not stem from a single cause but likely arise from the combined effects of various causal agents and triggering factors (agricultural exposome). Further investigation into distinct farming activities-especially those involving cattle-is essential to pinpoint potential risk factors that could enhance thyroid disease monitoring in agriculture.
Collapse
Affiliation(s)
- Pascal Petit
- CHU Grenoble Alpes, Centre Régional de Pathologies Professionnelles et Environnementales, 38000, Grenoble, France; Univ. Grenoble Alpes, AGEIS, 38000, Grenoble, France.
| | - Sylvain Chamot
- Regional Center for Occupational and Environmental Diseases of Hauts-de-France, Amiens University Hospital, 1 rond point du Pr Christian Cabrol, 80000, Amiens, France; Péritox (UMR_I 01), UPJV/INERIS, University of Picardy Jules Verne, Chemin du Thil, 80025, Amiens, France
| | - Abdallah Al-Salameh
- Péritox (UMR_I 01), UPJV/INERIS, University of Picardy Jules Verne, Chemin du Thil, 80025, Amiens, France; Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, 1 rond point du Pr Christian Cabrol, 80054, Amiens, France
| | - Christophe Cancé
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Rachel Desailloud
- Péritox (UMR_I 01), UPJV/INERIS, University of Picardy Jules Verne, Chemin du Thil, 80025, Amiens, France; Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, 1 rond point du Pr Christian Cabrol, 80054, Amiens, France
| | - Vincent Bonneterre
- CHU Grenoble Alpes, Centre Régional de Pathologies Professionnelles et Environnementales, 38000, Grenoble, France; Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| |
Collapse
|
12
|
Russell MV, Messer TL, Repert DA, Smith RL, Bartelt-Hunt S, Snow DD, Reed AP. Influence of Four Veterinary Antibiotics on Constructed Treatment Wetland Nitrogen Transformation. TOXICS 2024; 12:346. [PMID: 38787125 PMCID: PMC11125918 DOI: 10.3390/toxics12050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
The use of wetlands as a treatment approach for nitrogen in runoff is a common practice in agroecosystems. However, nitrate is not the sole constituent present in agricultural runoff and other biologically active contaminants have the potential to affect nitrate removal efficiency. In this study, the impacts of the combined effects of four common veterinary antibiotics (chlortetracycline, sulfamethazine, lincomycin, monensin) on nitrate-N treatment efficiency in saturated sediments and wetlands were evaluated in a coupled microcosm/mesocosm scale experiment. Veterinary antibiotics were hypothesized to significantly impact nitrogen speciation (e.g., nitrate and ammonium) and nitrogen uptake and transformation processes (e.g., plant uptake and denitrification) within the wetland ecosystems. To test this hypothesis, the coupled study had three objectives: 1. assess veterinary antibiotic impact on nitrogen cycle processes in wetland sediments using microcosm incubations, 2. measure nitrate-N reduction in water of floating treatment wetland systems over time following the introduction of veterinary antibiotic residues, and 3. identify the fate of veterinary antibiotics in floating treatment wetlands using mesocosms. Microcosms containing added mixtures of the veterinary antibiotics had little to no effect at lower concentrations but stimulated denitrification potential rates at higher concentrations. Based on observed changes in the nitrogen loss in the microcosm experiments, floating treatment wetland mesocosms were enriched with 1000 μg L-1 of the antibiotic mixture. Rates of nitrate-N loss observed in mesocosms with the veterinary antibiotic enrichment were consistent with the microcosm experiments in that denitrification was not inhibited, even at the high dosage. In the mesocosm experiments, average nitrate-N removal rates were not found to be impacted by the veterinary antibiotics. Further, veterinary antibiotics were primarily found in the roots of the floating treatment wetland biomass, accumulating approximately 190 mg m-2 of the antibiotic mixture. These findings provide new insight into the impact that veterinary antibiotic mixtures may have on nutrient management strategies for large-scale agricultural operations and the potential for veterinary antibiotic removal in these wetlands.
Collapse
Affiliation(s)
- Matthew V. Russell
- Biosystems and Agricultural Engineering Department, University of Kentucky, 128 Barnhardt, Lexington, KY 40506, USA;
| | - Tiffany L. Messer
- Biosystems and Agricultural Engineering Department, University of Kentucky, 128 Barnhardt, Lexington, KY 40506, USA;
| | - Deborah A. Repert
- United States Geological Survey, Water Resources Mission Area, 3215 Marine St., Boulder, CO 80303, USA; (D.A.R.); (R.L.S.); (A.P.R.)
| | - Richard L. Smith
- United States Geological Survey, Water Resources Mission Area, 3215 Marine St., Boulder, CO 80303, USA; (D.A.R.); (R.L.S.); (A.P.R.)
| | - Shannon Bartelt-Hunt
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68508, USA;
| | - Daniel D. Snow
- School of Natural Resources, East Campus, University of Nebraska-Lincoln, 101 Hardin Hall, Lincoln, NE 68583, USA;
- Water Sciences Laboratory, East Campus, University of Nebraska-Lincoln, 1840 N. 37th Street, Lincoln, NE 68583, USA
| | - Ariel P. Reed
- United States Geological Survey, Water Resources Mission Area, 3215 Marine St., Boulder, CO 80303, USA; (D.A.R.); (R.L.S.); (A.P.R.)
| |
Collapse
|
13
|
Li J, Du B, Wang Y, Qiu J, Shi M, Wei M, Li L. Environmental perchlorate, thiocyanate, and nitrate exposures and bone mineral density: a national cross-sectional study in the US adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34459-34472. [PMID: 38703319 DOI: 10.1007/s11356-024-33563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Associations of perchlorate, thiocyanate, and nitrate exposures with bone mineral density (BMD) in adults have not previously been studied. This study aimed to estimate the associations of individual and concurrent exposure of the three chemicals with adult BMD. Based on National Health and Nutrition Examination Survey (NHANES, 2011-2018), 1618 non-pregnant adults (age ≥ 20 years and 47.0% female) were included in this study. Survey-weighted linear regression models were used to estimate individual urinary perchlorate, thiocyanate, and nitrate concentrations with lumbar spine BMD and total BMD in adults. Then, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were conducted to evaluate associations of co-occurrence of the three chemicals with adult BMD. In all participants, nitrate exposure was inversely associated with lumbar spine BMD (β = - 0.054, 95%CI: - 0.097, - 0.010). In stratification analyses, significant inverse associations were observed in female and participants older than 40 years old. In WQS regressions, significant negative associations of the weighted sum of the three chemicals with total and lumbar spine BMD (β = - 0.014, 95%CI: - 0.021, - 0.007; β = - 0.011, 95%CI: - 0.019, - 0.004, respectively) were found, and the dominant contributor was nitrate. In the BKMR models, non-linear dose-response associations of nitrate exposure with lumbar spine and total BMD were observed. These findings suggested that environmental perchlorate, thiocyanate, and nitrate exposure may reduce adult BMD and nitrate is the main contributor.
Collapse
Affiliation(s)
- Juxiao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Muhong Wei
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China.
| |
Collapse
|
14
|
Wang S, Ma Y, Wu G, Du Z, Li J, Zhang W, Hao Y. Relationships between long-term exposure to major PM 2.5 constituents and outpatient visits and hospitalizations in Guangdong, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123866. [PMID: 38537800 DOI: 10.1016/j.envpol.2024.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Ambient fine particulate matter (PM2.5) has attracted considerable attention due to its crucial role in the rising global disease burden. Evidence of health risks associated with exposure to PM2.5 and its major constituents is important for advancing hazard assessments and air pollution emission policies. We investigated the relationship between exposure to major constituents of PM2.5 and outpatient visits as well as hospitalizations in Guangdong Province, China, where 127 million residents live in a severe PM2.5 pollution environment. An approach that integrates the generalized weighted quantile sum (gWQS) regression with the difference-in-differences (DID) approach was used to assess the overall mixture effects and relative contributions of each constituent. We observed significant associations between long-term exposure to the mixture of PM2.5 constituents (WQS index) and outpatient visits (IR%, percentage increases in risk per unit WQS index increase:1.73, 95%CI: 1.72, 1.74) as well as hospitalizations (IR%:5.15, 95%CI: 5.11, 5.20). Black carbon (weight: 0.34) and nitrate (weight: 0.60) respectively exhibited the highest contributions to outpatient visits and hospitalizations. The overall mixture effects on outpatient visits and hospitalizations were higher with increased summer air temperatures (IR%: 7.54, 95%CI: 7.33, 7.74 and IR%: 9.55, 95%CI: 8.36, 10.75, respectively) or decreased winter air temperatures (IR%: 1.88, 95%CI: 1.68, 2.08 and IR%: 4.87, 95%CI: 3.73, 6.02, respectively). Furthermore, the overall mixture effects on outpatient visits and hospitalizations were significantly higher in populations with higher socioeconomic status (P < 0.01). It's crucial to address the primary sources of nitrate precursor substances and black carbon (mainly traffic-related and industrial-related air pollutants) and consider the complex interaction effects between air temperature and PM2.5 in the context of climate change. Of particular concern is the need to prioritize healthcare demands in economically disadvantaged regions and to address the health inequalities stemming from the uneven distribution of healthcare resources and PM2.5 pollution.
