1
|
Ma S, Cheng D, Tang Y, Fan Y, Li Q, He C, Zhao Z, Xu T. Investigation of oxidative potential of fresh and O 3-aging PM 2.5 from various emission sources across urban and rural regions. J Environ Sci (China) 2025; 151:608-615. [PMID: 39481966 DOI: 10.1016/j.jes.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 11/03/2024]
Abstract
Inhalation of atmospheric PM2.5 can induce the generation of excessive reactive oxygen species (ROS) in human alveoli, triggering local and systemic inflammation, which can directly or indirectly result in respiratory and cardiovascular diseases. In this study, we assessed the oxidative potential (OP) of fresh and O3-aged PM2.5 particles from various urban and rural emission sources using the dithiothreitol (DTT) method. Our results revealed variations in the OP of fresh PM2.5 among different emission sources, with biomass burning sources exhibiting the highest OP, followed by industrial areas, vehicular emissions, cooking emissions, and suburban areas, respectively. Water-soluble organics and transition metals might potentially exert significant influence on particle OP. O3 aging notably decreased the OP of PM2.5 particles, possibly due to the oxidation of highly DTT-active components into low redox-active small molecules. Moreover, the evolution of OP in different PM2.5 components, including methanol-soluble and insoluble fractions, exhibited distinct responses to O3 aging for source-oriented PM2.5. Additionally, differences in chemical composition between fresh and aged PM2.5 were further elucidated through measurements of component-dependent hygroscopic behaviors and phase transitions. This study systematically delineates variances in the toxic potential of fresh and O3-aged PM2.5 from various anthropogenic sources. The findings highlight the intrinsic compositional dependence of particle OP and provide essential insights for assessing the health effects of source-oriented PM2.5, as well as for formulating human health protection policies.
Collapse
Affiliation(s)
- Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| | - Dongsheng Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yingying Tang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Younuo Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Chengxiang He
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Zhiqing Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tianyou Xu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| |
Collapse
|
2
|
Jang M, Sem K, Choi J, Vuong QT, Pierce R, Blum P, Javaruski J, Madhu A. Enrichment of lipophilic brevetoxins in sea spray aerosol during red-tides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125474. [PMID: 39643226 DOI: 10.1016/j.envpol.2024.125474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/31/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Red tide is caused by the accumulation of Karenia (K.) brevis, which produces brevetoxin (BTx), a neurotoxin. Excreted BTx is incorporated into sea spray aerosol (SSA), which is created from the bursting of bubbles at the ocean's surface. For the first time, this study measures the enrichment factor of BTx in K. brevis algal aerosol. During red-tide events in 2021 and 2022, aerosol and water samples were collected from Gulf Coast beaches in Southwest Florida with various levels of K. brevis growth. The concentrations of BTx in SSA were measured using an enzyme-linked immunosorbent assay kit. The concentrations of both aerosolized BTx and organic matter (OM) were normalized using that of sodium ions and were shown to be significantly higher than those observed in seawater. Lipophilic BTx is present in SSA at concentrations that are 2-4 orders of magnitude higher than seawater, and 1-2 orders of magnitude higher than concentrations of OM in SSA. Enrichment of aerosolized BTx was also simulated in the algal culture tank with two different aerosol generation methods. The estimated activity coefficient (order of 1019) of BTx in bulk seawater using the inorganic thermodynamic model indicates very poor solubility of BTx in seawater and supports its enrichment in ocean surfaces and SSA. Examining the enrichment factors of BTx and organic matter in SSA contributes to our comprehension of the potential respiratory challenges posed by inhaled algal aerosols during red tide occurrences. In addition, enriched BTx in the uppermost layer of the ocean during red tide blooms can adversely influence animals that inhabit in tide flats with neurological and respiratory impacts.
Collapse
Affiliation(s)
- Myoseon Jang
- PO Box 116450, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Karen Sem
- PO Box 116450, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Jiwon Choi
- PO Box 116450, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Quang Tran Vuong
- PO Box 116450, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Richard Pierce
- 1600 Ken Thompson Parkway, Mote Marine Laboratory, Sarasota, FL, 34326, USA
| | - Patricia Blum
- 1600 Ken Thompson Parkway, Mote Marine Laboratory, Sarasota, FL, 34326, USA
| | - James Javaruski
- 1600 Ken Thompson Parkway, Mote Marine Laboratory, Sarasota, FL, 34326, USA
| | - Azad Madhu
- PO Box 116450, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
3
|
Cheung RK, Zhang J, Wang T, Kattner L, Bogler S, Puthussery JV, Huang RJ, Gysel-Beer M, Slowik JG, Verma V, Prevot AS, El Haddad I, Bell DM, Modini RL. Online Measurements during Simulated Atmospheric Aging Track the Strongly Increasing Oxidative Potential of Complex Combustion Aerosols Relative to Their Primary Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2025; 12:64-72. [PMID: 39830725 PMCID: PMC11736845 DOI: 10.1021/acs.estlett.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Oxidative potential (OP) is increasingly recognized as a more health-relevant metric than particulate matter (PM) mass concentration because of its response to varying chemical compositions. Given the limited research on the OP of complex combustion aerosols, the effects of aging processes on their OP remain underexplored. We used online instruments to track the evolution of OP [via dithiothreitol (DTT) assays] during the aging of wood burning and coal combustion emissions by hydroxyl-radical-driven photooxidation and dark ozonolysis. We observed very substantial increases in the intrinsic OP (OPm DTT) of complex combustion aerosols (e.g., OPm DTT up to 100 pmol min-1 μg-1 for OH-aged wood burning emissions) within 1 day of equivalent aging. Further analysis in relation to the degree of oxidation revealed a potential for generalizing the OP of carbonaceous aerosols with average carbon oxidation state values ranging from -1.5 to -0.5 by assuming they have a constant OPm DTT value of ∼10 ± 6 pmol min-1 μg-1. Additionally, we uncovered a strong dependency of OPm DTT on both the source/precursor and aging pathway with above ∼-0.5. OH photooxidation was identified as an exceptionally efficient pathway for generating highly oxidized, multifunctionalized, and DTT-active products, particularly from wood burning emissions.
Collapse
Affiliation(s)
- Rico K.
