1
|
Seller-Brison C, Brison A, Yu Y, Robinson SL, Fenner K. Adaptation towards catabolic biodegradation of trace organic contaminants in activated sludge. WATER RESEARCH 2024; 266:122431. [PMID: 39298898 DOI: 10.1016/j.watres.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Trace organic contaminants (TrOCs) are omnipresent in wastewater treatment plants (WWTPs), yet, their removal during wastewater treatment is oftentimes incomplete and underlying biotransformation mechanisms are not fully understood. In this study, we elucidate how different factors, including pre-exposure levels and duration, influence microbial adaptation towards catabolic TrOC biodegradation and its potential role in biological wastewater treatment. Four sequencing batch reactors (SBRs) were operated in parallel in three succeeding phases, adding and removing a selection of 26 TrOCs at different concentration levels. After each phase of SBR operation, a series of batch experiments was conducted to monitor biotransformation kinetics of those same TrOCs across various spike concentrations. For half of our test TrOCs, we detected increased biotransformation in sludge pre-exposed to TrOC concentrations ≥5 µg L-1 over a 30-day period, with most significant differences observed for the insect repellent DEET and the artificial sweetener saccharin. Accordingly, 16S rRNA amplicon sequencing revealed enrichment of taxa that have previously been linked to catabolic biodegradation of several test TrOCs, e.g., Bosea sp. and Shinella sp. for acesulfame degradation, and Pseudomonas sp. for caffeine, cyclamate, DEET, metformin, paracetamol, and isoproturon degradation. We further conducted shotgun metagenomics to query for gene products previously reported to be involved in the TrOCs' biodegradation pathways. In the future, directed microbial adaptation may be a solution to improve bioremediation of TrOCs in contaminated environments or in WWTPs.
Collapse
Affiliation(s)
- Carolin Seller-Brison
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
| | - Antoine Brison
- Department of Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Yaochun Yu
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland; Department of Chemistry, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
2
|
Gallego S, Sungthong R, Guyot B, Saphy A, Devers-Lamrani M, Martin-Laurent F, Imfeld G. Tracking atrazine degradation in soil combining 14C-mineralisation assays and compound-specific isotope analysis. CHEMOSPHERE 2024; 363:142981. [PMID: 39089341 DOI: 10.1016/j.chemosphere.2024.142981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
The quantification of pesticide dissipation in agricultural soil is challenging. In this study, we investigated atrazine biodegradation in both liquid and soil experiments bioaugmented with distinct atrazine-degrading bacterial isolates. This was achieved by combining 14C-mineralisation assays and compound-specific isotope analysis of atrazine. In liquid experiments, the three bacterial isolates mineralised over 40% of atrazine, demonstrating their potential for extensive degradation. However, the kinetics of mineralisation and degradation varied among the isolates. Carbon stable isotope fractionation was similar for Pseudomonas isolates ADPT34 and ADP2T0, but slightly higher for Chelatobacter SR27. In soil experiments, atrazine primarily degraded into atrazine-desethyl, while atrazine-hydroxy was mainly observed in experiments with SR27. Atrazine mineralisation in soil by ADPT34 and SR27 exceeded 40%, whereas ADP2T0 exhibited a mineralisation rate of 10%. In experiments with ADPT34 and SR27, atrazine 14C-residues were predominantly found in the non-extractable fraction, whereas they accumulated in the extractable fraction in the experiment with ADP2T0. Compound-specific isotope analysis (CSIA) relies on changes of stable isotope ratios and holds potential to evaluate herbicide transformation in soil. CSIA of atrazine indicated atrazine biodegradation in water and solvent extractable soil fractions and varied between 29% and 52%, depending on the bacterial isolate. Despite atrazine degradation in both soil fractions, a significant portion of atrazine residues persisted, depending on the bacterial degrader, initial cell concentration, and mineralisation and degradation rates. Overall, our approach can aid in quantifying atrazine persistence and degradation in soil, and in optimizing bioaugmentation strategies for remediating soils contaminated with persistent herbicides.
Collapse
Affiliation(s)
- Sara Gallego
- INRAE, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Agroécologie Dijon, France
| | - Rungroch Sungthong
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg, F-67084, France
| | - Benoît Guyot
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg, F-67084, France
| | - Adrien Saphy
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg, F-67084, France
| | - Marion Devers-Lamrani
- INRAE, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Agroécologie Dijon, France
| | - Fabrice Martin-Laurent
- INRAE, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Agroécologie Dijon, France
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg, F-67084, France.
| |
Collapse
|
3
|
Phillips E, Picott K, Kümmel S, Bulka O, Edwards E, Wang P, Gehre M, Nijenhuis I, Lollar BS. Vitamin B 12 as a source of variability in isotope effects for chloroform biotransformation by Dehalobacter. Microbiologyopen 2024; 13:e1433. [PMID: 39190020 PMCID: PMC11348799 DOI: 10.1002/mbo3.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Carbon and chlorine isotope effects for biotransformation of chloroform by different microbes show significant variability. Reductive dehalogenases (RDase) enzymes contain different cobamides, affecting substrate preferences, growth yields, and dechlorination rates and extent. We investigate the role of cobamide type on carbon and chlorine isotopic signals observed during reductive dechlorination of chloroform by the RDase CfrA. Microcosm experiments with two subcultures of a Dehalobacter-containing culture expressing CfrA-one with exogenous cobamide (Vitamin B12, B12+) and one without (to drive native cobamide production)-resulted in a markedly smaller carbon isotope enrichment factor (εC, bulk) for B12- (-22.1 ± 1.9‰) compared to B12+ (-26.8 ± 3.2‰). Both cultures exhibited significant chlorine isotope fractionation, and although a lower εCl, bulk was observed for B12- (-6.17 ± 0.72‰) compared to B12+ (-6.86 ± 0.77‰) cultures, these values are not statistically different. Importantly, dual-isotope plots produced identical slopes of ΛCl/C (ΛCl/C, B12+ = 3.41 ± 0.15, ΛCl/C, B12- = 3.39 ± 0.15), suggesting the same reaction mechanism is involved in both experiments, independent of the lower cobamide bases. A nonisotopically fractionating masking effect may explain the smaller fractionations observed for the B12- containing culture.