Collapse
Affiliation(s)
- Shenghao Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujie Ma
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Gonghua Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghua Li
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response Peking University, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| |
Collapse
|
15
|
Pei Y, Cheng W, Liu R, Di H, Jiang Y, Zheng C, Jiang Z. Synergistic effect and mechanism of nZVI/LDH composites adsorption coupled reduction of nitrate in micro-polluted water. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133023. [PMID: 37988940 DOI: 10.1016/j.jhazmat.2023.133023] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
In this study, nZVI/LDH composites were prepared by loading nano zero-valent iron (nZVI) on layered double hydroxide (LDH) surface for adsorption coupled reduction of nitrate (NO3--N). The results showed that the removal of NO3--N and total nitrogen (TN) by the nZVI/LDH composites was 88.64% and 77.63%, respectively, with a selectivity of 55.21% for N2 and only 1.86% for ammonia nitrogen (NH4+-N) within 180 min. The valence states of various N forms during the adsorption-reduction process were investigated. The mechanism of synergistic adsorption-reduction degradation of NO3--N was proposed by measuring the contents of NO3--N, nitrite (NO2--N), and NH4+-N in the aqueous and adsorbed phases in the reaction process, including rapid adsorption of initial NO3--N, chemical reduction of adsorbed NO3--N and resorption of the final product. The nZVI/LDH also maintained up to 82.56% NO3--N removal in natural water, with aging experiments proved that the composites maintained 60.48% NO3--N removal after 15 days. Therefore, the composites may have great application prospects for NO3--N removal in micro-polluted water.
Collapse
Affiliation(s)
- Yanyan Pei
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China; Construction & Development Co., Ltd. of China Construction Fourth Bureau, Xiamen, Fujian 361006, China
| | - Wei Cheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Renyu Liu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Hongcheng Di
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yachen Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Chaoqun Zheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
16
|
Wu S, Zheng H, Wang Y, Wang L, Chen W. Cyanobacterial bioreporter of nitrate bioavailability in aquatic ecosystems. WATER RESEARCH 2023; 247:120749. [PMID: 37918203 DOI: 10.1016/j.watres.2023.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The water eutrophication, resulting from the discharge of industrial and agricultural wastewater, leads to ecological degradation. However, to date, how to assess and manage the risks of water pollution, especially nitrogen pollution, remains a particularly noteworthy issue. Nitrate, the most important nitrogen compound, has become a bottleneck restricting total nitrogen management. The development of bioreporters monitoring nitrate pollution contributes to the estimation of water quality, especially the availability of nutrients. In this study, we obtained 9 bioreporters from 40 cyanobacterial derivatives which were constructed based on different hosts, copy numbers, and sensing elements and evaluated the performance of bioreporters. The results showed that single-celled Synechocystis was more sensitive to nitrate than filamentous Anabaena, that the reporter gene luxABCDE responded faster than sfgfp in most bioreporters, and that relatively medium-copy plasmid improved the performance of sensing elements. Nine bioreporters performed well in bioavailable nitrate detection, of which AD-AS-X and AR-NI-X, activated by nitrate repletion, had the shortest response time (2 h) and the widest response range (20-800 μM), respectively. Moreover, SR-GLN-SG, activated by nitrate deficiency, exhibited the best linear response (R2 = 0.998). After parameter optimization, exponential growth phase bioreporters, culture temperature of 30 °C, sample volume of 200 μL were determined as optimal monitoring conditions. We found that common water contaminants (copper, cadmium, and phosphorus) had no impact on the performance of bioreporters, indicating the stability of bioreporters. Six out of 9 bioreporters, especially the SR-NB-X, were highly effective in detecting the bioavailable nitrate in wastewater sample. This study provides valuable references for developing more cyanobacterial bioreporters and their practical application in nitrate detection.
Collapse
Affiliation(s)
- Shanyu Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongyan Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuwei Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
17
|
Lv Y, Chang L, Liu J, Chen Q, Jiang J, Zhu W. Why Bufo gargarizans tadpoles grow bigger in Pb-contaminated environments? The gut microbiota matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115601. [PMID: 37890260 DOI: 10.1016/j.ecoenv.2023.115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The impacts of lead/Pb2+ on ecosystems have received widespread attention. Growth suppression is a major toxic effect of Pb compounds on aquatic animals, however, some studies have also reported their growth-promoting effects. These complex outcomes may be explained by anions that accompany Pb2+ or by the multiple toxic mechanisms/pathways of Pb2+. To examine these hypotheses, we tested how Bufo gargarizans tadpoles responded to Pb(NO3)2 (100 and 200 μg/L Pb2+) using transcriptomics and microbiomics, with NaNO3 and blank groups as controls. Tadpoles exposed to Pb(NO3)2 showed delayed development while increased somatic growth in a dose-dependent manner, which can be attributed to the effects of NO3- and Pb2+, respectively. Tadpole transcriptomics revealed that exposure to NO3- downregulated the MAPK pathway at transcriptional level, explaining the development-suppressing effect of NO3-; while Pb2+ upregulated the transcription of detoxification pathways (e.g., xenobiotics metabolism by cytochrome P450 and glutathione metabolism), indicating cellular stress and thus contradicting the growth advantage of Pb2+-exposed tadpoles. Pb2+ exposure changed the tadpole gut microbiota drastically, characterized by increased polysaccharides and carbohydrate utilization while decreased fatty acid and amino acid consumption according to microbial functional analysis. Similar gut microbial variations were observed in field-collected tadpoles from different Pb2+ environments. This metabolic shift in gut microbiota likely improved the overall food utilization efficiency and increased the allocation of fatty acids and amino acids to the host, explaining the growth advantage of Pb2+-exposed tadpoles. In summary, our results suggest multiple toxic pathways of Pb2+, and the gut microbiota may affect the pollution outcomes on animals.
Collapse
Affiliation(s)
- Yan Lv
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Liming Chang
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Jiongyu Liu
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Qiheng Chen
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China.
| |
Collapse
|
18
|
Liu Z, Shen F, Shi L, Tong Q, Tang M, Li Y, Peng M, Jiao Z, Jiang Y, Ao L, Fu W, Lv X, Jiang G, Hou L. Electronic Structure Optimization and Proton-Transfer Enhancement on Titanium Oxide-Supported Copper Nanoparticles for Enhanced Nitrogen Recycling from Nitrate-Contaminated Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364020 DOI: 10.1021/acs.est.3c03431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Electrocatalytic reduction of nitrate to NH3 (NO3RR) on Cu offers sustainable NH3 production and nitrogen recycling from nitrate-contaminated water. However, Cu affords limited NO3RR activity owing to its unfavorable electronic state and the slow proton transfer on its surface, especially in neutral/alkaline media. Furthermore, although a synchronous "NO3RR and NH3 collection" system has been developed for nitrogen recycling from nitrate-laden water, no system is designed for natural water that generally contains low-concentration nitrate. Herein, we demonstrate that depositing Cu nanoparticles on a TiO2 support enables the formation of electron-deficient Cuδ+ species (0 < δ ≤ 2), which are more active than Cu0 in NO3RR. Furthermore, TiO2-Cu coupling induces local electric-field enhancement that intensifies water adsorption/dissociation at the interface, accelerating proton transfer for NO3RR on Cu. With the dual enhancements, TiO2-Cu delivers an NH3-N selectivity of 90.5%, mass activity of 41.4 mg-N h gCu-1, specific activity of 377.8 mg-N h-1 m-2, and minimal Cu leaching (<25.4 μg L-1) when treating 22.5 mg L-1 of NO3--N at -0.40 V, outperforming most of the reported Cu-based catalysts. A sequential NO3RR and NH3 collection system based on TiO2-Cu was then proposed, which could recycle nitrogen from nitrate-contaminated water under a wide concentration window of 22.5-112.5 mg L-1 at a rate of 209-630 mgN m-2 h-1. We also demonstrated this system could collect 83.9% of nitrogen from NO3--N (19.3 mg L-1) in natural lake water.
Collapse
Affiliation(s)
- Zixun Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fei Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Li Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiuwen Tong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Mu'e Tang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiming Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Peng
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhaojie Jiao
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yan Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liang Ao
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Wenyang Fu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Li'an Hou
- High Tech Inst Beijing, Beijing 100000, China
| |
Collapse
|
19
|
Fu J, Fei F, Wang S, Zhao Q, Yang X, Zhong J, Hu K. Short-term effects of fine particulate matter constituents on mortality considering the mortality displacement in Zhejiang province, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131723. [PMID: 37257377 DOI: 10.1016/j.jhazmat.2023.131723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Evidence linking mortality and short-term exposure to particulate matter (PM2.5) constituents was sparse. The mortality displacement was often unconsidered and may induce incorrect risk estimation. OBJECTIVES To assess the short-term effects of PM2.5 constituents on all-cause mortality considering the mortality displacement. METHODS Daily data on all-cause mortality and PM2.5 constituents, including sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), organic matters (OM), and black carbon (BC), were collected from 2009 to 2020. The mortality effect of PM2.5 and its constituents was estimated using a distributed lag non-linear model. Stratified analyses were performed by age, sex, and season. RESULTS Per interquartile range increases in SO42-, NO3-, NH4+, OM, and BC were associated with the 1.42% (95%CI: 0.98, 1.87), 3.76% (3.34, 4.16), 2.26% (1.70, 2.83), 2.36% (2.02, 2.70), and 1.26% (0.91, 1.61) increases in all-cause mortality, respectively. Mortality displacements were observed for PM2.5, SO42-, NH4+, OM, and BC, with their overall effects lasting for 7-15 days. Stratified analyses revealed a higher risk for old adults (>65 years) and females, with stronger effects in the cold season. CONCLUSIONS Short-term exposures to PM2.5 constituents were positively associated with increased risks of mortality. The mortality displacement should be considered in future epidemiological studies on PM constituents. DATA AVAILABILITY Data will be made available on request.