Y. Cheung
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jun Zhang
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Tiantian Wang
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Lisa Kattner
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Sophie Bogler
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Joseph V. Puthussery
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ru-Jin Huang
- Institute
of Earth and Environment, Chinese Academy of Sciences, Xi’an 710061, China
| | - Martin Gysel-Beer
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jay G. Slowik
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Vishal Verma
- Department
of Civil & Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - André S.
H. Prevot
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Imad El Haddad
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - David M. Bell
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Robin L. Modini
- PSI
Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
4
|
Wang Q, Chen Q, Lin H, Ding J, Sha T, Han Y. Investigation of the Mechanism of Oxidative Potential Increase in Atmospheric Particulate Matter during Photoaging: Important Role of Aromatic Nitrogenous Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19818-19831. [PMID: 39436324 DOI: 10.1021/acs.est.4c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Particulate matter (PM) undergoing various aging processes in the atmosphere changes its toxicity. However, the mechanism of toxicity evolution is not fully clarified currently. This study demonstrates that photoaging promotes an increase in the oxidative potential (OP) of atmospheric PM by about 30%, and the increased OP is mainly attributed to the production of secondary organic compounds, while water-soluble metal ions contribute only 11%. The OP of nonextractable matters (NEMs) of atmospheric PM was mostly increased after photoaging, followed by water-soluble matters (WSMs). NEM can produce quinone-like functional groups and secondary persistent free radicals during photoaging, which are most likely to produce reactive oxygen species (ROS). For WSM, the conversion of low-oxidation humic-like substances (HULIS) to high-oxidation HULIS is the main reason for the increase in OP. Quinones, nitrophenols, and N-containing heterocycles are the OP contributors produced during the conversion process. Among them, quinones are the main secondary oxidizing active compounds, while nitro-phenolic compounds and N-containing heterocyclic compounds may play a catalyst-like role, facilitating the production of oxidizing active compounds and ROS in the newly converted high-oxidation HULIS. This study clarifies the secondary OP generation mechanism and provides new insights into the uncertainty of PM toxicity during atmospheric aging.
Collapse
Affiliation(s)
- Qingwen Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hao Lin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiale Ding
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Tong Sha
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuemei Han
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
5
|
Arshad T, Rafique MS, Bashir S, Hayat A, Murtaza MG, Muneeb A, Shahadat I, Nayab N. Abatement of Aerosols by Ionic Wind Extracted From Dielectric Barrier Discharge Plasma. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241262879. [PMID: 39055117 PMCID: PMC11271097 DOI: 10.1177/11786302241262879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024]
Abstract
Lahore (Pakistan), being an industrial city, has high emission of aerosols that affects and contaminates the air quality. Therefore, the abatement/inactivation of aerosols is necessary to restrict their infectious activities. In this project, ionic wind isolated from dielectric barrier discharge plasma (DBD plasma) has been utilized to abate the aerosols trapped in the Surgical Mask and KN95 Respirator. To infer the chemical and elemental detection of ambient aerosols, FTIR and LIBS have been employed. "From the results, it is noteworthy that abatement/removal of aerosols has been successfully carried out by the ionic wind irradiation and highlights the potential of DBD plasma technology in removing the aerosols pollution."
Collapse
Affiliation(s)
- Tehreem Arshad
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | | | - Shazia Bashir
- Department of CASP, Government College University Lahore, Pakistan
| | - Asma Hayat
- Department of CASP, Government College University Lahore, Pakistan
| | | | - Abdul Muneeb
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | - Imran Shahadat
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | - Nabiha Nayab
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| |
Collapse
|
6
|
Fang Z, Lai A, Dongmei Cai, Chunlin Li, Carmieli R, Chen J, Wang X, Rudich Y. Secondary Organic Aerosol Generated from Biomass Burning Emitted Phenolic Compounds: Oxidative Potential, Reactive Oxygen Species, and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8194-8206. [PMID: 38683689 PMCID: PMC11097630 DOI: 10.1021/acs.est.3c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Phenolic compounds are largely emitted from biomass burning (BB) and have a significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of water-soluble components of their SOA generated under different photochemical ages and NOx levels were investigated. Phenolic compounds contribute greatly to the oxidative potential (OP) of biomass-burning SOA. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular reactive oxygen species (ROS), possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA. Combining different acellular and cellular assays can provide a comprehensive understanding of aerosol toxicological properties.
Collapse
Affiliation(s)
- Zheng Fang
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Alexandra Lai
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Dongmei Cai
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP
3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
- College
of Environmental Science and Engineering, Tongji University, Shanghai 200072, China
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Jianmin Chen
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP
3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xinming Wang
- State
Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory
of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Mylonaki M, Gini M, Georgopoulou M, Pilou M, Chalvatzaki E, Solomos S, Diapouli E, Giannakaki E, Lazaridis M, Pandis SN, Nenes A, Eleftheriadis K, Papayannis A. Wildfire and African dust aerosol oxidative potential, exposure and dose in the human respiratory tract. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169683. [PMID: 38160832 DOI: 10.1016/j.scitotenv.2023.169683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Exposure to wildfire smoke and dust can severely affect air quality and health. Although particulate matter (PM) levels and exposure are well-established metrics linking to health outcomes, they do not consider differences in particle toxicity or deposition location in the respiratory tract (RT). Usage of the oxidative potential (OP) exposure may further shape our understanding on how different pollution events impact health. Towards this goal, we estimate the aerosol deposition rates, OP and resulting OP deposition rates in the RT for a typical adult Caucasian male residing in Athens, Greece. We focus on a period when African dust (1-3 of August 2021) and severe wildfires at the northern part of the Attika peninsula and the Evia island, Greece (4-18 of August 2021) affected air quality in Athens. During these periods, the aerosol levels increased twofold leading to exceedances of the World Health Organization (WHO) [15(5) μg m-3] PM10 (PM2.5) air quality standard by almost 100 %. We show that the OP exposure is 1.5-times larger during the wildfire smoke events than during the dust intrusion, even if the latter was present in higher mass loads - because wildfire smoke has a higher specific OP than dust. This result carries two important implications: OP exposure should be synergistically used with other metrics - such as PM levels - to efficiently link aerosol exposure with the resulting health effects, and, certain sources of air pollution (in our case, exposure to biomass burning smoke) may need to be preferentially controlled, whenever possible, owing to their disproportionate contribution to OP exposure and ability to penetrate deeper into the human RT.