Collapse
Affiliation(s)
- Elizabeth Phillips
- Department of Earth SciencesUniversity of TorontoTorontoOntarioCanada
- Present address:
Inorganic Chemistry LaboratoryUniversity of OxfordOxfordUK
| | - Katherine Picott
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Steffen Kümmel
- Department of Technical BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany
| | - Olivia Bulka
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Elizabeth Edwards
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Po‐Hsiang Wang
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
- Present address:
Graduate Institute of Environmental EngineeringNational Central UniversityTaoyuan CityTaiwan
| | - Matthias Gehre
- Department of Technical BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany
| | - Ivonne Nijenhuis
- Department of Technical BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany
| | - Barbara S. Lollar
- Department of Earth SciencesUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Cheng Y, Zhang K, Huang K, Zhang H. Meta-Analysis and Machine Learning Models for Anaerobic Biodegradation Rates of Organic Contaminants in Sediments and Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12976-12988. [PMID: 38988037 DOI: 10.1021/acs.est.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Anaerobic biodegradation rates (half-lives) of organic chemicals are pivotal for environmental risk assessment and remediation. Traditional experimental evaluation, constrained by prolonged, oxygen-free conditions, struggles to keep pace with emerging contaminants. Data-driven machine learning (ML) models serve as promising complements. However, reported quantitative structure-biodegradation relationships or ML models on anaerobic biodegradation are mostly based on small data sets (<100 records) and neglect experimental conditions, usually achieving compromised predictions. This work aimed to develop ML models for predicting the biodegradation half-lives of organic pollutants in anaerobic environments (i.e., sediment/soil and sludge). Focusing on important features of both chemicals and experimental conditions, we first curated two data sets, one for sediment/soil (SED) and the other for sludge (SLD), covering 978 records for 206 chemicals from the literature, and then conducted a meta-analysis. Next, we built a binary classification (half-life of 30 days as the cutoff) model with an accuracy of 81% and a regression model with R2 of 0.56 for SED based on LightGBM (80% and 0.31 for SLD based on Extra tree, respectively). The model interpretations underscored the significance of experimental conditions (e.g., temperature and inoculum dosage), as evidenced by their high feature importance, and the models were found to correctly capture the effects of chemical substructures, for example, branched structures and aromatic rings prolonged half-lives while methyl group and ortho-substitution on rings shortened half-lives. The applicability domains of the models were also defined, resulting in reasonable prediction for the half-lives of 41% (SED) or 67% (SLD) of over 4000 persistent, bioaccumulative, and toxic chemicals. Overall, this study pioneers ML models for predicting the anaerobic degradation half-lives, offering valuable support for future evaluation and implementation of chemical anaerobic biodegradation.
Collapse
Affiliation(s)
- Yushu Cheng
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kai Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kuan Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
5
|
Chen A, Li H, Wu H, Song Z, Chen Y, Zhang H, Pang Z, Qin Z, Wu Y, Guan X, Huang H, Li Z, Qiu G, Wei C. Anaerobic cyanides oxidation with bimetallic modulation of biological toxicity and activity for nitrite reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134540. [PMID: 38733787 DOI: 10.1016/j.jhazmat.2024.134540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Cyanide is a typical toxic reducing agent prevailing in wastewater with a well-defined chemical mechanism, whereas its exploitation as an electron donor by microorganisms is currently understudied. Given that conventional denitrification requires additional electron donors, the cyanide and nitrogen can be eliminated simultaneously if the reducing HCN/CN- and its complexes are used as inorganic electron donors. Hence, this paper proposes anaerobic cyanides oxidation for nitrite reduction, whereby the biological toxicity and activity of cyanides are modulated by bimetallics. Performance tests illustrated that low toxicity equivalents of iron-copper composite cyanides provided higher denitrification loads with the release of cyanide ions and electrons from the complex structure by the bimetal. Both isotopic labeling and Density Functional Theory (DFT) demonstrated that CN--N supplied electrons for nitrite reduction. The superposition of chemical processes reduces the biotoxicity and enhances the biological activity of cyanides in the CN-/Fe3+/Cu2+/NO2- coexistence system, including complex detoxification of CN- by Fe3+, CN- release by Cu2+ from [Fe(CN)6]3-, and NO release by nitrite substitution of -CN groups. Cyanide is the smallest structural unit of C/N-containing compounds and serves as a probe to extend the electron-donating principle of anaerobic cyanides oxidation to more electron-donor microbial utilization.
Collapse
Affiliation(s)
- Acong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Haoling Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Zhaohui Song
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Heng Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zijun Pang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yulun Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Xianghong Guan
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Hua Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Environment, South China Normal University, Guangzhou, Guangdong 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
6
|
Rios-Miguel AB, Jhm van Bergen T, Zillien C, Mj Ragas A, van Zelm R, Sm Jetten M, Jan Hendriks A, Welte CU. Predicting and improving the microbial removal of organic micropollutants during wastewater treatment: A review. CHEMOSPHERE 2023; 333:138908. [PMID: 37187378 DOI: 10.1016/j.chemosphere.2023.138908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.
Collapse
Affiliation(s)
- Ana B Rios-Miguel
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Tamara Jhm van Bergen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Caterina Zillien
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Ad Mj Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Mike Sm Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Arar M, Bakkour R, Elsner M, Bernstein A. Microbial hydrolysis of atrazine in contaminated groundwater. CHEMOSPHERE 2023; 322:138226. [PMID: 36828114 DOI: 10.1016/j.chemosphere.2023.138226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Degradation of the widespread herbicide atrazine has been intensively studied in soils, while its degradation in groundwater has received less attention. This work studied atrazine degradation in contaminated groundwater adjacent to its production plant. The degradation potential was first explored in groundwater enrichment cultures. A broad potential for microbial atrazine degradation was observed when atrazine served as the sole nitrogen source, even when incubated with nitrate. Hydroxyatrazine was formed by the cultures, while desethylatrazine and desisopropylatrazine were not detected. Both the atzA and the trzN genes were identified by quantitative PCR analysis, with a clear dominance of atzA. Carbon isotope enrichments throughout the degradation process varied between the different cultures, with ε values ranging from -0.6 to -5.5‰. This implies corresponding uncertainties when using compound-specific isotope analysis to estimate degradation extents. In the field samples, in-situ degradation was reflected by a high percentage of metabolites, with hydroxyatrazine accounting for >95% of the metabolites in most wells. Both atzA and trzN were detected in the groundwater at quantities of ≈102 to 106 copies mL-1, with a dominance of atzA over trzN. These results provide evidence of the high potential for atrazine hydrolysis in the contaminated groundwater.
Collapse
Affiliation(s)
- Mohammad Arar
- The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel
| | - Rani Bakkour
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Anat Bernstein
- The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel.
| |
Collapse
|
8
|
Han S, Tao Y, Cui Y, Xu J, Ju H, Fan L, Zhang L, Zhang Y. Lanthanum-modified polydopamine loaded Acinetobacter lwoffii DNS32 for phosphate and atrazine removal: Insights into co-adsorption and biodegradation mechanisms. BIORESOURCE TECHNOLOGY 2023; 368:128266. [PMID: 36351531 DOI: 10.1016/j.biortech.2022.128266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
A novel biobased composite was developed for the removal of phosphate (P) and atrazine from agricultural wastewater. A composite with strong P affinity and good biocompatibility, synthesized from La3+ and polydopamine (PDA), was immobilized onto an atrazine-degrading bacterium Acinetobacter lwoffii DNS32 (La/PDA/DNS32). Following Box-Behnken design optimization, the maximum removal rate of P (500 mg L-1) and atrazine (100 mg L-1) by La/PDA/DNS32 reached 28 % and 100 %, respectively. Density functional theory calculations revealed that La/PDA had more negative adsorption energy (-5.90 eV) than PDA alone and exhibited prominent electrophilic sites. Additionally, La/PDA-induced sorption of atrazine improved transmembrane transport and enhanced expression of degradation-associated genes in strain DNS32. La/PDA nanoparticles surrounding strain DNS32 provided a shielding effect and exhibited desirable biostability, thermal stability, and acid-alkaline resistance under contamination stress. This study demonstrates the promising potential of La/PDA/DNS32 in reducing the P and atrazine pollution caused by agricultural production.