Collapse
Affiliation(s)
- Jingqiao Fu
- Ocean College, Zhejiang University, Zhoushan 316021, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Fangrong Fei
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Shiyi Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Shandong University, Jinan 250012, China
| | - Xuchao Yang
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Jieming Zhong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Kejia Hu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Kitaw SL, Birhan YS, Tsai HC. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives. ENVIRONMENTAL RESEARCH 2023; 221:115247. [PMID: 36640935 DOI: 10.1016/j.envres.2023.115247] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering spectroscopy (SERS) is a powerful technique of vibrational spectroscopy based on the inelastic scattering of incident photons by molecular species. It has unique properties such as ultra-sensitivity, selectivity, non-destructivity, speed, and fingerprinting properties for analytical and sensing applications. This enables SERS to be widely used in real-world sample analysis and basic plasmonic mechanistic studies. However, the desirable properties of SERS are compromised by the high cost and low reproducibility of the signals. The development of multifunctional, stable and reusable nano-engineered SERS substrates is a viable solution to circumvent these drawbacks. Recently, plasmonic SERS active nano-substrates with various morphologies have attracted the attention of researchers due to promising properties such as the formation of dense hot spots, additional stability, tunable and controlled morphology, and surface functionalization. This comprehensive review focused on the current advances in the field of SERS active nanosubstrates suitable for the detection and quantification of anionic environmental pollutants. The common fabrication methods, including the techniques for morphological adjustments and surface modification, substrate categories, and the design of nanotechnologically fabricated plasmonic SERS substrates for anion detection are systematically presented. Here, the need for the design, synthesis, and functionalization of SERS nano-substrates for anions of great environmental importance is explained in detail. In addition, the broad categories of SERS nano-substrates, namely colloid-based SERS substrates and solid-support SERS substrates are discussed. Moreover, a brief discussion of SERS detection of certain anionic pollutants in the environment is presented. Finally, the prospects in the fabrication and commercialization of pilot-scale handheld SERS sensors and the construction of smart nanosubstrates integrated with novel amplifying materials for the detection of anions of environmental and health concern are proposed.
Collapse
Affiliation(s)
- Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan, ROC.
| |
Collapse
|
21
|
Chen H, Pang Y, Wei Y, He X, Zhang Y, Xie L. Nitrate and sodium nitroprusside alter the development of Asian black-spined toads' embryos by inducing nitric oxide production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23060-23069. [PMID: 36318412 DOI: 10.1007/s11356-022-23821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Nitrate is the most stable and abundant form of inorganic nitrogen in water. However, owing to human activities, the nitrate concentration in aquatic ecosystems has notably increased worldwide. One of the mechanisms underlying nitrate toxicity in vertebrates includes the functional inhibition of the sodium iodide symporter, resulting in thyroid dysfunction. In this study, we aimed to determine the alternative mechanisms underlying the toxicological effects of nitrates on the Asian black-spined toad (Duttaphrynus melanostictus). Embryos of D. melanostictus were exposed to sodium nitroprusside (SNP, positive control) or 100 mg/L nitrate-nitrogen (NO3-N) for 184 h. We observed that both SNP and NO3-N significantly decreased body mass and length and delayed developmental processes. Teratogenic symptoms, including tumors, hyperplasia, and abdominal edema, were also observed in embryos exposed to SNP and NO3-N. Furthermore, SNP and NO3-N significantly increased nitric oxide levels in the embryos, altering the thyroid hormone, nitrogen, cytochrome P450-mediated drug, and xenobiotic metabolism signaling pathways, as well as the pathway involved in chemical carcinogenesis. The similar toxicological effects of SNP and NO3-N suggested that nitrate toxicity resulted from the generation of nitric oxide. Therefore, the present study provides insights into an alternative mechanism underpinning nitrate toxicity, which is useful for the conservation of amphibians in nitrate-rich environments.
Collapse
Affiliation(s)
- Hongjun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yuting Pang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yunqi Wei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xinni He
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yongpu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Lei Xie
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
22
|
Ruthsatz K, Eterovick PC, Bartels F, Mausbach J. Contributions of water-borne corticosterone as one non-invasive biomarker in assessing nitrate pollution stress in tadpoles of Rana temporaria. Gen Comp Endocrinol 2023; 331:114164. [PMID: 36400158 DOI: 10.1016/j.ygcen.2022.114164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Among a multitude of stressors to which wildlife is exposed, environmental pollution is a pervasive one that poses a serious threat. The permeable skin of amphibians is likely to increase direct contact of the body with pollutants, making them a group worth studying to access environmental quality. Consequently, finding reliable and complementary biomarkers that will present detectable and predictable changes in response to pollutants is essential to identify pollution sublethal effects on amphibians and to investigate whether these are in part responsible for population declines. The glucocorticoid hormone corticosterone (CORT), involved in many metabolic functions, is often used to measure the physiological stress response to environmental stressors in amphibians. In this study, we evaluated whether water-borne CORT can serve as a non-invasive biomarker for nitrate pollution stress in the European common frog (Rana temporaria) by comparing the effect of nitrate exposure on hormone release rates and on other physiological downstream biomarkers, i.e., ultimate physiological effects of the stressor. Specifically, we investigated the effect of different nitrate concentrations (0, 10, 50, and 100 mg/L) on water-borne CORT release rates, age, size, and body condition. Exposure to nitrate pollution significantly increased age at metamorphosis and water-borne CORT release rates, and led to reduced mass and body condition, but only at higher nitrate concentrations (i.e., 50 and 100 mg/L). Considering this similar sensitivity to other acknowledged biomarkers, water-borne CORT was a reliable biomarker of physiological stress in R. temporaria exposed to nitrate pollution stress in a controlled single-stressor laboratory approach. Thus, water-borne CORT is a promising method to be included in more holistic approaches. We recommend that such approaches keep testing multiple biomarker combinations, as species are exposed to several stressors likely to interact and produce varied outcomes in different biomarkers in their natural habitats.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Fabian Bartels
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Jelena Mausbach
- Eawag & ETH Zurich,Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
23
|
Lin L, St Clair S, Gamble GD, Crowther CA, Dixon L, Bloomfield FH, Harding JE. Nitrate contamination in drinking water and adverse reproductive and birth outcomes: a systematic review and meta-analysis. Sci Rep 2023; 13:563. [PMID: 36631499 PMCID: PMC9834225 DOI: 10.1038/s41598-022-27345-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Exposure to low levels of nitrate in drinking water may have adverse reproductive effects. We reviewed evidence about the association between nitrate in drinking water and adverse reproductive outcomes published to November 2022. Randomized trials, cohort or case-control studies published in English that reported the relationship between nitrate intake from drinking water and the risk of perinatal outcomes were included. Random-effect models were used to pool data. Three cohort studies showed nitrate in drinking water is associated with an increased risk of preterm birth (odds ratio for 1 mg/L NO3-N increased (OR1) = 1.01, 95% CI 1.00, 1.01, I2 = 23.9%, 5,014,487 participants; comparing the highest versus the lowest nitrate exposure groups pooled OR (ORp) = 1.05, 95% CI 1.01, 1.10, I2 = 0%, 4,152,348 participants). Case-control studies showed nitrate in drinking water may be associated with the increased risk of neural tube defects OR1 = 1.06, 95% CI 1.02, 1.10; 2 studies, 2196 participants; I2 = 0%; and ORp = 1.51, 95% CI 1.12, 2.05; 3 studies, 1501 participants; I2 = 0%). The evidence for an association between nitrate in drinking water and risk of small for gestational age infants, any birth defects, or any congenital heart defects was inconsistent. Increased nitrate in drinking water may be associated with an increased risk of preterm birth and some specific congenital anomalies. These findings warrant regular review as new evidence becomes available.
Collapse
Affiliation(s)
- Luling Lin
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Sophie St Clair
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Greg D Gamble
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Lesley Dixon
- New Zealand College of Midwives, 376 Manchester Street, Richmond, Christchurch, 8014, New Zealand
| | | | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
24
|
Wang X, Liu X, Wang L, Yang J, Wan X, Liang T. A holistic assessment of spatiotemporal variation, driving factors, and risks influencing river water quality in the northeastern Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157942. [PMID: 35995155 DOI: 10.1016/j.scitotenv.2022.157942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The Qinghai-Tibet Plateau (QTP) is the source for many of the most important rivers in Asia. It is also an essential ecological barrier in China and has the characteristic of regional water conservation. Given this importance, we analyzed the spatiotemporal distribution patterns and trends of 10 water quality parameters. These measurements were taken monthly from 67 monitoring stations in the northeastern QTP from 2015 to 2019. To evaluate water quality trends, major factors influencing water quality, and water quality risks, we used a series of analytical approaches including Mann-Kendall test, Boruta algorithm, and interval fuzzy number-based set-pair analysis (IFN-SPA). The results revealed that almost all water monitoring stations in the northeastern QTP were alkaline. From 2015 to 2019, the water temperature and dissolved oxygen of most monitoring stations were significantly reduced. Chemical oxygen demand, permanganate index, five-day biochemical oxygen demand, total phosphorus, and fluoride all showed a downward trend across this same time frame. The annual average total nitrogen (TN) concentration fluctuation did not significantly decrease across the measured time frame. Water quality index (WQI-DET) indicated bad or poor water quality in the study area; however, water quality index without TN (WQI-DET') reversed the water quality value. The difference between the two indexes suggested that TN was a significant parameter affecting river water quality in the northeastern QTP. Both Spearman correlation and Boruta algorithm show that elevation, urban land, cropland, temperature, and precipitation influence the overall water quality status in the northeastern QTP. The results showed that between 2015 and 2019, most rivers monitored had a relatively low risk of degradation in water quality. This study provides a new perspective on river water quality management, pollutant control, and risk assessment in an area like the QTP that has sensitive and fragile ecology.