Collapse
Affiliation(s)
- Maria Mylonaki
- Laser Remote Sensing Unit, Department of Physics, National and Technical University of Athens, Zografou 15780, Greece; Meteorological Institute, Ludwig-Maximilians-Universität München, Munich 80333, Germany
| | - Maria Gini
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Maria Georgopoulou
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Marika Pilou
- Thermal Hydraulics and Multiphase Flow Laboratory, INRaSTES, NCSR "Demokritos", Agia Paraskevi 15310, Greece
| | - Eleftheria Chalvatzaki
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Stavros Solomos
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens 10679, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Elina Giannakaki
- Department of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, Athens, Greece
| | - Mihalis Lazaridis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Spyros N Pandis
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece; Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Athanasios Nenes
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece; Laboratory of Atmospheric Processes and their Impacts, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Alexandros Papayannis
- Laser Remote Sensing Unit, Department of Physics, National and Technical University of Athens, Zografou 15780, Greece; Laboratory of Atmospheric Processes and their Impacts, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
| |
Collapse
|
8
|
Fujitani Y, Furuyama A, Hayashi M, Hagino H, Kajino M. Assessing oxidative stress induction ability and oxidative potential of PM 2.5 in cities in eastern and western Japan. CHEMOSPHERE 2023; 324:138308. [PMID: 36889470 DOI: 10.1016/j.chemosphere.2023.138308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is an important cause of respiratory diseases associated with exposure to PM2.5. Accordingly, acellular methods for assessing the oxidative potential (OP) of PM2.5 have been evaluated extensively for use as indicators of oxidative stress in living organisms. However, OP-based assessments only reflect the physicochemical properties of particles and do not consider particle-cell interactions. Therefore, to determine the potency of OP under various PM2.5 scenarios, oxidative stress induction ability (OSIA) assessments were performed using a cell-based method, the heme oxygenase-1 (HO-1) assay, and the findings were compared with OP measurements obtained using an acellular method, the dithiothreitol assay. For these assays, PM2.5 filter samples were collected in two cities in Japan. To quantitatively determine the relative contribution of the quantity of metals and subtypes of organic aerosols (OA) in PM2.5 to the OSIA and the OP, online measurements and offline chemical analysis were also performed. The findings showed a positive relationship between the OSIA and OP for water-extracted samples, confirming that the OP is generally well suited for use as an indicator of the OSIA. However, the correspondence between the two assays differed for samples with a high water-soluble (WS)-Pb content, which had a higher OSIA than would be expected from the OP of other samples. The results of reagent-solution experiments showed that the WS-Pb induced the OSIA, but not the OP, in 15-min reactions, suggesting a reason for the inconsistent relationship between the two assays across samples. Multiple linear regression analyses and reagent-solution experiments showed that WS transition metals and biomass burning OA accounted for approximately 30-40% and 50% of the total OSIA or the total OP of water-extracted PM2.5 samples, respectively. This is the first study to evaluate the association between cellular oxidative stress assessed by the HO-1 assay and the different subtypes of OA.
Collapse
Affiliation(s)
- Yuji Fujitani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Akiko Furuyama
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masahiko Hayashi
- Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jyonan-ku, Fukuoka, 814-0180, Japan
| | - Hiroyuki Hagino
- Japan Automobile Research Institute, 2530 Karima, Tsukuba, Ibaraki, 305-0822, Japan
| | - Mizuo Kajino
- Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan
| |
Collapse
|
9
|
Li C, Misovich MV, Pardo M, Fang Z, Laskin A, Chen J, Rudich Y. Secondary organic aerosol formation from atmospheric reactions of anisole and associated health effects. CHEMOSPHERE 2022; 308:136421. [PMID: 36108757 DOI: 10.1016/j.chemosphere.2022.136421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Anisole (methoxybenzene) represents an important marker compound of lignin pyrolysis and a starting material for many chemical products. In this study, secondary organic aerosols (SOA) formed by anisole via various atmospheric processes, including homogeneous photooxidation with varying levels of OH• and NOx and subsequent heterogeneous NO3• dark reactions, were investigated. The yields of anisole SOA, particle-bound organoperoxides, particle-induced oxidative potential (OP), and cytotoxicity were characterized in view of the atmospheric fate of the anisole precursor. Anisole SOA yields ranged between 0.12 and 0.35, depending on the reaction pathways and aging degrees. Chemical analysis of the SOA suggests that cleavage of the benzene ring is the main reaction channel in the photooxidation of anisole to produce low-volatility, highly oxygenated small molecules. Fresh anisole SOA from OH• photooxidation are more light-absorbing and have higher OP and organoperoxide content. The high correlation between SOA OP and organoperoxide content decreases exponentially with the degree of OH• aging. However, the contribution of organoperoxides to OP is minor (<4%), suggesting that other, non-peroxide oxidizers play a central role in anisole SOA OP. The particle-induced OP and particulate organoperoxides yield both reach a maximum value after ∼2 days' of photooxidation, implicating the potential long impact of anisole during atmospheric transport. NOx-involved photooxidation and nighttime NO3• reactions facilitate organic nitrate formation and enhance particle light absorption. High NOx levels suppress anisole SOA formation and organoperoxides yield in photooxidation, with decreased aerosol OP and cellular oxidative stress. In contrast, nighttime aging significantly increases the SOA toxicity and reactive oxygen species (ROS) generation in lung cells. These dynamic properties and the toxicity of anisole SOA advocate consideration of the complicated and consecutive aging processes in depicting the fate of VOCs and assessing the related effects in the atmosphere.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Maria V Misovich
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Zheng Fang
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200438, China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
10
|
Xie L, Zhu K, Jiang W, Lu H, Yang H, Deng Y, Jiang Y, Jia H. Toxic effects and primary source of the aged micro-sized artificial turf fragments and rubber particles: Comparative studies on laboratory photoaging and actual field sampling. ENVIRONMENT INTERNATIONAL 2022; 170:107663. [PMID: 36450210 DOI: 10.1016/j.envint.2022.107663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Numerous micro-sized artificial turf fragments (MATF) and rubber particles (MRP) are generated and accumulated during the use of the artificial playing field. However, attention has rarely been paid to the potential toxic effects of MATF and MRP on sportsmen. In this study, the active components and chemical composition of aged MATF and MRP derived from laboratory photoaging and actual field sampling were detected, and their effects on cytotoxicity were examined correspondingly. Laboratory photoaging significantly increased environmental persistent free radicals (EPFRs), reactive oxygen species (ROS) abundances and oxidative potential (OP) levels on MATF and MRP, but they have limited cytotoxicity. Unfortunately, in the actual field, aged MATF and MRP with higher heavy metals and polycyclic aromatic hydrocarbons (PAHs) contents exhibited markedly higher cytotoxicity with the survival rate of cells of 78 % and 26 % (p < 0.05), although they had lower EPFRs and ROS yields. Correlation analysis revealed that the cell viability was closely linked to heavy metals of MATF (p < 0.05), and to organic hydroperoxide (OHP), PAHs and heavy metals of MRP (p < 0.05). By systematically considering the above results, heavy metals and PAHs enriched on MATF and MRP from the surrounding environment played the important role in the cytotoxicity, which was different from conventional perspectives. Our findings demonstrate that MATF and MRP associated with an artificial turf field contain potent mixtures of pollutants and can, therefore, be relevant yet underestimated factors contributing to the health risks.