Collapse
Affiliation(s)
- Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiaming Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hanxun Ju
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Linlin Fan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
9
|
He J, Wang Z, Zhen F, Wang Z, Song Z, Chen J, Hrynsphan D, Tatsiana S. Mechanisms of flame retardant tris (2-ethylhexyl) phosphate biodegradation via novel bacterial strain Ochrobactrum tritici WX3-8. CHEMOSPHERE 2023; 311:137071. [PMID: 36328323 DOI: 10.1016/j.chemosphere.2022.137071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Tris (2-ethylhexyl) phosphate (TEHP) is a common organophosphorus flame retardant analog with considerable ecological toxicity. Here, novel strain Ochrobactrum tritici WX3-8 capable of degrading TEHP as the sole C source was isolated. Our results show that the strain's TEHP degradation efficiency reached 75% after 104 h under optimal conditions, i.e., 30 °C, pH 7, bacterial inoculum 3%, and
Collapse
Affiliation(s)
- Jiamei He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fengzhen Zhen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zhaoyun Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
10
|
Gharasoo M, Elsner M, Van Cappellen P, Thullner M. Pore-Scale Heterogeneities Improve the Degradation of a Self-Inhibiting Substrate: Insights from Reactive Transport Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13008-13018. [PMID: 36069624 DOI: 10.1021/acs.est.2c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In situ bioremediation is a common remediation strategy for many groundwater contaminants. It was traditionally believed that (in the absence of mixing-limitations) a better in situ bioremediation is obtained in a more homogeneous medium where the even distribution of both substrate and bacteria facilitates the access of a larger portion of the bacterial community to a higher amount of substrate. Such conclusions were driven with the typical assumption of disregarding substrate inhibitory effects on the metabolic activity of enzymes at high concentration levels. To investigate the influence of pore matrix heterogeneities on substrate inhibition, we use a numerical approach to solve reactive transport processes in the presence of pore-scale heterogeneities. To this end, a rigorous reactive pore network model is developed and used to model the reactive transport of a self-inhibiting substrate under both transient and steady-state conditions through media with various, spatially correlated, pore-size distributions. For the first time, we explore on the basis of a pore-scale model approach the link between pore-size heterogeneities and substrate inhibition. Our results show that for a self-inhibiting substrate, (1) pore-scale heterogeneities can consistently promote degradation rates at toxic levels, (2) the effect reverses when the concentrations fall to levels essential for microbial growth, and (3) an engineered combination of homogeneous and heterogeneous media can increase the overall efficiency of bioremediation.
Collapse
Affiliation(s)
- Mehdi Gharasoo
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
- Bundesanstalt für Gewässerkunde, Abteilung Quantitative Gewässerkunde, Am Mainzer Tor 1, Koblenz 56068, Germany
- Department of Earth and Environmental Sciences, Ecohydrology Research Group, University of Waterloo, 200 University Av W, Waterloo ON N2L3G1, Canada
| | - Martin Elsner
- Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry, Marchioninistr. 17, Munich 81377, Germany
| | - Philippe Van Cappellen
- Department of Earth and Environmental Sciences, Ecohydrology Research Group, University of Waterloo, 200 University Av W, Waterloo ON N2L3G1, Canada
| | - Martin Thullner
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover 30655, Germany
| |
Collapse
|
11
|
Khan AM, Gharasoo M, Wick LY, Thullner M. Phase-specific stable isotope fractionation effects during combined gas-liquid phase exchange and biodegradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119737. [PMID: 35817302 DOI: 10.1016/j.envpol.2022.119737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Stable isotope fractionation of toluene under dynamic phase exchange was studied aiming at ascertaining the effects of gas-liquid partitioning and biodegradation of toluene stable isotope composition in liquid-air phase exchange reactors (Laper). The liquid phase consisted of a mixture of aqueous minimal media, a known amount of a mixture of deuterated (toluene-d) and non-deuterated toluene (toluene-h), and bacteria of toluene degrading strain Pseudomonas putida KT2442. During biodegradation experiments, the liquid and air-phase concentrations of both toluene isotopologues were monitored to determine the observable stable isotope fractionation in each phase. The results show a strong fractionation in both phases with apparent enrichment factors beyond -800‰. An offset was observed between enrichment factors in the liquid and the gas phase with gas-phase values showing a stronger fractionation in the gas than in the liquid phase. Numerical simulation and parameter fitting routine was used to challenge hypotheses to explain the unexpected experimental data. The numerical results showed that either a very strong, yet unlikely, fractionation of the phase exchange process or a - so far unreported - direct consumption of gas phase compounds by aqueous phase microorganisms could explain the observed fractionation effects. The observed effect can be of relevance for the analysis of volatile contaminant biodegradation using stable isotope analysis in unsaturated subsurface compartments or other environmental compartment containing a gas and a liquid phase.
Collapse
Affiliation(s)
- Ali M Khan
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Mehdi Gharasoo
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Thullner
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
12
|
Chen S, Ma L, Wang Y. Kinetic isotope effects of C and N indicate different transformation mechanisms between atzA- and trzN-harboring strains in dechlorination of atrazine. Biodegradation 2022; 33:207-221. [PMID: 35257297 DOI: 10.1007/s10532-022-09977-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
Compound-specific stable isotope analysis provides an alternative method to insight into the biotransformation mechanisms of diffuse organic pollutants in the environment, e.g., the endocrine disruptor herbicide atrazine. Biotic hydrolysis process catalyzed by chlorohydrolase AtzA and TrzN plays an important role in the detoxification of atrazine, while the catalytic mechanism of AtzA is still speculative. To investigate the catalytic mechanism of AtzA and answer whether both enzymes catalyze hydrolytic dechlorination of atrazine by the same mechanism, in this study, apparent kinetic isotope effects (AKIE) for carbon and nitrogen were observed by three atzA-harboring bacterial isolates and their membrane-free extracts. The AKIEs obtained from atzA-harboring bacterial isolates (AKIEC = 1.021 ± 0.010, AKIEN = 0.992 ± 0.003) were statistically different from that of trzN-harboring strains (AKIEC = 1.040 ± 0.006, AKIEN = 0.983 ± 0.006), confirming the different activation mechanisms of atrazine preceding to nucleophilic aromatic substitution of Cl atom in actual enzymatic reaction catalyzed by AtzA and TrzN, despite the limitation of variable dual-element isotope plots. The lower degree of normal carbon and inverse nitrogen isotope fractionation observed from atzA-harboring strains, suggesting AtzA catalyzing hydrolytic dechlorination of atrazine by coordination of Cl and one aromatic N to the Fe2+ drawing electron density from carbon-chlorine bond that facilitating the nucleophilic attack, rather than in TrzN case that protonation of aromatic N increasing nucleophilic substitution of Cl atom. This study suggests considering the potential influences of phylogenetic diversity of bacterial isolates and evolution of enzymes on the applications of CSIA method in future study.