Collapse
Affiliation(s)
- Xueping Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoming Wan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Lv Y, Zhang QD, Chang LM, Yang DL, Riaz L, Li C, Chen XH, Jiang JP, Zhu W. Multi-omics provide mechanistic insight into the Pb-induced changes in tadpole fitness-related traits and environmental water quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114207. [PMID: 36274322 DOI: 10.1016/j.ecoenv.2022.114207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Water pollution from lead/Pb2+ poses a significant threat to aquatic ecosystems, and its repercussions on aquatic animals have received considerable attention. Although Pb2+ has been found to affect numerous aspects of animals, including individual fitness, metabolic status, and symbiotic microbiota, few studies have focused on the associations between Pb2+-induced variations in fitness, metabolome, symbiotic microbiome, and environmental parameters in the same system, limiting a comprehensive understanding of ecotoxicological mechanisms from a holistic perspective. Moreover, most ecotoxicological studies neglected the potential contributions of anions to the consequences generated by inorganic lead compounds. We investigated the effects of Pb(NO3)2 at environmentally relevant concentrations on the Rana omeimontis tadpoles and the water quality around them, using blank and NaNO3-treated groups as control. Results showed that Pb(NO3)2 not only induced a rise in water nitrite level, but exposure to this chemical also impaired tadpole fitness-related traits (e.g., growth and development). The impacts on tadpoles were most likely a combination of Pb2+ and NO3-. Tissue metabolomics revealed that Pb(NO3)2 exposure influenced animal substrate (i.e., carbohydrate, lipid, and amino acid) and prostaglandin metabolism. Pb(NO3)2 produced profound shifts in gut microbiota, with increased Proteobacteria impairing Firmicutes, resulting in higher aerobic and possibly pathogenic bacteria. NaNO3 also influenced tadpole metabolome and gut microbiome, in a manner different to that of Pb(NO3)2. The presence of NO3- seemed to counteract some changes caused by Pb2+, particularly on the microbiota. Piecewise structural equation model and correlation analyses demonstrated connections between tissue metabolome and gut microbiome, and the variations in tadpole phenotypic traits and water quality were linked to changes in tissue metabolome and gut microbiome. These findings emphasized the important roles of gut microbiome in mediating the effects of toxin on aquatic ecosystem. Moreover, it is suggested to consider the influences of anions in the risk assessment of heavy metal pollutions.
Collapse
Affiliation(s)
- Yan Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qun-De Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Li-Ming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Duo-Li Yang
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA
| | - Luqman Riaz
- Department of Environmental Sciences, University of Narowal, 51750 Punjab, Pakistan
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Hong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
26
|
Jul Clemmensen P, Brix N, Schullehner J, Lunddorf LLH, Ernst A, Ebdrup NH, Bjerregaard AA, Hansen B, Thomas Stayner L, Ingi Halldorsson T, Frodi Olsen S, Sigsgaard T, Kolstad HA, Ramlau-Hansen CH. Prenatal nitrate exposure from diet and drinking water and timing of puberty in sons and daughters: A nationwide cohort study. ENVIRONMENT INTERNATIONAL 2022; 170:107659. [PMID: 36651653 DOI: 10.1016/j.envint.2022.107659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In Western countries, age at pubertal development has declined during the last century in girls, and probably also in boys. No studies have investigated whether nitrate, a widespread environmental exposure with teratogenic and hormone disrupting properties, might affect timing of puberty. OBJECTIVES We investigated if prenatal exposure to nitrate from drinking water and diet was associated with timing of puberty. METHODS This cohort study included 15,819 children born from 2000 to 2003 within the Danish National Birth Cohort. Self-reported information on current status of various pubertal milestones was provided every six months by a questionnaire from 11 years of age until 18 years or full maturity, whichever came first. Maternal nitrate intake from diet (mg/day) was derived from a mid-pregnancy food frequency questionnaire and individual level nitrate exposure from drinking water (mg/L) was derived using measurements from Danish public waterworks. Adjusted average differences in months in age at attaining several pubertal milestones as well as the average age difference in age at attaining all the milestones were estimated separately for diet and water using a regression model for interval-censored data. C- and E-vitamin, red meat and processed meat intake were explored as potential effect modifiers in sub-analyses. RESULTS No strong associations were observed between prenatal exposure to nitrate and timing of puberty in children. However, sons born of mothers with a nitrate concentration in drinking water at their residential address of > 25 mg/L (half of the World Health Organisation (WHO) guideline value) compared with ≤ 1 mg/L showed a tendency towards earlier age at pubertal development with an average age difference of -1.2 months (95 % confidence interval,-3.0;0.6) for all the pubertal milestones combined. DISCUSSION Studies including more highly exposed children are needed before the current WHO drinking water guideline value for nitrate can be considered safe concerning pubertal development.
Collapse
Affiliation(s)
| | - Nis Brix
- Department of Public Health, Aarhus University, Aarhus, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jörg Schullehner
- Department of Public Health, Aarhus University, Aarhus, Denmark; Geological Survey of Denmark and Greenland, Aarhus, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | | | - Andreas Ernst
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ninna Hinchely Ebdrup
- Department of Public Health, Aarhus University, Aarhus, Denmark; Fertility Clinic, Horsens Regional Hospital, Horsens, Denmark
| | - Anne Ahrendt Bjerregaard
- Department of Epidemiology Research, Center for Fetal Programming, Statens Serum Institut, Copenhagen, Denmark; Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | | | - Leslie Thomas Stayner
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, School of Public Health, Chicago, United States
| | - Thorhallur Ingi Halldorsson
- Department of Epidemiology Research, Center for Fetal Programming, Statens Serum Institut, Copenhagen, Denmark; Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Iceland
| | - Sjurdur Frodi Olsen
- Department of Epidemiology Research, Center for Fetal Programming, Statens Serum Institut, Copenhagen, Denmark; Section of Epidemiology, Institute of Public Health, University of Copenhagen, Denmark
| | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Aarhus, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark; Cirrau -Centre for Integrated Register-based Research at Aarhus University, Aarhus, Denmark
| | - Henrik Albert Kolstad
- Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
27
|
Zhou P, Hu J, Yu C, Bao J, Luo S, Shi Z, Yuan Y, Mo S, Yin Z, Zhang Y. Short-term exposure to fine particulate matter constituents and mortality: case-crossover evidence from 32 counties in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2527-2538. [PMID: 35713841 DOI: 10.1007/s11427-021-2098-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
A growing number of studies associated increased mortality with exposures to specific fine particulate (PM2.5) constituents, while great heterogeneity exists between locations. In China, evidence linking PM2.5 constituents and mortality was extensively sparse. This study primarily aimed to quantify short-term associations between PM2.5 constituents and non-accidental mortality among the Chinese population. We collected daily mortality records from 32 counties in China between January 1, 2011, and December 31, 2013. Daily concentrations of main PM2.5 constituents (organic carbon (OC), elemental carbon (EC), nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+)) were estimated using the modified Community Multiscale Air Quality model. Time-stratified case-crossover design with conditional logistic regression models was adopted to estimate mortality risks associated with short-term exposures to PM2.5 mass and its constituents. Stratification analyses were done by sex, age, and season. A total of 116,959 non-accidental deaths were investigated. PM2.5 concentrations on the day of death were averaged at 75.7 µg m-3 (control day: 75.6 µg m-3), with an interquartile range (IQR) of 65.2 µg m-3. Per IQR rise in PM2.5, EC, OC, NO3-, SO42-, and NH4+ at lag-04 day was associated with an increase in non-accidental mortality of 2.4% (95% confidence interval, (1.0-3.7), 1.7% (0.8-2.7), 2.9% (1.6-4.3), 2.1% (0.4-3.9), 1.0% (0.2-1.9), and 1.6% (0.3-2.9), respectively. Both PM2.5 mass and its constituents were strongly associated with elevated cardiovascular mortality risks, but only PM2.5, EC, and OC were positively associated with respiratory mortality at lag-3 day. PM2.5 mass and its constituents associated effects on mortality varied among sex- and age-specific subpopulations. Differences in the seasonal pattern of associations exist among PM2.5 constituents, with stronger effects related to EC and NO3- in warm months but SO42- and NH4+ in cold months. Short-term exposures to PM2.5 compositions were positively associated with increased risks of mortality, particularly those constituents from combustion-related sources.
Collapse
Affiliation(s)
- Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Junzhe Bao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yang Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
28
|
Clemmensen PJ, Brix N, Schullehner J, Gaml-Sørensen A, Toft G, Tøttenborg SS, Ebdrup NH, Hougaard KS, Hansen B, Sigsgaard T, Kolstad HA, Bonde JPE, Ramlau-Hansen CH. Nitrate in Maternal Drinking Water during Pregnancy and Measures of Male Fecundity in Adult Sons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14428. [PMID: 36361307 PMCID: PMC9656746 DOI: 10.3390/ijerph192114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Animal studies indicate deleterious effects of nitrate exposure on fecundity, but effects in humans are unknown, both for the prenatal and postnatal periods. We aimed to investigate if exposure to nitrate in maternal drinking water during the sensitive period of fetal life is associated with measures of fecundity in the adult sons. In a sub-analysis, the potential effects of nitrate exposure in adulthood were investigated. This cohort included 985 young adult men enrolled in The Fetal Programming of Semen Quality Cohort (FEPOS). Semen characteristics, testes volume and reproductive hormones were analyzed in relation to nitrate concentration in maternal drinking water, using a negative binomial regression model. The nitrate concentration in drinking water was obtained from monitoring data from Danish waterworks that were linked with the mothers' residential address during pregnancy. The median nitrate concentration in maternal drinking water was 2 mg/L. At these low exposure levels, which are far below the World Health Organization's (WHO) guideline value of 50 mg/L, we did not find indications of harmful effects of nitrate on the investigated measures of male fecundity.