Collapse
Affiliation(s)
- Linyang Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Wenjun Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haodong Lu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huiqiang Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
11
|
Li C, Fang Z, Czech H, Schneider E, Rüger CP, Pardo M, Zimmermann R, Chen J, Laskin A, Rudich Y. pH modifies the oxidative potential and peroxide content of biomass burning HULIS under dark aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155365. [PMID: 35460777 DOI: 10.1016/j.scitotenv.2022.155365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Humic-like substances (HULIS) account for a major redox-active fraction of biomass burning organic aerosols (BBOA). During atmospheric transport, fresh acidic BB-HULIS in droplets and humid aerosols are subject to neutralization and pH-modified aging process. In this study, solutions containing HULIS isolated from wood smoldering emissions were first adjusted with NaOH and NH3 to pH values in the range of 3.6-9.0 and then aged under oxic dark conditions. Evolution of HULIS oxidative potential (OP) and total peroxide content (equivalent H2O2 concentration, H2O2eq) were measured together with the changes in solution absorbance and chemical composition. Notable immediate responses such as peroxide generation, HULIS autoxidation, and an increase in OP and light absorption were observed under alkaline conditions. Initial H2O2eq, OP, and absorption increased exponentially with pH, regardless of the alkaline species added. Dark aging further oxidized the HULIS and led to pH-dependent toxic and chemical changes, exhibiting an alkaline-facilitated initial increase followed by a decrease of OP and H2O2eq. Although highly correlated with HULIS OP, the contributions of H2O2eq to OP are minor but increased both with solution pH and dark aging time. Alkalinity-assisted autoxidation of phenolic compounds and quinoids with concomitant formation of H2O2 and other alkalinity-favored peroxide oxidation reactions are proposed here for explaining the observed HULIS OP and chemical changes in the dark. Our findings suggest that alkaline neutralization of fresh BB-HULIS represents a previously overlooked peroxide source and pathway for modifying aerosol redox-activity and composition. Additionally, these findings imply that the lung fluid neutral environment can modify the OP and peroxide content of inhaled BB-HULIS. The results also suggest that common separation protocols of HULIS using base extraction methods should be treated with caution when evaluating and comparing their composition, absorption, and relative toxicity.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Zheng Fang
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hendryk Czech
- Joint Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Alexandre Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Effects of Chemical Reactions on the Oxidative Potential of Humic Acid, a Model Compound of Atmospheric Humic-like Substances. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atmospheric particulate matter (PM) contains various chemicals, some of which generate in vivo reactive oxygen species (ROS). Owing to their high reactivity and oxidation ability, ROS can cause various diseases. To understand how atmospheric PM affects human health, we must clarify the PM components having oxidative potential (OP) leading to ROS production. According to previous studies, OP is exhibited by humic-like substances (HULIS) in atmospheric PM. However, the OP-dependence of the chemical structures of HULIS has not been clarified. Therefore, in this study, humic acid (HA, a model HULIS material) was exposed to ozone and ultraviolet (UV) irradiation, and its OP and structures were evaluated before and after the reactions using dithiothreitol (DTT) assay and Fourier transform infrared (FT-IR), respectively. The OP of HA was more significantly increased by UV irradiation than by ozone exposure. FT-IR analysis showed an increased intensity of the C=O peak in the HA structure after UV irradiation, suggesting that the OP of HA was increased by a chemical change to a more quinone-like structure after irradiation.