Collapse
Affiliation(s)
- Songsong Chen
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuncai Wang
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
13
|
Soder-Walz JM, Torrentó C, Algora C, Wasmund K, Cortés P, Soler A, Vicent T, Rosell M, Marco-Urrea E. Trichloromethane dechlorination by a novel Dehalobacter sp. strain 8M reveals a third contrasting C and Cl isotope fractionation pattern within this genus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152659. [PMID: 34954170 DOI: 10.1016/j.scitotenv.2021.152659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Trichloromethane (TCM) is a pollutant frequently detected in contaminated aquifers, and only four bacterial strains are known to respire it. Here, we obtained a novel Dehalobacter strain capable of transforming TCM to dichloromethane, which was denominated Dehalobacter sp. strain 8M. Besides TCM, strain 8M also completely transformed 1,1,2-trichloroethane to vinyl chloride and 1,2-dichloroethane. Quantitative PCR analysis for the 16S rRNA genes confirmed growth of Dehalobacter with TCM and 1,1,2-trichloroethane as electron acceptors. Carbon and chlorine isotope fractionation during TCM transformation was studied in cultured cells and in enzymatic assays with cell suspensions and crude protein extracts. TCM transformation in the three studied systems resulted in small but significant carbon (εC = -2.7 ± 0.1‰ for respiring cells, -3.1 ± 0.1‰ for cell suspensions, and - 4.1 ± 0.5‰ for crude protein extracts) and chlorine (εCl = -0.9 ± 0.1‰, -1.1 ± 0.1‰, and - 1.2 ± 0.2‰, respectively) isotope fractionation. A characteristic and consistent dual CCl isotope fractionation pattern was observed for the three systems (combined ΛC/Cl = 2.8 ± 0.3). This ΛC/Cl differed significantly from previously reported values for anaerobic dechlorination of TCM by the corrinoid cofactor vitamin B12 and other Dehalobacter strains. These findings widen our knowledge on the existence of different enzyme binding mechanisms underlying TCM-dechlorination within the genus Dehalobacter and demonstrates that dual isotope analysis could be a feasible tool to differentiate TCM degraders at field studies.
Collapse
Affiliation(s)
- Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Clara Torrentó
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028 Barcelona, Spain
| | - Camelia Algora
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1010, Austria
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Facultat de BioCiències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028 Barcelona, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Mònica Rosell
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028 Barcelona, Spain.
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| |
Collapse
|
14
|
Kundu K, Melsbach A, Heckel B, Schneidemann S, Kanapathi D, Marozava S, Merl-Pham J, Elsner M. Linking Increased Isotope Fractionation at Low Concentrations to Enzyme Activity Regulation: 4-Cl Phenol Degradation by Arthrobacter chlorophenolicus A6. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3021-3032. [PMID: 35148097 PMCID: PMC8892832 DOI: 10.1021/acs.est.1c04939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Slow microbial degradation of organic trace chemicals ("micropollutants") has been attributed to either downregulation of enzymatic turnover or rate-limiting substrate supply at low concentrations. In previous biodegradation studies, a drastic decrease in isotope fractionation of atrazine revealed a transition from rate-limiting enzyme turnover to membrane permeation as a bottleneck when concentrations fell below the Monod constant of microbial growth. With degradation of the pollutant 4-chlorophenol (4-CP) by Arthrobacter chlorophenolicus A6, this study targeted a bacterium which adapts its enzyme activity to concentrations. Unlike with atrazine degradation, isotope fractionation of 4-CP increased at lower concentrations, from ε(C) = -1.0 ± 0.5‰ in chemostats (D = 0.090 h-1, 88 mg L-1) and ε(C) = -2.1 ± 0.5‰ in batch (c0 = 220 mg L-1) to ε(C) = -4.1 ± 0.2‰ in chemostats at 90 μg L-1. Surprisingly, fatty acid composition indicated increased cell wall permeability at high concentrations, while proteomics revealed that catabolic enzymes (CphCI and CphCII) were differentially expressed at D = 0.090 h-1. These observations support regulation on the enzyme activity level─through either a metabolic shift between catabolic pathways or decreased enzymatic turnover at low concentrations─and, hence, reveal an alternative end-member scenario for bacterial adaptation at low concentrations. Including more degrader strains into this multidisciplinary analytical approach offers the perspective to build a knowledge base on bottlenecks of bioremediation at low concentrations that considers bacterial adaptation.
Collapse
Affiliation(s)
- Kankana Kundu
- Institute
of Groundwater Ecology, Helmholtz Zentrum
Munchen, Ingolstadter
Landstraße 1, 85764 Neuherberg, Bavaria, Germany
- Center
for Microbial Ecology and Technology (CMET), Faculty of Bioscience
Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Aileen Melsbach
- Institute
of Groundwater Ecology, Helmholtz Zentrum
Munchen, Ingolstadter
Landstraße 1, 85764 Neuherberg, Bavaria, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany
| | - Benjamin Heckel
- Institute
of Groundwater Ecology, Helmholtz Zentrum
Munchen, Ingolstadter
Landstraße 1, 85764 Neuherberg, Bavaria, Germany
| | - Sarah Schneidemann
- Institute
of Groundwater Ecology, Helmholtz Zentrum
Munchen, Ingolstadter
Landstraße 1, 85764 Neuherberg, Bavaria, Germany
| | - Dheeraj Kanapathi
- Institute
of Groundwater Ecology, Helmholtz Zentrum
Munchen, Ingolstadter
Landstraße 1, 85764 Neuherberg, Bavaria, Germany
| | - Sviatlana Marozava
- Institute
of Groundwater Ecology, Helmholtz Zentrum
Munchen, Ingolstadter
Landstraße 1, 85764 Neuherberg, Bavaria, Germany
| | - Juliane Merl-Pham
- Core
Facility Proteomics, Helmholtz Zentrum München, Heidemannstr. 1, 80939 Munich, Germany
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
Munchen, Ingolstadter
Landstraße 1, 85764 Neuherberg, Bavaria, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
15
|
Zhao S, Wang J, Feng S, Xiao Z, Chen C. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150140. [PMID: 34509841 DOI: 10.1016/j.scitotenv.2021.150140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of society, the soil and water environments in many countries are suffering from severe pollution. Pollutants in different phases will eventually gather into the soil and water environments, and a series of migrations and transformations will take place at ecohydrological interfaces with water flow. However, it is still not clear how ecohydrological interfaces affect the migration and the transformation of pollutants. Therefore, this paper summarizes the physical, ecological, and biogeochemical characteristics of ecohydrological interfaces on the basis of introducing the development history of ecohydrology and the concept of ecohydrological interfaces. The effects of ecohydrological interfaces on the migration and transformation of heavy metals, organic pollutants, and carbon‑nitrogen‑phosphorus (C-N-P) pollutants are emphasized. Lastly, the prospects of applying ecohydrological interfaces for the removal of pollutants from the soil and water environment are put forward, including strengthening the ability to monitor and simulate ecohydrological systems at micro and macro scales, enhancing interdisciplinary research, and identifying main influencing factors that can provide theoretical basis and technical support.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shijin Feng
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Zailun Xiao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chunyan Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
16
|
Layer-by-Layer Encapsulation of Herbicide-Degrading Bacteria for Improved Surface Properties and Compatibility in Soils. Polymers (Basel) 2021; 13:polym13213814. [PMID: 34771371 PMCID: PMC8588562 DOI: 10.3390/polym13213814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
E. coli cells overexpressing the enzyme atrazine chlorohydrolase were coated using layer-by-layer self-assembly. The polymeric coating was designed to improve the surface properties of the cells and create positively charged, ecologically safe, bio-hybrid capsules that can efficiently degrade the herbicide atrazine in soils. The physio-chemical properties of the bacteria/polymer interface were studied as a function of the polymeric composition of the shell and its thickness. Characterization of cell viability, enzyme activity, morphology, and size of the bio-capsules was done using fluorescence spectroscopy, BET and zeta potential measurements and electron microscopy imaging. Out of several polyelectrolytes, the combination of polydiallyldimethylammonium chloride and polysodium 4-styrenesulfonate improved the surface properties and activity of the cells to the greatest extent. The resulting bio-hybrid capsules were stable, well-dispersed, with a net positive charge and a large surface area compared to the uncoated bacteria. These non-viable, bio-hybrid capsules also exhibited a kinetic advantage in comparison with uncoated cells. When added to soils, they exhibited continuous activity over a six-week period and atrazine concentrations declined by 84%. Thus, the concept of layer-by-layer coated bacteria is a promising avenue for the design of new and sustainable bioremediation and biocatalytic platforms.