Collapse
Affiliation(s)
| | - Nis Brix
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jörg Schullehner
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Geological Survey of Denmark and Greenland, 8000 Aarhus, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, 8000 Aarhus, Denmark
| | | | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital—Bispebjerg and Frederiksberg Hospital, 2400 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark
| | | | - Karin Sørig Hougaard
- Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Birgitte Hansen
- Geological Survey of Denmark and Greenland, 8000 Aarhus, Denmark
| | - Torben Sigsgaard
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, 8000 Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University (CIRRAU), 8000 Aarhus, Denmark
| | - Henrik Albert Kolstad
- Department of Occupational Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Jens Peter Ellekilde Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital—Bispebjerg and Frederiksberg Hospital, 2400 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark
| | | |
Collapse
|
29
|
Yang C, Wang L, Chen S, Li Y, Huang S, Zeng Q, Chen Y. Nitrate transport velocity data in the global unsaturated zones. Sci Data 2022; 9:613. [PMID: 36220857 PMCID: PMC9553929 DOI: 10.1038/s41597-022-01621-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
Nitrate pollution in groundwater, which is an international problem, threatens human health and the environment. It could take decades for nitrate to transport in the groundwater system. When understanding the impacts of this nitrate legacy on water quality, the nitrate transport velocity (vN) in the unsaturated zone (USZ) is of great significance. Although some local USZ vN data measured or simulated are available, there has been no such a dataset at the global scale. Here, we present a Global-scale unsaturated zone Nitrate transport Velocity dataset (GNV) generated from a Nitrate Time Bomb (NTB) model using global permeability and porosity and global average annual groundwater recharge data. To evaluate GNV, a baseline dataset of USZ vN was created using locally measured data and global lithological data. The results show that 94.50% of GNV match the baseline USZ vN dataset. This dataset will largely contribute to research advancement in the nitrate legacy in the groundwater system, provide evidence for managing nitrate water pollution, and promote international and interdisciplinary collaborations.
Collapse
Affiliation(s)
- Congyu Yang
- College of Geo-exploration Science and Technology, Jilin University, Changchun, China
| | - Lei Wang
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, United Kingdom.
| | - Shengbo Chen
- College of Geo-exploration Science and Technology, Jilin University, Changchun, China.
| | - Yuanyin Li
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, United Kingdom
- Department of Geography, Durham University, Durham, DH1 3LE, United Kingdom
| | - Shuang Huang
- MCC Smart City (Wuhan) Engineering Technology CO., Ltd, Wuhan, China
| | - Qinghong Zeng
- College of Geo-exploration Science and Technology, Jilin University, Changchun, China
| | - Yanbing Chen
- College of Geo-exploration Science and Technology, Jilin University, Changchun, China
| |
Collapse
|
30
|
Ebdrup NH, Schullehner J, Knudsen UB, Liew Z, Thomsen AML, Lyngsø J, Bay B, Arendt LH, Clemmensen PJ, Sigsgaard T, Hansen B, Ramlau-Hansen CH. Drinking water nitrate and risk of pregnancy loss: a nationwide cohort study. Environ Health 2022; 21:87. [PMID: 36114546 PMCID: PMC9479399 DOI: 10.1186/s12940-022-00897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/01/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Nitrate contamination is seen in drinking water worldwide. Nitrate may pass the placental barrier. Despite suggestive evidence of fetal harm, the potential association between nitrate exposure from drinking water and pregnancy loss remains to be studied. We aimed to investigate if nitrate in drinking water was associated with the risk of pregnancy loss. METHODS We conducted a nationwide cohort study of 100,410 pregnancies (enrolled around gestational week 11) in the Danish National Birth Cohort (DNBC) during 1996-2002. Spontaneous pregnancy losses before gestational week 22 were ascertained from the Danish National Patient Registry and DNBC pregnancy interviews. Using the national drinking water quality-monitoring database Jupiter, we estimated the individual and time-specific nitrate exposure by linking geocoded maternal residential addresses with water supply areas. The nitrate exposure was analyzed in spline models using a log-transformed continuous level or classified into five categories. We used Cox proportional hazards models to estimate associations between nitrate and pregnancy loss and used gestational age (days) as the time scale, adjusting for demographic, health, and lifestyle variables. RESULTS No consistent associations were found when investigating the exposure as a categorical variable and null findings were also found in trimester specific analyses. In the spline model using the continuous exposure variable, a modestly increased hazard of pregnancy loss was observed for the first trimester at nitrate exposures between 1 and 10 mg/L, with the highest. adjusted hazard ratio at 5 mg/L of nitrate of 1.16 (95% CI: 1.01, 1.34). This trend was attenuated in the higher exposure ranges. CONCLUSION No association was seen between drinking water nitrate and the risk of pregnancy loss when investigating the exposure as a categorical variable. When we modelled the exposure as a continuous variable, a dose-dependent association was found between drinking water nitrate exposure in the first trimester and the risk of pregnancy loss. Very early pregnancy losses were not considered in this study, and whether survival bias influenced the results should be further explored.
Collapse
Affiliation(s)
- Ninna Hinchely Ebdrup
- Department of Obstetrics and Gynecology, Horsens Fertility Clinic, Horsens, Denmark.
- Department of Public Health, Aarhus University, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Jörg Schullehner
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Geological Survey of Denmark and Greenland, Aarhus, Denmark
| | - Ulla Breth Knudsen
- Department of Obstetrics and Gynecology, Horsens Fertility Clinic, Horsens, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Anne Marie Ladehoff Thomsen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- DEFACTUM - Public Health & Health Services Research, Central Denmark Region, Aarhus, Denmark
| | - Julie Lyngsø
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjørn Bay
- Department of Obstetrics and Gynecology, Horsens Fertility Clinic, Horsens, Denmark
- Maigaard Fertility Clinic, Aarhus, Denmark
| | - Linn Håkonsen Arendt
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research Aarhus University, Aarhus, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
31
|
Ruthsatz K, Bartels F, Stützer D, Eterovick PC. Timing of parental breeding shapes sensitivity to nitrate pollution in the common frog Rana temporaria. J Therm Biol 2022; 108:103296. [DOI: 10.1016/j.jtherbio.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|
32
|
Li H, Li J, Shi L, Zhu Y, Tian F, Shi M, Li Q, Ge RS. Bisphenol F blocks Leydig cell maturation and steroidogenesis in pubertal male rats through suppressing androgen receptor signaling and activating G-protein coupled estrogen receptor 1 (GPER1) signaling. Food Chem Toxicol 2022; 167:113268. [PMID: 35803362 DOI: 10.1016/j.fct.2022.113268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
Bisphenol F (BPF) is a new analog of bisphenol A (BPA). BPA has deleterious effects on the male reproductive system, but the effect of BPF has not been studied in detail. In this study we focus on the effect of BPF on Leydig cell maturation. Male Sprague-Dawley rats were gavaged with 0, 1, 10, or 100 mg/kg BPF from postnatal days 35-56. BPF significantly reduced serum testosterone levels and sperm count in cauda epididymis at dose ≥1 mg/kg. It significantly down-regulated the expression of steroidogenic enzymes, while increasing FSHR and SOX9 levels at 10 and 100 mg/kg. Further studies showed that BPF reduced NR3C4 expression in Leydig and Sertoli cells without affecting its levels in peritubular myoid cells. BPF markedly increased GPER1 in Leydig cells at 100 mg/kg, and it significantly reduced SIRT1 and PGC1α levels in the testes at 100 mg/kg. BPF significantly inhibited testosterone production by immature Leydig cells at 50 μM after 24 h of treatment, which was completely reversed by NR3C4 agonist 7α-methyl-19-nortestosterone and partially reversed by GPER1 antagonist G15 not by ESR1 antagonist ICI 182,780. In conclusion, BPF negatively affects Leydig cell maturation in pubertal male rats through NR3C4 antagonism and GPER1 agonism.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Jingjing Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lei Shi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Fuhong Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Mengna Shi
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiyao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
33
|
Qiu J, Craven CB, Wawryk NJP, Ouyang G, Li XF. Unique On-Site Spinning Sampling of Highly Water-Soluble Organics Using Functionalized Monolithic Sorbents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8094-8102. [PMID: 35622959 PMCID: PMC9228052 DOI: 10.1021/acs.est.2c01202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Water utilities encounter unpredictable odor issues that cannot be explained by routine water parameters during spring runoff, even in the summer and fall. Highly water-soluble organics (e.g., amino acids and saccharides) have been reported to form odorous disinfection byproducts during disinfection, but the lack of simple and practical on-site sampling techniques hampers their routine monitoring at trace levels in source water. Therefore, we have created two functionalized nested-in-sponge silica monoliths (NiS-SMs) using a one-pot synthesis method and demonstrated their application for extracting highly soluble organics in water. The NiS-SMs functionalized with the sulfonic group and phenylboronic moiety selectively extracted amino acids and monosaccharides, respectively. We further developed a spinning sampling technique using the composites and evaluated its robust performance under varying water conditions. The spinning sampling coupled to high-performance liquid chromatography tandem mass spectrometry analysis provided limits of detection for amino acids at 0.038-0.092 ng L-1 and monosaccharides at 0.036-0.14 ng L-1. Using the pre-equilibrium sampling-rate calibration, we demonstrated the applicability of the spinning sampling technique for on-site sampling and monitoring of amino acids and monosaccharides in river water. The new composite materials and rapid on-site sampling technique are unique and efficient tools for monitoring highly soluble organics in water sources.