Collapse
|
13
|
Offer S, Hartner E, Di Bucchianico S, Bisig C, Bauer S, Pantzke J, Zimmermann EJ, Cao X, Binder S, Kuhn E, Huber A, Jeong S, Käfer U, Martens P, Mesceriakovas A, Bendl J, Brejcha R, Buchholz A, Gat D, Hohaus T, Rastak N, Jakobi G, Kalberer M, Kanashova T, Hu Y, Ogris C, Marsico A, Theis F, Pardo M, Gröger T, Oeder S, Orasche J, Paul A, Ziehm T, Zhang ZH, Adam T, Sippula O, Sklorz M, Schnelle-Kreis J, Czech H, Kiendler-Scharr A, Rudich Y, Zimmermann R. Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs). ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27003. [PMID: 35112925 PMCID: PMC8812555 DOI: 10.1289/ehp9413] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. Objectives: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (β-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air–liquid interface (ALI). Methods: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and β-pinene (SOAβPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. Results: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAβPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. Discussion: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with β-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Elias J. Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Xin Cao
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Seongho Jeong
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Uwe Käfer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Patrick Martens
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Arunas Mesceriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jan Bendl
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ramona Brejcha
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Angela Buchholz
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Daniella Gat
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Kalberer
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Yue Hu
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Ogris
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annalisa Marsico
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Paul
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Zhi-Hui Zhang
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Thomas Adam
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
14
|
Zhu K, Jia H, Jiang W, Sun Y, Zhang C, Liu Z, Wang T, Guo X, Zhu L. The First Observation of the Formation of Persistent Aminoxyl Radicals and Reactive Nitrogen Species on Photoirradiated Nitrogen-Containing Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:779-789. [PMID: 34964354 DOI: 10.1021/acs.est.1c05650] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitrogen-containing microplastics (N-MPs) are widely present in the atmosphere, but their potential health risks have been overlooked. In this study, the formation of persistent aminoxyl radicals (PAORs) and reactive nitrogen species (RNSs) on the N-MPs under light irradiation was investigated. After photoaging, an anisotropic triplet with the g-factor of ∼2.0044, corresponding to PAORs, was detected on the nonaromatic polyamide (PA) rather than amino resin (AmR) by electron paramagnetic resonance and confirmed by density functional theory calculations. The generated amine oxide portions on the photoaged PA were identified using X-ray photoelectron spectroscopy and Raman spectroscopy, which were considered to be the main structural basis/precursors of a PAOR. Surprisingly, RNSs were also observed on the irradiated PA. The generated ·NO due to the aphotolysis of nitrone groups simultaneously reacted with peroxide radicals and O2·- to yield ·NO2 and peroxynitrite, respectively, which were responsible for peroxyacyl nitrates (PAN) and CO3·- formation. Besides, a significantly higher oxidative potential and reductive potential were observed for the aged PA than AmR, which is assigned to the abundant RNSs, organic hydroperoxides and PANs, and a strong ability to transfer electrons from PAOR, respectively. This work provides important information for the potential risks of airborne N-MPs and may serve as a guide for future toxicological assessments.
Collapse
Affiliation(s)
- Kecheng Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Wenjun Jiang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Yajiao Sun
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Chi Zhang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Ze Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Tiecheng Wang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
15
|
Fushimi A, Nakajima D, Furuyama A, Suzuki G, Ito T, Sato K, Fujitani Y, Kondo Y, Yoshino A, Ramasamy S, Schauer JJ, Fu P, Takahashi Y, Saitoh K, Saito S, Takami A. Source contributions to multiple toxic potentials of atmospheric organic aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145614. [PMID: 33592460 DOI: 10.1016/j.scitotenv.2021.145614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 05/16/2023]
Abstract
Fine particulate matter (PM2.5) in the atmosphere is of high priority for air quality management efforts to address adverse health effects in human. We believe that emission control policies, which are traditionally guided by source contributions to PM mass, should also consider source contributions to PM health effects or toxicity. In this study, we estimated source contributions to the toxic potentials of organic aerosols (OA) as measured by a series of chemical and in-vitro biological assays and chemical mass balance model. We selected secondary organic aerosols (SOA), vehicles, biomass open burning, and cooking as possible important OA sources. Fine particulate matter samples from these sources and parallel atmospheric samples from diverse locations and seasons in East Asia were collected for the study. The source and atmospheric samples were analyzed for chemical compositions and toxic potentials, i.e. oxidative potential, inflammatory potential, aryl hydrocarbon receptor (AhR) agonist activity, and DNA-damage, were measured. The toxic potentials per organic carbon (OC) differed greatly among source and ambient particulate samples. The source contributions to oxidative and inflammatory potentials were dominated by naphthalene-derived SOA (NapSOA), followed by open burning and vehicle exhaust. The AhR activity was dominated by open burning, followed by vehicle exhaust and NapSOA. The DNA damage was dominated by vehicle exhaust, followed by open burning. Cooking and biogenic SOA had smaller contributions to all the toxic potentials. Regarding atmospheric OA, urban and roadside samples showed stronger toxic potentials per OC. The toxic potentials of remote samples in summer were consistently very weak, suggesting that atmospheric aging over a long time decreased the toxicity. The toxic potentials of the samples from the forest and the experimentally generated biogenic SOA were low, suggesting that toxicity of biogenic primary and secondary particles is relatively low.
Collapse
Affiliation(s)
- Akihiro Fushimi
- National Institute for Environmental Studies, Tsukuba, Japan.
| | | | - Akiko Furuyama
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Go Suzuki
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Tomohiro Ito
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Kei Sato
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Yoshinori Kondo
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Ayako Yoshino
- National Institute for Environmental Studies, Tsukuba, Japan
| | | | - James J Schauer
- Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | | | - Katsumi Saitoh
- National Institute for Environmental Studies, Tsukuba, Japan; Environmental Science Analysis and Research Laboratory, Iwate, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, Koto-ku, Tokyo, Japan
| | - Akinori Takami
- National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
16
|
Patel A, Rastogi N, Gandhi U, Khatri N. Oxidative potential of atmospheric PM 10 at five different sites of Ahmedabad, a big city in Western India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115909. [PMID: 33143975 DOI: 10.1016/j.envpol.2020.115909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The current study presents the oxidative potential (OP) along with a wide range of chemical speciation of particulate matter with an aerodynamic diameter less than 10 μm (PM10) at five sites representing different environments in Ahmedabad, a big city in western India. On an average, PM10 concentrations were 116 ± 36, 228 ± 43, 133 ± 29, 101 ± 21, and 70 ± 20 μg m-3; volume-normalized OP (OPV) were 2.51 ± 0.71, 5.62 ± 0.68, 2.69 ± 0.76, 2.14 ± 0.41, and 1.55 ± 0.51 nmol DTT min-1 m-3; and mass-normalized OP (OPM) were 22 ± 3, 25 ± 5, 21 ± 6, 21 ± 2, and 22 ± 3 pmol DTT min-1 μg-1 over Bapunagar (backward residential area), Narol (industrial), Paldi (bus transport hub), Income Tax (huge running traffic) and Science City (posh residential area), respectively. Overall, OPV showed a significant linear correlation with PM10, whereas OPM showed near uniformity with increasing PM10. Although the OPM values were similar, the site-to-site variability in PM10 concentration reflects the corresponding health risks associated with PM10 exposure for the people living in these areas. Further, a noticeable temporal variation in OPM at Narol and Paldi suggests that species with diverse OPM contributed to PM10 on different days. A strong linear relationship between the ratio of OPV to the mass concentration of organic carbon (OPOC) and the ratio of m/z 43 signal to total water-soluble organic aerosols (WSOA) signals (f43) suggests that the fossil-fuel combustion derived WSOA have higher OP. Furthermore, the relationships of OP with water-soluble trace metals and brown carbon are also investigated and discussed in this paper. Nitrogenous organic compounds particularly emitted from the traffic-related sources in Paldi and Income Tax have higher OPOC than those emitted from other sources over Bapunagar, Narol, and Science City.