Collapse
|
17
|
Torrentó C, Ponsin V, Lihl C, Hofstetter TB, Baran N, Elsner M, Hunkeler D. Triple-Element Compound-Specific Stable Isotope Analysis (3D-CSIA): Added Value of Cl Isotope Ratios to Assess Herbicide Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13891-13901. [PMID: 34586806 DOI: 10.1021/acs.est.1c03981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multielement isotope fractionation studies to assess pollutant transformation are well-established for point-source pollution but are only emerging for diffuse pollution by micropollutants like pesticides. Specifically, chlorine isotope fractionation is hardly explored but promising, because many pesticides contain only few chlorine atoms so that "undiluted" position-specific Cl isotope effects can be expected in compound-average data. This study explored combined Cl, N, and C isotope fractionation to sensitively detect biotic and abiotic transformation of the widespread herbicides and groundwater contaminants acetochlor, metolachlor, and atrazine. For chloroacetanilides, abiotic hydrolysis pathways studied under acidic, neutral, and alkaline conditions as well as biodegradation in two soils resulted in pronounced Cl isotope fractionation (εCl from -5.0 ± 2.3 to -6.5 ± 0.7‰). The characteristic dual C-Cl isotope fractionation patterns (ΛC-Cl from 0.39 ± 0.15 to 0.67 ± 0.08) reveal that Cl isotope analysis provides a robust indicator of chloroacetanilide degradation. For atrazine, distinct ΛC-Cl values were observed for abiotic hydrolysis (7.4 ± 1.9) compared to previous reports for biotic hydrolysis and oxidative dealkylation (1.7 ± 0.9 and 0.6 ± 0.1, respectively). The 3D isotope approach allowed differentiating transformations that would not be distinguishable based on C and N isotope data alone. This first data set on Cl isotope fractionation in chloroacetanilides, together with new data in atrazine degradation, highlights the potential of using compound-specific chlorine isotope analysis for studying in situ pesticide degradation.
Collapse
Affiliation(s)
- Clara Torrentó
- Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Violaine Ponsin
- Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Christina Lihl
- Institute of Groundwater Ecology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Nicole Baran
- BRGM, Bureau de Recherches Géologiques et Minières, 45060 Cedex 02 Orléans, France
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry, 81377 Munich, Germany
| | - Daniel Hunkeler
- Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
18
|
Sun F, Mellage A, Gharasoo M, Melsbach A, Cao X, Zimmermann R, Griebler C, Thullner M, Cirpka OA, Elsner M. Mass-Transfer-Limited Biodegradation at Low Concentrations-Evidence from Reactive Transport Modeling of Isotope Profiles in a Bench-Scale Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7386-7397. [PMID: 33970610 PMCID: PMC8173607 DOI: 10.1021/acs.est.0c08566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Organic contaminant degradation by suspended bacteria in chemostats has shown that isotope fractionation decreases dramatically when pollutant concentrations fall below the (half-saturation) Monod constant. This masked isotope fractionation implies that membrane transfer is slow relative to the enzyme turnover at μg L-1 substrate levels. Analogous evidence of mass transfer as a bottleneck for biodegradation in aquifer settings, where microbes are attached to the sediment, is lacking. A quasi-two-dimensional flow-through sediment microcosm/tank system enabled us to study the aerobic degradation of 2,6-dichlorobenzamide (BAM), while collecting sufficient samples at the outlet for compound-specific isotope analysis. By feeding an anoxic BAM solution through the center inlet port and dissolved oxygen (DO) above and below, strong transverse concentration cross-gradients of BAM and DO yielded zones of low (μg L-1) steady-state concentrations. We were able to simulate the profiles of concentrations and isotope ratios of the contaminant plume using a reactive transport model that accounted for a mass-transfer limitation into bacterial cells, where apparent isotope enrichment factors *ε decreased strongly below concentrations around 600 μg/L BAM. For the biodegradation of organic micropollutants, mass transfer into the cell emerges as a bottleneck, specifically at low (μg L-1) concentrations. Neglecting this effect when interpreting isotope ratios at field sites may lead to a significant underestimation of biodegradation.
Collapse
Affiliation(s)
- Fengchao Sun
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, Neuherberg 85764, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, Munich 81377, Germany
| | - Adrian Mellage
- Center
for Applied Geoscience, University of Tübingen, Schnarrenbergstrasse 94−96, Tübingen 72076, Germany
| | - Mehdi Gharasoo
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, Neuherberg 85764, Germany
- Department
of Earth and Environmental Sciences, Ecohydrology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Canada
| | - Aileen Melsbach
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, Neuherberg 85764, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, Munich 81377, Germany
| | - Xin Cao
- Joint
Mass Spectrometry Centre, Comprehensive
Molecular Analytics (CMA) Cooperation Group Helmholtz Zentrum, Gmunderstrasse 37, Munich 81379, Germany
| | - Ralf Zimmermann
- Joint
Mass Spectrometry Centre, Comprehensive
Molecular Analytics (CMA) Cooperation Group Helmholtz Zentrum, Gmunderstrasse 37, Munich 81379, Germany
| | - Christian Griebler
- Department
of Functional and Evolutionary Ecology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Martin Thullner
- Department
of Environmental Microbiology, UFZ—Helmholtz
Centre for Environmental Research, Permoserstrasse 15, Leipzig 30418, Germany
| | - Olaf A. Cirpka
- Center
for Applied Geoscience, University of Tübingen, Schnarrenbergstrasse 94−96, Tübingen 72076, Germany
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, Neuherberg 85764, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, Munich 81377, Germany
- Phone: +49 89 2180-78232
| |
Collapse
|
19
|
Wanner P. Plastic in agricultural soils - A global risk for groundwater systems and drinking water supplies? - A review. CHEMOSPHERE 2021; 264:128453. [PMID: 33038754 DOI: 10.1016/j.chemosphere.2020.128453] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The global plastic contamination is one of the major challenges facing mankind as plastic is ubiquitously present in all environmental compartments. In contrast to freshwater and marine environments, plastic contamination of agricultural soils was only recently subject to investigations although it represents a significant amount (14%) of the global plastic pollution. Of concern is the vertical migration of plastic particles in agricultural soils and plastic-induced enhancement of pesticide transport towards underlying groundwater systems. To assess the risk of the large plastic inventory in agricultural soils for groundwater systems and drinking water supplies, this review critically synthesizes the current knowledge of the plastic mobility and plastic-pesticide interactions in agricultural soils, identifies future research directions and evaluates associated analytical challenges. The reviewed studies provide consistent evidence for vertical migration of plastic in agricultural soils towards aquifer systems, especially for sub-micrometer sized plastic particles, analogously to the well-known migration of natural particles in the sub-micrometer range (colloids). The reviewed investigations also showed that plastic changes the sorption behavior of pesticides in agricultural soils and enhances their transport towards underlying groundwater systems. Hence, the deposited plastic in agricultural soils likely poses a major risk for underlying aquifers and drinking water supplies that rely on groundwater resources below farmlands to be contaminated by plastic and pesticides. This demonstrates that improved regulatory measures are necessary regarding the general usage of plastic in the farming process to protect aquifers and drinking water supplies from plastic and pesticide contamination and to avoid a potential human health hazard.