Collapse
Affiliation(s)
- Junlang Qiu
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- School
of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Caley B. Craven
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Nicholas J. P. Wawryk
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Gangfeng Ouyang
- School
of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
34
|
Jiang G, Ouyang J, Li X, Liu Z, lu: X, Jiang Y, Zhao Y, Dong F. 稳定化缺电子Cuδ+活性点位电催化还原水体硝氮研究. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Shitu A, Liu G, Muhammad AI, Zhang Y, Tadda MA, Qi W, Liu D, Ye Z, Zhu S. Recent advances in application of moving bed bioreactors for wastewater treatment from recirculating aquaculture systems: A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Ebdrup NH, Knudsen UB, Schullehner J, Arendt LH, Liew Z, Lyngsø J, Bay B, Clemmensen PJ, Sigsgaard T, Hansen B, Ramlau-Hansen CH. Nitrate in Drinking Water and Time to Pregnancy or Medically Assisted Reproduction in Women and Men: A Nationwide Cohort Study in the Danish National Birth Cohort. Clin Epidemiol 2022; 14:475-487. [PMID: 35444467 PMCID: PMC9014114 DOI: 10.2147/clep.s354926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose No studies have investigated if drinking water nitrate affects human fecundity. Experimental studies point at detrimental effects on fetal development and on female and male reproduction. This cohort study aimed to explore if female and male preconception and long-term exposure to nitrate in drinking water was associated with fecundability measured as time to pregnancy (TTP) or use of medically assisted reproduction (MAR) treatment. Methods The study population consisted of pregnant women recruited in their first trimester in 1996–2002 to the Danish National Birth Cohort. Preconception drinking-water nitrate exposure was estimated for the pregnant women (89,109 pregnancies), and long-term drinking water nitrate exposure was estimated from adolescence to conception for the pregnant women (77,474 pregnancies) and their male partners (62,000 pregnancies) by linkage to the national drinking water quality-monitoring database Jupiter. Difference in risk of TTP >12 months or use of MAR treatment between five exposure categories and log-transformed continuous models of preconception and long-term nitrate in drinking water were estimated. Binominal regression models for risk ratios (RR) were adjusted for age, occupation, education, population density, and lifestyle factors. Results Nitrate in drinking water (median preconception exposure: 1.9 mg/L; median long-term exposure: 3.3 mg/L) was not associated with TTP >12 months or use of MAR treatment, neither in the categorical nor in the continuous models. Conclusion We found no association between preconception or long-term exposure to drinking water nitrate and fecundability.
Collapse
Affiliation(s)
- Ninna Hinchely Ebdrup
- Department of Obstetrics and Gynecology, Horsens Regional Hospital, Horsens, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Correspondence: Ninna Hinchely Ebdrup, Department of Obstetrics and Gynecology, Horsens Regional Hospital, Regionshospitalet Horsens, Sundvej 30, Horsens, 8700, Denmark, Tel +4528472111, Email
| | - Ulla Breth Knudsen
- Department of Obstetrics and Gynecology, Horsens Regional Hospital, Horsens, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jörg Schullehner
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Geological Survey of Denmark and Greenland, Aarhus, Denmark
| | - Linn Håkonsen Arendt
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Julie Lyngsø
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjørn Bay
- Department of Obstetrics and Gynecology, Horsens Regional Hospital, Horsens, Denmark
- Maigaard Fertility Clinic, Aarhus, Denmark
| | | | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research at Aarhus University, Aarhus, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
37
|
Subclinical Hypothyroidism in Families Due to Chronic Consumption of Nitrate-Contaminated Water in Rural Areas with Intensive Livestock and Agricultural Practices in Durango, Mexico. WATER 2022. [DOI: 10.3390/w14030282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitrate is a widely disseminated water pollutant and has been linked to health disorders, including hypothyroidism. Here, we evaluated the relationship between thyroid function and chronic exposure to nitrates in rural zone families, in addition to the genetic and autoimmune factors. Exposure and effect biomarkers, thyroid hormones, and autoantibodies of tiroperoxidase were measured, as well the presence of two FOXE1 polymorphisms (rs965513, rs1867277). Pearson’s correlation, principal component analysis, Kruskal–Wallis, and chi-squared tests were used for statistical analysis. A total of 102 individuals were analyzed; 45% presented subclinical hypothyroidism, a negative correlation was observed between methemoglobin and the total T3 (r = −0.43, p = 0.001) and free T3 levels (r = −0.34, p = 0.001), as well as between TSH and the free T4 (r = −0.41, p = 0.0001) and total T4 (r = −0.36, p = 0.0001). A total of 15.7% had positive antithyroid ab-TPO, while the polymorphic genotype (AA) represented only 3% (rs965513) and 4% (rs1867277) among subjects with subclinical hypothyroidism. The high frequency of subclinical hypothyroidism in the population under study could be related, mainly, to chronic exposure through the consumption of nitrate-contaminated water.
Collapse
|
38
|
Barber LB, Faunce KE, Bertolatus DW, Hladik ML, Jasmann JR, Keefe SH, Kolpin DW, Meyer MT, Rapp JL, Roth DA, Vajda AM. Watershed-Scale Risk to Aquatic Organisms from Complex Chemical Mixtures in the Shenandoah River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:845-861. [PMID: 34978800 DOI: 10.1021/acs.est.1c04045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
River waters contain complex chemical mixtures derived from natural and anthropogenic sources. Aquatic organisms are exposed to the entire chemical composition of the water, resulting in potential effects at the organismal through ecosystem level. This study applied a holistic approach to assess landscape, hydrological, chemical, and biological variables. On-site mobile laboratory experiments were conducted to evaluate biological effects of exposure to chemical mixtures in the Shenandoah River Watershed. A suite of 534 inorganic and organic constituents were analyzed, of which 273 were detected. A watershed-scale accumulated wastewater model was developed to predict environmental concentrations of chemicals derived from wastewater treatment plants (WWTPs) to assess potential aquatic organism exposure for all stream reaches in the watershed. Measured and modeled concentrations generally were within a factor of 2. Ecotoxicological effects from exposure to individual components of the chemical mixture were evaluated using risk quotients (RQs) based on measured or predicted environmental concentrations and no effect concentrations or chronic toxicity threshold values. Seventy-two percent of the compounds had RQ values <0.1, indicating limited risk from individual chemicals. However, when individual RQs were aggregated into a risk index, most stream reaches receiving WWTP effluent posed potential risk to aquatic organisms from exposure to complex chemical mixtures.
Collapse
Affiliation(s)
- Larry B Barber
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Kaycee E Faunce
- U.S. Geological Survey, 1730 East Parham Road, Richmond, Virginia 23228, United States
| | - David W Bertolatus
- University of Colorado Denver, 1151 Arapahoe Street, SI 2071, Denver, Colorado 80204, United States
| | - Michelle L Hladik
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Jeramy R Jasmann
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Steffanie H Keefe
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Dana W Kolpin
- U.S. Geological Survey, 400 South Clinton Street, Iowa City, Iowa 52240, United States
| | - Michael T Meyer
- U.S. Geological Survey, 4821 Quail Crest Place, Lawrence, Kansas 66049, United States
| | - Jennifer L Rapp
- U.S. Geological Survey, 1730 East Parham Road, Richmond, Virginia 23228, United States
| | - David A Roth
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Alan M Vajda
- University of Colorado Denver, 1151 Arapahoe Street, SI 2071, Denver, Colorado 80204, United States
| |
Collapse
|
39
|
Zhang Y, Liu L, Zhang L, Yu C, Wang X, Shi Z, Hu J, Zhang Y. Assessing short-term impacts of PM 2.5 constituents on cardiorespiratory hospitalizations: Multi-city evidence from China. Int J Hyg Environ Health 2021; 240:113912. [PMID: 34968974 DOI: 10.1016/j.ijheh.2021.113912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Apart from concentrations of particulate mass, PM2.5-associated effects on health may largely depend on its chemical components. However, little is known regarding the underlying effects of specific PM2.5 constituents. The study included nearly 1 million hospital admissions from five Chinese cities during 2015-2017. Based on the modified Community Multiscale Air Quality model, our study simulated daily concentrations of PM2.5 and five main components. We used a time-stratified case-crossover design with conditional logistic regression models to estimate short-term effects of PM2.5 constituents on cause-specific hospital admissions. Per interquartile range increase in exposure to PM2.5, elemental carbon, organic carbon, nitrate, sulfate and ammonium at lag 04-day was related to an excess risk (ER%) for non-accidental admissions of 1.6% [95% confidence interval: 1.1-2.0], 1.9% [1.3-2.4], 1.0% [0.5-1.6], 1.2% [0.4-2.0], 1.2% [0.9-1.5] and 1.4% [0.9-1.9], respectively. Great heterogeneities of constituents-admission associations existed in diverse causes and constituents. This study provided multi-center high-quality evidence that hospital admissions, particularly those for ischemic heart disease (ER% ranging from 2.3 to 5.4% at lag 04-day) and pneumonia (1.9-5.1% at lag 4-day), could be triggered by short-term exposures to ambient PM2.5 constituents. Relatively stronger constituents-admission associations were found among females for respiratory causes and the elderly for cardiovascular causes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Linjiong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Liansheng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chuanhua Yu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China; Institute of Global Health, Wuhan University, Wuhan, 430071, China
| | - Xuyan Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
40
|
Li L, Tan L, Yang W, Xu X, Shen Y, Li J. Conjoint applications of meta-analysis and bioinformatic data toward understanding the effect of nitrate on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148645. [PMID: 34198083 DOI: 10.1016/j.scitotenv.2021.148645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