Collapse
Affiliation(s)
- Anil Patel
- Geosciences Division, Physical Research Laboratory, Ahmedabad, India
| | - Neeraj Rastogi
- Geosciences Division, Physical Research Laboratory, Ahmedabad, India.
| | - Utsav Gandhi
- Gujarat Environment Management Institute, Gandhinagar, India
| | - Nitasha Khatri
- Gujarat Environment Management Institute, Gandhinagar, India
| |
Collapse
|
17
|
Zhu K, Jia H, Sun Y, Dai Y, Zhang C, Guo X, Wang T, Zhu L. Enhanced cytotoxicity of photoaged phenol-formaldehyde resins microplastics: Combined effects of environmentally persistent free radicals, reactive oxygen species, and conjugated carbonyls. ENVIRONMENT INTERNATIONAL 2020; 145:106137. [PMID: 32961468 DOI: 10.1016/j.envint.2020.106137] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 05/23/2023]
Abstract
Phenol-formaldehyde resin microplastic (PF-MP) is one of the major inhalable microplastics in environments released from the manufacture, processing and usage of PF materials. The associated toxicities of PF-MP might be affected by photoaging. In this study, the dynamic evolutions of the oxidative potential (OP) and redox-active species, including environmentally persistent free radicals (EPFRs), reactive oxygen species (ROS), peroxides and conjugated carbonyls, as well as the associated cytotoxicity of PF-MP were systematically investigated as a result of the simulated sunlight irradiation. As the photoaging time extended, the OP of PF-MP increased. The contents of the produced conjugated carbonyls, ROS and PF-bound EPFRs due to light irradiation increased as well, and displayed significant correlations with the OP (Spearman r > 0.6, p < 0.05). The photoaged PF-MP distinctly increased the cellular ROS and reduced the cell viability of human lung epithelial adenocarcinoma cells (A549). The cytotoxicity of PF-MP showed a similar trend with the OP level in PF-MP, suggesting that the produced active species induced the in vitro toxicities. The results not only highlight the adverse health effects of photoaged PF-MP, but also provide new perspectives for the environmental risks of airborne MPs.
Collapse
Affiliation(s)
- Kecheng Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Yajiao Sun
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yunchao Dai
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Chi Zhang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Tiecheng Wang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lingyan Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Daellenbach KR, Uzu G, Jiang J, Cassagnes LE, Leni Z, Vlachou A, Stefenelli G, Canonaco F, Weber S, Segers A, Kuenen JJP, Schaap M, Favez O, Albinet A, Aksoyoglu S, Dommen J, Baltensperger U, Geiser M, El Haddad I, Jaffrezo JL, Prévôt ASH. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020; 587:414-419. [PMID: 33208962 DOI: 10.1038/s41586-020-2902-8] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/05/2020] [Indexed: 11/09/2022]
Abstract
Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1-3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5-8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.
Collapse
Affiliation(s)
- Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.,Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Laboratoire Chimie Environnement (LCE), Marseille, France.,Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Gaëlle Uzu
- Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institute of Engineering and Management Univ. Grenoble Alpes (Grenoble INP), Institut des Géosciences de l'Environnement (IGE), Grenoble, France
| | - Jianhui Jiang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| | | | - Zaira Leni
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Athanasia Vlachou
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Giulia Stefenelli
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Francesco Canonaco
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.,Datalystica, Villigen, Switzerland
| | - Samuël Weber
- Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institute of Engineering and Management Univ. Grenoble Alpes (Grenoble INP), Institut des Géosciences de l'Environnement (IGE), Grenoble, France
| | - Arjo Segers
- Department of Climate, Air and Sustainability, The Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, The Netherlands
| | - Jeroen J P Kuenen
- Department of Climate, Air and Sustainability, The Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, The Netherlands
| | - Martijn Schaap
- Department of Climate, Air and Sustainability, The Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, The Netherlands.,Institut für Meteorologie, Free University Berlin, Berlin, Germany
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (Ineris), Verneuil en Halatte, France
| | - Alexandre Albinet
- Institut National de l'Environnement Industriel et des Risques (Ineris), Verneuil en Halatte, France
| | - Sebnem Aksoyoglu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Josef Dommen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| | - Jean-Luc Jaffrezo
- Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institute of Engineering and Management Univ. Grenoble Alpes (Grenoble INP), Institut des Géosciences de l'Environnement (IGE), Grenoble, France
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
19
|
Oxidative Potential Induced by Ambient Particulate Matters with Acellular Assays: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8111410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acellular assays of oxidative potential (OP) induced by ambient particulate matters (PMs) are of great significance in screening for toxicity in PMs. In this review, several typical OP measurement techniques, including the respiratory tract lining fluid assay (RTLF), ascorbate depletion assay (AA), dithiothreitol assay (DTT), chemiluminescent reductive acridinium triggering (CRAT), dichlorofluorescin assay (DCFH) and electron paramagnetic/spin resonance assay (EPR/ESR) are discussed and their sensitivity to different PMs species composition, PMs size distribution and seasonality is compared. By comparison, the DTT assay tends to be the preferred method providing a more comprehensive measurement with transition metals and quinones accumulated in the fine PMs fraction. Specific transition metals (i.e., Mn, Cu, Fe) and quinones are found to contribute OPDTT directly whereas the redox properties of PMs species may be changed by the interactions between themselves. The selection of the appropriate OP measurement methods and the accurate analysis of the relationship between the methods and PM components is conducive to epidemiological researches which are related with oxidative stress induced by PMs exposure.