Collapse
Affiliation(s)
- Philipp Wanner
- Department of Earth Sciences, University of Gothenburg, Guldhedsgatan 5A, 413 20, Gothenburg, Sweden.
| |
Collapse
|
20
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
21
|
Chen S, Zhang K, Jha RK, Ma L. Impact of atrazine concentration on bioavailability and apparent isotope fractionation in Gram-negative Rhizobium sp. CX-Z. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113614. [PMID: 31761577 DOI: 10.1016/j.envpol.2019.113614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Compound-specific stable isotope analysis of micropollutants has become an established method for the qualitative and quantitative assessment of biodegradation in the field. However, many of environmental factors may have an influence on the observed isotope fractionation. Herein, we investigate the impact of substrate concentration on the observed enrichment factor derived from Rayleigh plot of batch laboratory experiments conducted to measure the atrazine carbon isotope fractionation of Rhizobium sp. CX-Z subjected to the different initial concentration level of atrazine. The Rayleigh plot (changes in bulk concentration vs. isotopic composition) derived from batch experiments shown divergence from the linear relation towards the end of degradation, confirming bioavailability of atrazine changed along with the decay of substrate concentration, consequently, influenced the isotope fractionation and lowered the observed enrichment factor. When microbial degradation is coupled to a mass transfer step limiting the bioavailability of substrate, the observed enrichment factor displays a dependence on initial atrazine concentration. Observed enrichment factors (ε) (absolute value) derived from the low concentration (i.e. 9.5 μM) are below 3.5‰ to the value of -5.4‰ determined at high bioavailability (membrane-free cells). The observed enrichment factor depended significantly on the atrazine concentration, indicating the concentration level and the bioavailability of a substrate in realistic environments should be considered during the assessment of microbial degradation or in situ bioremediation based on compound-specific stable isotope analysis (CSIA) method.
Collapse
Affiliation(s)
- Songsong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Kai Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Rohit Kumar Jha
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
22
|
Jiang Z, Chen J, Li J, Cao B, Chen Y, Liu D, Wang X, Zhang Y. Exogenous Zn 2+ enhance the biodegradation of atrazine by regulating the chlorohydrolase gene trzN transcription and membrane permeability of the degrader Arthrobacter sp. DNS10. CHEMOSPHERE 2020; 238:124594. [PMID: 31445334 DOI: 10.1016/j.chemosphere.2019.124594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Enhancing the biodegradation efficiency of atrazine, a kind of commonly applied herbicide, has been attracted much more concern. Here, Zn2+ which has long been considered essential in adjusting cell physiological status was selected to investigate its role on the biodegradation of atrazine by Arthrobacter sp. DNS10 as well as the transmembrane transport of atrazine during the biodegradation period. The results of gas chromatography showed that the atrazine removal percentages (initial concentration was 100 mg L-1) in 0.05 mM Zn2+ and 1.0 mM Zn2+ treatments were 94.42% and 86.02% respectively at 48 h, while there was also 66.43% of atrazine left in the treatment without exogenous Zn2+ existence. The expression of atrazine chlorohydrolase gene trzN in the strain DNS10 cultured with 0.05 mM and 1.0 mM Zn2+ was 7.30- and 4.67- times respectively compared with that of the non-zinc treatment. In addition, the flow cytometry test suggests that 0.05 mM of Zn2+ could better adjust the membrane permeability of strain DNS10, meanwhile, the amount of atrazine accumulation in the strain DNS10 co-cultured with this level Zn2+ was 2.21 times of that of the strain without Zn2+. This study may facilitate a better understanding of the mechanisms that exogenous Zn2+ enhances the biodegradation of atrazine by Arthrobacter sp. DNS10.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jianing Chen
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaojiao Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yukun Chen
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Di Liu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xinxin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
23
|
Ponsin V, Torrentó C, Lihl C, Elsner M, Hunkeler D. Compound-Specific Chlorine Isotope Analysis of the Herbicides Atrazine, Acetochlor, and Metolachlor. Anal Chem 2019; 91:14290-14298. [DOI: 10.1021/acs.analchem.9b02497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Violaine Ponsin
- Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Clara Torrentó
- Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Christina Lihl
- Institute of Groundwater Ecology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 81377 Munich, Germany
| | - Daniel Hunkeler
- Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
24
|
Tao Y, Hu S, Han S, Shi H, Yang Y, Li H, Jiao Y, Zhang Q, Akindolie MS, Ji M, Chen Z, Zhang Y. Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:59-69. [PMID: 31108269 DOI: 10.1016/j.scitotenv.2019.05.134] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
In order to efficiently remove commonly used herbicide atrazine in farmland, an iron-modified biochar (FeMBC) was fabricated via chemical co-precipitation of Fe3+ onto corn stalks biochar. The composites of FeMBC and Acinetobacter lwoffii DNS32 (bFeMBC) effectively accelerated the degradation rate of atrazine (100 mg L-1) in inorganic salt culture solution. TEM,XRD,XPS and FTIR were used to study the basic properties of the Materials. FeMBC promoted the formation of bacterial biofilm, -NH functional group on the surface of bacterial extracellular polymers (EPS) and FeMBC could interact with the aromatic ring of atrazine through Hbonding, which were conducive for microbial capture of atrazine. Meanwhile, the pores (2-10 μm) of FeMBC facilitated the passage of the DNS32 strain and the atrazine molecule, which contributed to the efficient capture and degradation of atrazine by DNS32 strain. BFeMBC amendment helped to maintain the bacterial diversity in the atrazine contaminated soil. The increase of rare bacteria (relative abundance of 0.01%-0.05%) richness plays a certain role in stabilizing nutrient cycling, thereby promoting microbial nutrient utilization activities and has the function of pollutant degradation. This may contribute to the digestion of atrazine and its intermediate metabolites,reducing the stress of microbial in atrazine contaminated soil. bFeMBC amendment may be a promising in situ remediation technique for soil atrazine contamination.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Songbo Hu
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Hongtao Shi
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Hanxu Li
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Qi Zhang
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Modupe Sarah Akindolie
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Mingyuan Ji
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, No. 18, Liaohe West Road, Jinzhou New District, Dalian, Liaoning Province, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, No.600, Changjiang Road, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
25
|