The extensively accumulation of nitrate in different water resources is currently regarded as one of the most predominant threats facing aquatic organisms on worldwide scale. In recent years, a growing body of evidences have been attempting to uncover the influences of nitrate on fish growth and health, thereby evaluating its environment security. However, the systematic assessment and intrinsic mechanism of such influences are apparently devoid. Hence, this investigation employed systematic analysis, meta-analysis and bioinformatic analysis to evaluate the nitrate biotoxicity. We first speculated two levels of nitrate concentration according to forty-four published bibliographies. Systematic analysis indicated that the broad variations of fish sensitivity to chronic and acute nitrate exposures were found in juvenile and larval stage, respectively, comparing to egg. Meta-analysis further revealed that survival rate, CF and SGR were significantly improved in low nitrate concentration during chronic exposure. Such improvements were reflected by Total mean differences (TMD) and 95% CIs (Confidence Intervals): Survival rate (-4.06 [-7.67, -0.45]), Fulton's condition factor (CF) (-0.03 [-0.03, -0.02]) and Specific growth rate (SGR) (-0.10 [-0.16, -0.04]). To trace the impact, the alternations of molecular expression and histology in brain, gill, liver, intestine, and blood suggested that the chronic and acute nitrate exposures could result in abnormal tissue structures and molecular dynamics. Moreover, omics analysis via integrating intestinal microbiome (microbial composition; %) and liver transcriptome (Gene Ontology: biological processes) revealed that the low concentration exposure induced a weakly immune response in fish liver and it matched to the intestinal immune response. Overall, current study has filled the gaps in the field of nitrate toxicity. It could also provide a novel insight for the evaluation of pollutant toxicity on aquatic species.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Tan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
41
|
Lu Y, Kronzucker HJ, Shi W. Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117587. [PMID: 34182390 DOI: 10.1016/j.envpol.2021.117587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Rhizospheric microorganisms such as denitrifying bacteria are able to affect 'rhizobioaugmention' in aquatic plants and can help boost wastewater purification by benefiting plant growth, but little is known about their effects on the production of plant root exudates, and how such exudates may affect microorganismal nitrogen removal. Here, we assess the effects of the rhizospheric Pseudomonas inoculant strain RWX31 on the root exudate profile of the duckweed Spirodela polyrrhiza, using gas chromatography/mass spectrometry. Compared to untreated plants, inoculation with RWX31 specifically induced the exudation of two sterols, stigmasterol and β-sitosterol. An authentic standard assay revealed that stigmasterol significantly promoted nitrogen removal and biofilm formation by the denitrifying bacterial strain RWX31, whereas β-sitosterol had no effect. Assays for denitrifying enzyme activity were conducted to show that stigmasterol stimulated nitrogen removal by targeting nitrite reductase in bacteria. Enhanced N removal from water by stigmasterol, and a synergistic stimulatory effect with RWX31, was observed in open duckweed cultivation systems. We suggest that this is linked to a modulation of community composition of nirS- and nirK-type denitrifying bacteria in the rhizosphere, with a higher abundance of Bosea, Rhizobium, and Brucella, and a lower abundance of Rubrivivax. Our findings provide important new insights into the interaction of duckweed with the rhizospheric bacterial strain RWX31 and their involvement in the aquatic N cycle and offer a new path toward more effective bio-formulations for the purification of N-polluted waters.
Collapse
Affiliation(s)
- Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
42
|
Li B, Yang J, Dong H, Li M, Cai D, Yang Z, Zhang C, Wang H, Hu J, Bergmann S, Lin G, Wang B. PM 2.5 constituents and mortality from a spectrum of causes in Guangzhou, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112498. [PMID: 34265527 DOI: 10.1016/j.ecoenv.2021.112498] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
As the major constituents of PM2.5, carbonaceous constituents and inorganic ions have attracted emerging attentions on their health risks, particularly on cardiorespiratory diseases. However, evidences on the risks of PM2.5 constituents on other diseases (eg. nervous disease, genitourinary disease, neoplasms and endocrine disease) remain scarce. In our study, we firstly calculated residuals of PM2.5 constituents regressed on PM2.5 to remove the confounding effect of PM2.5. Then, generalized additive model (GAM) was used to assess impacts of residuals of PM2.5 constituents on mortality from 36 diseases (10 broad categories and 26 subcategories) during 2011-2015 in Guangzhou, China. Results of constituent-residual models showed that only EC, OC and NO3- were significantly associated with all-cause mortality, with per IQR change in corresponding constituent residuals related to percentage changes of 1.69% (95% CI: 0.42, 2.97), 1.94% (95% CI: 0.37, 3.54) and 2.59% (95% CI: 1.02, 4.18) at lag 03 days. All these pollutants were significantly associated with elevated mortality risk of cardiovascular disease, but only EC was significantly associated with respiratory mortality, and NO3- with endocrine disease and neoplasm. For more specific causes, the highest effect estimates of EC and NO3-were both observed on mortality from other form of heart disease, and OC on intentional self-harm, with estimates of 11.45% (95% CI: 2.74, 20.91), 12.59% (95% CI: 1.41, 25.02) and 18.01% (95% CI: 2.14, 36.36), respectively. Our findings highlighted that stricter emission control measures are still warranted to reduce air pollution level and protect the public health.
Collapse
Affiliation(s)
- Bixia Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Jun Yang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Hang Dong
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, China
| | - Mengmeng Li
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongjie Cai
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chunlin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Stéphanie Bergmann
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Guozhen Lin
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| |
Collapse
|
43
|
Li Y, Ma J, Waite TD, Hoffmann MR, Wang Z. Development of a Mechanically Flexible 2D-MXene Membrane Cathode for Selective Electrochemical Reduction of Nitrate to N 2: Mechanisms and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10695-10703. [PMID: 34132087 DOI: 10.1021/acs.est.1c00264] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The contamination of water resources by nitrate is a major problem. Herein, we report a mechanically flexible 2D-MXene (Ti3C2Tx) membrane with multilayered nanofluidic channels for a selective electrochemical reduction of nitrate to nitrogen gas (N2). At a low applied potential of -0.8 V (vs Ag/AgCl), the MXene electrochemical membrane was found to exhibit high selectivity for NO3- reduction to N2 (82.8%) due to a relatively low desorption energy barrier for the release of adsorbed N2 (*N2) compared to that for the adsorbed NH3 (*NH3) based on density functional theory (DFT) calculations. Long-term use of the MXene membrane for treating 10 mg-NO3-N L-1 in water was found to have a high faradic efficiency of 72.6% for NO3- reduction to N2 at a very low electrical cost of 0.28 kWh m-3. Results of theoretical calculations and experimental results showed that defects on the MXene nanosheet surfaces played an important role in achieving high activity, primarily at the low-coordinated Ti sites. Water flowing through the MXene nanosheets facilitated the mass transfer of nitrate onto the low-coordinated Ti sites with this enhancement of particular importance under cathodic polarization of the MXene membrane. This study provides insight into the tailoring of nanoengineered materials for practical application in water treatment and environmental remediation.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jinxing Ma
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael R Hoffmann
- California Institute of Technology, The Linde-Robinson Laboratory, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
44
|
Ghazisaeidi B, Sarvghadi F, Ghasemi A, Tohidi M, Azizi F, Amouzegar A. Association Between Serum Nitric Oxide Level and Changes in Thyroid Function Test in a Population-based Study: Tehran Thyroid Study Participants (TTS). Int J Endocrinol Metab 2021; 19:e109214. [PMID: 34567136 PMCID: PMC8453649 DOI: 10.5812/ijem.109214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/20/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) plays a key role in thyroid function regulation through the inhibition of iodide (I) uptake at the thyroidal sodium-iodide symporter (NIS) and impacts on the thyroid vascularity and blood flow. OBJECTIVES This study aimed to evaluate the association between serum NO metabolites (NOx) and thyroid-stimulating hormone (TSH), free thyroxin (FT4), and anti-thyroid peroxidase (TPOAb) changes. Also, it aimed at evaluating the correlation between serum NOx and the incidence of clinical hypothyroidism, characterized by elevated TSH level and decreased FT4 concentration, and subclinical hypothyroidism, characterized by mildly elevated TSH level despite FT4 concentration within the normal range, over three years of follow-up. METHODS This study included 1,137 participants of the Tehran Thyroid study (TTS), aged > 20 years old, for whom data on serum TSH, FT4, and TPOAb in the third and fourth phases, and serum NOx in the third phase were available. Changes in TSH (ΔTSH), FT4 (ΔFT4), and TPOAb (ΔTPO) between the third and fourth phases were calculated, and the associations between serum NOx and ΔTSH, ΔFT4, and ΔTPOAb were assessed after multivariable adjustment using linear regression analysis. RESULTS No significant association was found between serum NOx and ΔTSH, ΔFT4, and ΔTPOAb after the multivariable adjustment; neither was any observed in TPOAb split groups after multivariable adjustment. No significant association was found between serum NOx tertiles and clinical and subclinical hypothyroidism incidence in the fourth phase of TTS. CONCLUSIONS There was no association between serum NOx levels and changes in TSH, FT4, and TPOAb and clinical and subclinical hypothyroidism incidence.