Collapse
|
20
|
Proteome-wide effects of naphthalene-derived secondary organic aerosol in BEAS-2B cells are caused by short-lived unsaturated carbonyls. Proc Natl Acad Sci U S A 2020; 117:25386-25395. [PMID: 32989125 DOI: 10.1073/pnas.2001378117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to air pollution causes adverse health outcomes, but the toxicity mechanisms remain unclear. Here, we investigated the dynamic toxicities of naphthalene-derived secondary organic aerosol (NSOA) in a human bronchial epithelial cell line (BEAS-2B) and identified the chemical components responsible for toxicities. The chemical composition of NSOA was found to vary with six simulated atmospheric aging conditions (C1-C6), as characterized by high-resolution mass spectrometry and ion mobility mass spectrometry. Global proteome profiling reveals dynamic evolution in toxicity: Stronger proteome-wide impacts were detected in fresh NSOA, but the effects declined along with atmospheric aging. While Nrf2-regulated proteins (e.g., NQO1) were significantly up-regulated, the majority (78 to 97%) of proteins from inflammation and other pathways were down-regulated by NSOA exposure (e.g., Rho GTPases). This pattern is distinct from the reactive oxygen species (ROS)-mediated toxicity pathway, and an alternative cysteine reaction pathway was revealed by the decreased abundance of proteins (e.g., MT1X) prone to posttranslational thiol modification. This pathway was further validated by observing decreased Nrf2 response in reporter cells, after preincubating NSOA with cysteine. Ethynyl-naphthalene probe was employed to confirm the alkylation of cellular proteome thiols on the proteome-wide level by fresh NSOA via in-gel fluorescence imaging. Nontarget analysis identified several unsaturated carbonyls, including naphthoquinones and hydroxylated naphthoquinones, as the toxic components responsible for cysteine reactivity. Our study provides insights into the dynamic toxicities of NSOA during atmospheric aging and identifies short-lived unsaturated carbonyls as the predominant toxic components at the posttranslational level.
Collapse
|
21
|
Long X, Luo YH, Zhang Z, Zheng C, Zeng C, Bi Y, Zhou C, Rittmann BE, Waite TD, Herckes P, Westerhoff P. The Nature and Oxidative Reactivity of Urban Magnetic Nanoparticle Dust Provide New Insights into Potential Neurotoxicity Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10599-10609. [PMID: 32786591 DOI: 10.1021/acs.est.0c01962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The recent discovery of magnetic nanoparticles (NPs) in human brain tissue has raised concerns regarding their source and neurotoxicity. As previous studies have suggested that magnetite in urban dust may be the source, we collected urban magnetic dust and thoroughly characterized the nature of ambient urban magnetic dust particles prior to investigating their neurotoxic potential. In addition to magnetite, magnetic dust contained an abundance (∼40%) of elemental iron (Fe0). The coexistence of magnetite and elemental iron was found in magnetic dust particles of inhalable (<10 μm) and nanoscale (<200 nm) size ranges with these particles small enough to enter the human brain via the respiratory tract and olfactory bulbs. The magnetic dust also contained nonferrous water-soluble metals (particularly Cu) that can induce formation of reactive oxygen species (ROS). Previous studies used engineered pure-magnetite for in vitro ROS studies. However, while magnetite was present in all magnetic dust particles collected, engineered pure-magnetite was relatively unreactive and contributed minimally to the generation of ROS. We fill a critical knowledge gap between exposure to heterogeneous ambient iron-particles and in vitro experiments with engineered versus ambient, incidental iron-bearing nanoscale minerals. Our work points to the need to further investigate the presence and properties of magnetic NPs in respirable dust with respect to their potential role in neurodegeneration.
Collapse
Affiliation(s)
- Xiangxing Long
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Zhaobo Zhang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Chenwei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Chao Zeng
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - T David Waite
- Water Research Center, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
22
|
Jiang H, Ahmed CMS, Zhao Z, Chen JY, Zhang H, Canchola A, Lin YH. Role of functional groups in reaction kinetics of dithiothreitol with secondary organic aerosols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114402. [PMID: 32247903 DOI: 10.1016/j.envpol.2020.114402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
The toxicity of organic aerosols has been largely ascribed to the generation of reactive oxygen species, which could subsequently induce oxidative stress in biological systems. The reaction of DTT with redox-active species in PM has been generally assumed to be pseudo-first order, with the oxidative potential of PM being represented by the DTT consumption per minute of reaction time per μg of PM. Although catalytic reactive species such as transition metals and quinones are long believed to be the main contributors of DTT responses, the role of non-catalytic DTT reactive species such as organic hydroperoxides (ROOH) and electron-deficient alkenes (e.g., conjugated carbonyls) in DTT consumption has been recently highlighted. Thus, understanding the reaction kinetics and mechanisms of DTT consumption by various PM components is required to interpret the oxidative potential measured by DTT assays more accurately. In this study, we measured the DTT consumptions over time and characterized the reaction products using model compounds and secondary organic aerosols (SOA) with varying initial concentrations. We observed that the DTT consumption rates linearly increased with both initial DTT and sample concentrations. The overall reaction order of DTT with non-catalytic reactive species and SOA in this study is second order. The reactions of DTT with different functional groups have significantly different rate constants. The reaction rate constant of isoprene SOA with DTT is mainly determined by the concentration of ROOH. For toluene SOA, both ROOH and electron-deficient alkenes may dominate its DTT reaction rates. These results provide some insights into the interpretation of DTT-based aerosol oxidative potential and highlight the need to study the toxicity mechanism of ROOH and electron-deficient alkenes in PM for future work.
Collapse
Affiliation(s)
- Huanhuan Jiang
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - C M Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, United States
| | - Zixu Zhao
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Jin Y Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, United States
| | - Haofei Zhang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, United States; Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Alexa Canchola
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, United States
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States; Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, United States.
| |
Collapse
|
23
|
Yang K, Lv B, Shen H, Jing G, Zhou Z. Coupling life cycle assessment with scenario analysis for sustainable management of Disperse blue 60. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25197-25208. [PMID: 32347496 DOI: 10.1007/s11356-020-08958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Sustainable management of dyeing industry is of paramount importance in order to minimize resource consumption and reduce related environmental impacts. Herein, an environmental study is conducted wherein life cycle assessment (LCA) is applied to a two-scenario process for Disperse blue 60 production with short and long processing chains with different (a) material types, (b) consumptions, (c) processes, and (d) functional units with yields of 300 t/a. The most important influenced substances of the two scenarios were sodium cyanide and electricity next. Results proved that the largest damage of the dye production was attributed to resources and reached 46 and 62 kPt in the two scenarios. Compared with the conventional coal-fired power generation, damaged values of electricity from nature gas (NG) could reduce from 102 to 86 kPt in scenarios 1 and from 123 to 104 kPt in scenarios 2, respectively. When the electricity switched from NG to solar power, the values of the two scenarios could further decrease by 17 and 27 kPt, respectively. Therefore, the process of scenario 1 with the short process chain was more environmentally friendly for the production of Disperse blue 60 owing to the more efficient process and lower resource consumption. Graphic abstract.