Marozava S, Meyer AH, Pérez-de-Mora A, Gharasoo M, Zhuo L, Wang H, Cirpka OA, Meckenstock RU, Elsner M. Mass Transfer Limitation during Slow Anaerobic Biodegradation of 2-Methylnaphthalene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9481-9490. [PMID: 31262174 DOI: 10.1021/acs.est.9b01152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Sviatlana Marozava
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Armin H. Meyer
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Alfredo Pérez-de-Mora
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mehdi Gharasoo
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
- University of Waterloo, Department of Earth and Environmental Sciences, Ecohydrology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lin Zhuo
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - He Wang
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Olaf A. Cirpka
- University of Tübingen, Center for Applied Geoscience, Hölderlinstrasse 12, 72074 Tübingen, Germany
| | - Rainer U. Meckenstock
- University Duisburg-Essen, Biofilm Centre, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
- Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry, Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|
26
|
Gharasoo M, Wietzke LM, Knorr B, Bakkour R, Elsner M, Stumpp C. A robust optimization technique for analysis of multi-tracer experiments. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 224:103481. [PMID: 31005265 DOI: 10.1016/j.jconhyd.2019.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Fate and transport of solutes in heterogeneous porous media is largely affected by diffusive mass exchange between mobile and immobile water zones. Since it is difficult to directly measure and determine the effect in the aquifers, multi-tracer experiments in combination with mathematical modeling are used to obtain quantitative information about unknown system parameters such as the effective mobile and immobile porosity, and the diffusive mass exchange between mobile and immobile water zones. The Single Fissure Dispersion Model (SFDM) describing nonreactive transport of solutes in saturated dual-porosity media, has been employed as a modeling approach to explain dual-porosity experiments in the field and laboratory (column experiments). SFDM optimization with conventional methods of minimization was immensely difficult due to its complex analytical form. Thus, previous studies used a trial and error procedure to fit it to the experimental observations. In this study, a rigorous optimization technique based on the newly developed scatter search method is presented that automatically minimizes the SFDM to find the optimal values of the hydrogeologically related parameters. The new program (OptSFDM) is accompanied with an easy-to-use graphical user interface (GUI) that is flexible and fully integrated. The program usability is showcased by a few, previously presented experimental case studies, and compared against the currently available, trial-and-error based, command-line executable, SFDM code.
Collapse
Affiliation(s)
- Mehdi Gharasoo
- University of Waterloo, Department of Earth and Environmental Sciences, Ecohydrology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Luzie M Wietzke
- German Research Centre for Geoscience - GFZ, Hydrology, Telegrafenberg, 14473 Potsdam, Germany
| | - Bastian Knorr
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Rani Bakkour
- Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| | - Martin Elsner
- Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| | - Christine Stumpp
- University of Natural Resources and Life Sciences, Institute of Hydraulics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
27
|
Defining lower limits of biodegradation: atrazine degradation regulated by mass transfer and maintenance demand in Arthrobacter aurescens TC1. ISME JOURNAL 2019; 13:2236-2251. [PMID: 31073212 PMCID: PMC6776027 DOI: 10.1038/s41396-019-0430-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
Abstract
Exploring adaptive strategies by which microorganisms function and survive in low-energy natural environments remains a grand goal of microbiology, and may help address a prime challenge of the 21st century: degradation of man-made chemicals at low concentrations (“micropollutants”). Here we explore physiological adaptation and maintenance energy requirements of a herbicide (atrazine)-degrading microorganism (Arthrobacter aurescens TC1) while concomitantly observing mass transfer limitations directly by compound-specific isotope fractionation analysis. Chemostat-based growth triggered the onset of mass transfer limitation at residual concentrations of 30 μg L−1 of atrazine with a bacterial population doubling time (td) of 14 days, whereas exacerbated energy limitation was induced by retentostat-based near-zero growth (td = 265 days) at 12 ± 3 μg L−1 residual concentration. Retentostat cultivation resulted in (i) complete mass transfer limitation evidenced by the disappearance of isotope fractionation (ε13C = −0.45‰ ± 0.36‰) and (ii) a twofold decrease in maintenance energy requirement compared with chemostat cultivation. Proteomics revealed that retentostat and chemostat cultivation under mass transfer limitation share low protein turnover and expression of stress-related proteins. Mass transfer limitation effectuated slow-down of metabolism in retentostats and a transition from growth phase to maintenance phase indicating a limit of ≈10 μg L−1 for long-term atrazine degradation. Further studies on other ecosystem-relevant microorganisms will substantiate the general applicability of our finding that mass transfer limitation serves as a trigger for physiological adaptation, which subsequently defines a lower limit of biodegradation.
Collapse
|
28
|
Chen S, Zhang K, Jha RK, Chen C, Yu H, Liu Y, Ma L. Isotope fractionation in atrazine degradation reveals rate-limiting, energy-dependent transport across the cell membrane of gram-negative rhizobium sp. CX-Z. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:857-864. [PMID: 30856501 DOI: 10.1016/j.envpol.2019.02.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 05/22/2023]
Abstract
In the biological mass transfer of organic contaminants like atrazine, the cellular membrane limits bioavailability of pesticides. We aimed to illustrate the roles of cellular membrane physiology and substrate uptake (e.g., passive diffusion and energy-dependent transport) on the limitations of bioavailability in atrazine biodegradation by Gram-negative strain Rhizobium sp. CX-Z. Compound-specific stable isotope analysis revealed energy-dependent transport across cellular membrane led to bioavailability limitations in atrazine biotransformation. Carbon isotope fractionation (ε(C) = -1.8 ± 0.3‰) was observed and significantly smaller in atrazine biodegradation by Rhizobium sp. CX-Z than that expected in acid hydrolysis (ε(C) = -4.8 ± 0.4‰) and hydrolysis by the pure enzyme TrzN (ε(C) = -5.0 ± 0.2‰). However, isotope fractionation was restored in membrane-free cells of Rhizobium sp. CX-Z (ε(C) = -5.4 ± 0.2‰) where no cellular membrane limits substrate uptake. When respiratory chain was inhibited by rotenone, the pseudo-first order kinetic rate constants (0.08 ± 0.03 h-1, 0.09 ± 0.03 h-1) was observed to be statistically less than in the control group (0.23 ± 0.02 h-1, 0.33 ± 0.02 h-1), demonstrating that energy-dependent transport dominated atrazine transfer across the cellular membrane. Therefore, our results revealed energy-dependent transport across cellular membrane existing in Gram-negative strain Rhizobium sp. CX-Z determines bioavailability of atrazine in biotransformation process even at high concentration.