Collapse
Affiliation(s)
- Behnaz Ghazisaeidi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Sarvghadi
- School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Endocrine Research Center, Research Institute for Endocrine Sciences, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Fang T, Li H, Bo G, Lin K, Yuan D, Ma J. On-site detection of nitrate plus nitrite in natural water samples using smartphone-based detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Sherris AR, Baiocchi M, Fendorf S, Luby SP, Yang W, Shaw GM. Nitrate in Drinking Water during Pregnancy and Spontaneous Preterm Birth: A Retrospective Within-Mother Analysis in California. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57001. [PMID: 33949893 PMCID: PMC8098122 DOI: 10.1289/ehp8205] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Nitrate is a widespread groundwater contaminant and a leading cause of drinking water quality violations in California. Associations between nitrate exposure and select adverse birth outcomes have been suggested, but few studies have examined gestational exposures to nitrate and risk of preterm birth (before 37 wk gestation). OBJECTIVE We investigated the association between elevated nitrate in drinking water and spontaneous preterm birth through a within-mother retrospective cohort study of births in California. METHODS We acquired over 6 million birth certificate records linked with Office of Statewide Health Planning and Development hospital discharge data for California births from 2000-2011. We used public water system monitoring records to estimate nitrate concentrations in drinking water for each woman's residence during gestation. After exclusions, we constructed a sample of 1,443,318 consecutive sibling births in order to conduct a within-mother analysis. We used separate conditional logistic regression models to estimate the odds of preterm birth at 20-31 and 32-36 wk, respectively, among women whose nitrate exposure changed between consecutive pregnancies. RESULTS Spontaneous preterm birth at 20-31 wk was increased in association with tap water nitrate concentrations during pregnancy of 5 to <10mg/L [odds ratio (OR)=1.47; 95% confidence interval (CI): 1.29, 1.67] and ≥10mg/L (OR=2.52; 95% CI: 1.49, 4.26) compared with <5mg/L (as nitrogen). Corresponding estimates for spontaneous preterm birth at 32-36 wk were positive but close to the null for 5 to <10mg/L nitrate (OR=1.08; 95% CI: 1.02, 1.15) and for ≥10mg/L nitrate (OR=1.05; 95% CI: 0.85, 1.31) vs. <5mg/L nitrate. Our findings were similar in several secondary and sensitivity analyses, including in a conventional individual-level design. DISCUSSION The results suggest that nitrate in drinking water is associated with increased odds of spontaneous preterm birth. Notably, we estimated modestly increased odds associated with tap water nitrate concentrations of 5 to <10mg/L (below the federal drinking water standard of 10mg/L) relative to <5mg/L. https://doi.org/10.1289/EHP8205.
Collapse
Affiliation(s)
- Allison R. Sherris
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California, USA
| | - Michael Baiocchi
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Stephen P. Luby
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University, Stanford, California, USA
| |
Collapse
|
47
|
Rashid H, Alqahtani SS, Alshahrani S. Diet: A Source of Endocrine Disruptors. Endocr Metab Immune Disord Drug Targets 2021; 20:633-645. [PMID: 31642798 DOI: 10.2174/1871530319666191022100141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Food is indispensable for human life and determines the health and wellbeing of the consumer. As food is the source of energy for humans, it also emerges as one of the most important sources of exposure to deleterious chemicals both natural and synthetic. The food exposed chemicals cause a number of detrimental health effects in humans, with endocrine disruption being of serious concern amongst these effects. Such chemicals disrupting the health of endocrine system are known as endocrine-disrupting chemicals (EDCs). The food exposed EDCs need to be identified and classified to effectuate a cautious consumption of food by all and especially by vulnerable groups. AIM The aim of the present review was to discuss food as a source of exposure to common endocrine disruptors in humans. This review presents the occurrence and levels of some of the critical endocrine disruptors exposed through frequently consumed diets. METHODS The major source of data was PubMed, besides other relevant publications. The focus was laid on data from the last five years, however significant earlier data was also considered. CONCLUSION The food as a source of endocrine disruptors to humans cannot be neglected. It is highly imperative for the consumer to recognize food as a source of EDCs and make informed choices in the consumption of food items.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saad S Alqahtani
- Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
48
|
Horak I, Horn S, Pieters R. Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115718. [PMID: 33035912 PMCID: PMC7513804 DOI: 10.1016/j.envpol.2020.115718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 05/28/2023]
Abstract
South Africa is the largest agrochemical user in sub-Saharan Africa, with over 3000 registered pesticide products. Although they reduce crop losses, these chemicals reach non-target aquatic environments via leaching, spray drift or run-off. In this review, attention is paid to legacy and current-use pesticides reported in literature for the freshwater environment of South Africa and to the extent these are linked to endocrine disruption. Although banned, residues of many legacy organochlorine pesticides (endosulfan and dichlorodiphenyltrichloroethane (DDT)) are still detected in South African watercourses and wildlife. Several current-use pesticides (triazine herbicides, glyphosate-based herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos) have also been reported. Agrochemicals can interfere with normal hormone function of non-target organism leading to various endocrine disrupting (ED) effects: intersex, reduced spermatogenesis, asymmetric urogenital papillae, testicular lesions and infertile eggs. Although studies investigating the occurrence of agrochemicals and/or ED effects in freshwater aquatic environments in South Africa have increased, few studies determined both the levels of agricultural pesticides present and associated ED effects. The majority of studies conducted are either laboratory-based employing in vitro or in vivo bioassays to determine ED effects of agrochemicals or studies that investigate environmental concentrations of pesticides. However, a combined approach of bioassays and chemical screening will provide a more comprehensive overview of agrochemical pollution of water systems in South Africa and the risks associated with long-term chronic exposure.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
49
|
Xie L, Zhang Y, Gao J, Li X, Wang H. Nitrate exposure induces intestinal microbiota dysbiosis and metabolism disorder in Bufo gargarizans tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114712. [PMID: 32402709 DOI: 10.1016/j.envpol.2020.114712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Excess nitrate has been reported to be associated with many adverse effects in humans and experimental animals. However, there is a paucity of information of the effects of nitrate on intestinal microbial community. In this study, the effects of nitrate on development, intestinal microbial community, and metabolites of Bufo gargarizans tadpoles were investigated. B. gargarizans were exposed to control, 5, 20 and 100 mg/L nitrate-nitrogen (NO3-N) from eggs to Gosner stage 38. Our data showed that the body size of tadpoles significantly decreased in the 20 and 100 mg/L NO3-N treatment group when compared to control tadpoles. Exposure to 20 and 100 mg/L NO3-N also caused indistinct cell boundaries and nuclear pyknosis of mucosal epithelial cells in intestine of tadpoles. In addition, exposure to NO3-N significantly altered the intestinal microbiota diversity and structure. The facultative anaerobic Proteobacteria occupy the niche of the obligately anaerobic Bacteroidetes and Fusobacteria under the pressure of NO3-N exposure. According to the results of functional prediction, NO3-N exposure affected the fatty acid metabolism pathway and amino acid metabolism pathway. The whole-body fatty acid components were found to be changed after exposure to 100 mg/L NO3-N. Therefore, we concluded that exposure to 20 and 100 mg/L NO3-N could induce deficient nutrient absorption in intestine, resulting in malnutrition of B. gargarizans tadpoles. High levels of NO3-N could also change the intestinal microbial communities, causing dysregulation of fatty acid metabolism and amino acid metabolism in B. gargarizans tadpoles.
Collapse
Affiliation(s)
- Lei Xie
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinshu Gao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
50
|
Trudeau VL, Thomson P, Zhang WS, Reynaud S, Navarro-Martin L, Langlois VS. Agrochemicals disrupt multiple endocrine axes in amphibians. Mol Cell Endocrinol 2020; 513:110861. [PMID: 32450283 DOI: 10.1016/j.mce.2020.110861] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Concern over global amphibian declines and possible links to agrochemical use has led to research on the endocrine disrupting actions of agrochemicals, such as fertilizers, fungicides, insecticides, acaricides, herbicides, metals, and mixtures. Amphibians, like other species, have to partition resources for body maintenance, growth, and reproduction. Recent studies suggest that metabolic impairments induced by endocrine disrupting chemicals, and more particularly agrichemicals, may disrupt physiological constraints associated with these limited resources and could cause deleterious effects on growth and reproduction. Metabolic disruption has hardly been considered for amphibian species following agrichemical exposure. As for metamorphosis, the key thyroid hormone-dependent developmental phase for amphibians, it can either be advanced or delayed by agrichemicals with consequences for juvenile and adult health and survival. While numerous agrichemicals affect anuran sexual development, including sex reversal and intersex in several species, little is known about the mechanisms involved in dysregulation of the sex differentiation processes. Adult anurans display stereotypical male mating calls and female phonotaxis responses leading to successful amplexus and spawning. These are hormone-dependent behaviours at the foundation of reproductive success. Therefore, male vocalizations are highly ecologically-relevant and may be a non-invasive low-cost method for the assessment of endocrine disruption at the population level. While it is clear that agrochemicals disrupt multiple endocrine systems in frogs, very little has been uncovered regarding the molecular and cellular mechanisms at the basis of these actions. This is surprising, given the importance of the frog models to our deep understanding of developmental biology and thyroid hormone action to understand human health. Several agrochemicals were found to have multiple endocrine effects at once (e.g., targeting both the thyroid and gonadal axes); therefore, the assessment of agrochemicals that alter cross-talk between hormonal systems must be further addressed. Given the diversity of life-history traits in Anura, Caudata, and the Gymnophiona, it is essential that studies on endocrine disruption expand to include the lesser known taxa. Research under ecologically-relevant conditions will also be paramount. Closer collaboration between molecular and cellular endocrinologists and ecotoxicologists and ecologists is thus recommended.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada.
| | - Paisley Thomson
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec), G1K 9A9, Canada.
| | - Wo Su Zhang
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada.
| | - Stéphane Reynaud
- Laboratoire d'Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, CS 40700, 38058, Grenoble cedex 9, France.
| | - Laia Navarro-Martin
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain.
| | - Valérie S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec), G1K 9A9, Canada.
| |
Collapse
|