Collapse
Affiliation(s)
- Songsong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Kai Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Rohit Kumar Jha
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Haiyan Yu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Ying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
29
|
Schilling IE, Hess R, Bolotin J, Lal R, Hofstetter TB, Kohler HPE. Kinetic Isotope Effects of the Enzymatic Transformation of γ-Hexachlorocyclohexane by the Lindane Dehydrochlorinase Variants LinA1 and LinA2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2353-2363. [PMID: 30674184 DOI: 10.1021/acs.est.8b04234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Compound-specific isotope analysis (CSIA) can provide insights into the natural attenuation processes of hexachlorocyclohexanes (HCHs), an important class of persistent organic pollutants. However, the interpretation of HCH stable isotope fractionation is conceptually challenging. HCHs exist as different conformers that can be converted into each other, and the enzymes responsible for their transformation discriminate among those HCH conformers. Here, we investigated the enzyme specificity of apparent 13C- and 2H-kinetic isotope effects (AKIEs) associated with the dehydrochlorination of γ-HCH (lindane) by two variants of the lindane dehydrochlorinases LinA1 and LinA2. While LinA1 and LinA2 attack γ-HCH at different trans-1,2-diaxial H-C-C-Cl moieties, the observed C and H isotope fractionation was large, typical for bimolecular eliminations, and was not affected by conformational mobility. 13C-AKIEs for transformation by LinA1 and LinA2 were the same (1.024 ± 0.001 and 1.025 ± 0.001, respectively), whereas 2H-AKIEs showed minor differences (2.4 ± 0.1 and 2.6 ± 0.1). Variations of isotope effects between LinA1 and LinA2 are small and in the range reported for different degrees of C-H bond cleavage in transition states of dehydrochlorination reactions. The large C and H isotope fractionation reported here for experiments with pure enzymes contrasts with previous observations from whole cell experiments and suggests that specific uptake processes by HCH-degrading microorganisms might modulate the observable HCH isotope fractionation at contaminated sites.
Collapse
Affiliation(s)
- Iris E Schilling
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Ramon Hess
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Jakov Bolotin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
| | - Rup Lal
- Department of Zoology , University of Delhi , Delhi 110007 , India
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
| |
Collapse
|
30
|
Gharasoo M, Ehrl BN, Cirpka OA, Elsner M. Modeling of Contaminant Biodegradation and Compound-Specific Isotope Fractionation in Chemostats at Low Dilution Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1186-1196. [PMID: 30339002 PMCID: PMC6986770 DOI: 10.1021/acs.est.8b02498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 05/06/2023]
Abstract
We present a framework to model microbial transformations in chemostats and retentostats under transient or quasi-steady state conditions. The model accounts for transformation-induced isotope fractionation and mass-transfer across the cell membrane. It also verifies that the isotope fractionation ϵ can be evaluated as the difference of substrate-specific isotope ratios between inflow and outflow. We explicitly considered that the dropwise feeding of substrate into the reactor at very low dilution rates leads to transient behavior of concentrations and transformation rates and use this information to validate conditions under which a quasi-steady state treatment is justified. We demonstrate the practicality of the code by modeling a chemostat experiment of atrazine degradation at low dilution/growth rates by the strain Arthrobacter aurescens TC1. Our results shed light on the interplay of processes that control biodegradation and isotope fractionation of contaminants at low (μg/L) concentration levels. With the help of the model, an estimate of the mass-transfer coefficient of atrazine through the cell membrane was achieved (0.0025 s-1).
Collapse
Affiliation(s)
- Mehdi Gharasoo
- Technical
University of Munich, Chair of Analytical
Chemistry and Water Chemistry, Marchioninistrasse 17, 81377 Munich, Germany
- Helmholtz
Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Benno N. Ehrl
- Helmholtz
Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Olaf A. Cirpka
- University
of Tubingen, Center for Applied
Geoscience, Hölderlinstrasse
12, 72074 Tübingen, Germany
| | - Martin Elsner
- Technical
University of Munich, Chair of Analytical
Chemistry and Water Chemistry, Marchioninistrasse 17, 81377 Munich, Germany
- Helmholtz
Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
31
|
Ehrl B, Kundu K, Gharasoo M, Marozava S, Elsner M. Rate-Limiting Mass Transfer in Micropollutant Degradation Revealed by Isotope Fractionation in Chemostat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1197-1205. [PMID: 30514083 PMCID: PMC6365907 DOI: 10.1021/acs.est.8b05175] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 05/05/2023]
Abstract
Biodegradation of persistent micropollutants like pesticides often slows down at low concentrations (μg/L) in the environment. Mass transfer limitations or physiological adaptation are debated to be responsible. Although promising, evidence from compound-specific isotope fractionation analysis (CSIA) remains unexplored for bacteria adapted to this low concentration regime. We accomplished CSIA for degradation of a persistent pesticide, atrazine, during cultivation of Arthrobacter aurescens TC1 in chemostat under four different dilution rates leading to 82, 62, 45, and 32 μg/L residual atrazine concentrations. Isotope analysis of atrazine in chemostat experiments with whole cells revealed a drastic decrease in isotope fractionation with declining residual substrate concentration from ε(C) = -5.36 ± 0.20‰ at 82 μg/L to ε(C) = -2.32 ± 0.28‰ at 32 μg/L. At 82 μg/L ε(C) represented the full isotope effect of the enzyme reaction. At lower residual concentrations smaller ε(C) indicated that this isotope effect was masked indicating that mass transfer across the cell membrane became rate-limiting. This onset of mass transfer limitation appeared in a narrow concentration range corresponding to about 0.7 μM assimilable carbon. Concomitant changes in cell morphology highlight the opportunity to study the role of this onset of mass transfer limitation on the physiological level in cells adapted to low concentrations.
Collapse
Affiliation(s)
- Benno
N. Ehrl
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Kankana Kundu
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Mehdi Gharasoo
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Sviatlana Marozava
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|
32
|
Ehrl B, Mogusu EO, Kim K, Hofstetter H, Pedersen JA, Elsner M. High Permeation Rates in Liposome Systems Explain Rapid Glyphosate Biodegradation Associated with Strong Isotope Fractionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7259-7268. [PMID: 29790342 PMCID: PMC7193547 DOI: 10.1021/acs.est.8b01004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/22/2023]
Abstract
Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) liposomes, the pH-dependent apparent membrane permeation coefficients ( Papp) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from Papp (pH 7.0) = 3.7 (±0.3) × 10-7 m·s-1 to Papp (pH 4.1) = 4.2 (±0.1) × 10-6 m·s-1. The magnitude of this surprisingly rapid membrane permeation depended on glyphosate speciation and was, at circumneutral pH, in the range of polar, noncharged molecules. These findings point to passive membrane permeation as a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model system were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, 2 orders of magnitude higher than degradation rates of glyphosate. In addition, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect, AKIEcarbon, of 1.014 ± 0.003. This value lies in the range typical of non-masked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was not subject to mass transfer limitations and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.
Collapse
Affiliation(s)
- Benno
N. Ehrl
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Emmanuel O. Mogusu
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Department
of Chemistry, Mwenge Catholic University, P.O. Box 1226, Moshi, Tanzania
| | - Kyoungtea Kim
- Molecular
and Environmental Toxicology Center, University
of Wisconsin, Madison, Wisconsin 53706, United States
| | - Heike Hofstetter
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Joel A. Pedersen
- Molecular
and Environmental Toxicology Center, University
of Wisconsin, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Departments
of Soil Science and Civil & Environmental Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Institute
of Hydrochemistry, Chair for Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|