Collapse
Affiliation(s)
- Kexuan Yang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Bihong Lv
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
| | - Huazhen Shen
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Guohua Jing
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Zuoming Zhou
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| |
Collapse
|
24
|
Gao D, Ripley S, Weichenthal S, Godri Pollitt KJ. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic Biol Med 2020; 151:7-25. [PMID: 32430137 DOI: 10.1016/j.freeradbiomed.2020.04.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Exposure to ambient air pollution has an adverse influence on human health. There is increasing evidence that oxidative potential (OP), the capacity of airborne pollutants to oxidize target molecules by generating redox oxidizing species, is a plausible metric for particulate matter (PM) toxicity. Here we describe the commonly used acellular techniques for measuring OP (respiratory tract lining fluid, dithiothreitol, ascorbic acid, and electron paramagnetic resonance assays) and review the PM chemical constituents that have been identified to drive the OP response. We further perform a review of the epidemiologic literature to identify studies that reported an association between exposure to ambient PM and a health outcome in a human population, and in which exposure was measured by both PM mass concentration and OP. Laboratory studies have shown that specific redox-active metals and quinones are able to contribute OP directly. However, interactions among PM species may alter the redox properties of PM components. In ambient PM measurements, all OP assays were found to be correlated with metals (Fe, Cu) and organic species (photochemically aged organics). Across the epidemiological studies reviewed, associations between fine PM (PM2.5) mass and cardio-respiratory outcomes were found to be stronger at elevated OP levels but findings varied across the different OP measurement techniques. Future work should aim to identify specific situations in which PM OP can improve air pollution exposure assessment and/or risk management. This may be particularly useful in countries with low PM2.5 mass concentrations over broad spatial scales where such information may greatly improve the efficiency of risk management activities.
Collapse
Affiliation(s)
- Dong Gao
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States
| | - Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States.
| |
Collapse
|
25
|
Source Apportionment of PM2.5 and of its Oxidative Potential in an Industrial Suburban Site in South Italy. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120758] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Some studies suggested a role of the atmospheric particulate matter (PM) and of its oxidative potential (OP) in determining adverse health effects. Several works have focused on characterisation of source contributions to PM OP, mainly using three approaches: correlation between OP and chemical markers of specific sources; use of OP as input variable in source apportionment with receptor models; and multi-linear regression (MLR) between OP and source contributions to PM obtained from receptor models. Up to now, comparison of results obtained with different approaches on the same dataset is scarce. This work aims to perform a OP study of PM2.5 collected in an industrial site, located near a biogas production and combustion plant (in southern Italy), comparing different approaches to investigate the contributions of the different sources to OP. The PM2.5 samples were analysed for determining ions, metals, carbonaceous components, and OP activity with the DTT (dithiotreitol) assay. Results showed that OP normalised in volume (DTTV) is correlated with carbonaceous components and some ions (NO3−, and Ca2+) indicating that PM of combustion, secondary, and crustal origin could contribute to the OP activity. The source apportionment, done with the Environmental Protection Agency (EPA)—Positive Matrix Factorization (PMF5.0) model, identified six sources: secondary sulphate; biomass burning; industrial emissions; crustal; vehicle traffic and secondary nitrate; and sea spray. A MLR analysis between the source’s daily contributions and the daily DTTV values showed a reasonable agreement of the two approaches (PMF and MLR), identifying the biomass burning and the vehicle traffic and secondary nitrate as the main sources contributing to DTTV activity.
Collapse
|
26
|
Fang T, Lakey PSJ, Weber RJ, Shiraiwa M. Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12784-12792. [PMID: 31560535 DOI: 10.1021/acs.est.9b03823] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Reactive oxygen species (ROS) play a central role in adverse health effects of atmospheric particulate matter (PM). Respiratory deposition can lead to the formation of ROS in the epithelial lining fluid due to redox reactions of PM components with lung antioxidants. As direct quantification of ROS is challenging, PM oxidative potential is more commonly measured using antioxidant surrogates including dithiothreitol and ascorbic acid, assuming that the decay of surrogates corresponds to ROS formation. However, this assumption has not yet been validated and the lack of ROS quantification in the respiratory tract causes major limitations in evaluating PM impacts on oxidative stress. By combining field measurements of size-segregated chemical composition, a human respiratory tract model, and kinetic modeling, we quantified production rates and concentrations of different types of ROS in different regions of the epithelial lining fluid by considering particle-size-dependent respiratory deposition. The extrathoracic region is found to have higher ROS concentrations compared to the bronchial and alveolar regions. Although H2O2 and O2- production is governed by Fe and Cu ions, OH radicals are mainly generated by organic compounds and Fenton-like reactions of metal ions. In winter when affected by biomass burning, model comparisons suggest that humic-like substances (HULIS) contribute to ROS formation substantially. We found that PM oxidative potential is a good indicator of the chemical production of H2O2 and O2- but does not represent OH generation. These results provide rationale and limitations of the use of oxidative potential as an indicator of PM toxicity in epidemiological and toxicological studies.
Collapse
Affiliation(s)
- Ting Fang
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Pascale S J Lakey
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
27
|
Use of Dithiothreitol Assay to Evaluate the Oxidative Potential of Atmospheric Aerosols. ATMOSPHERE 2019. [DOI: 10.3390/atmos10100571] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidative potential (OP) has been proposed as a useful descriptor for the ability of particulate matter (PM) to generate reactive oxygen species (ROS) and consequently induce oxidative stress in biological systems, which has been recognized as one of the most important mechanisms responsible for PM toxicity. The dithiothreitol (DTT) assay is one of the most frequently used techniques to quantify OP because it is low-cost, easy-to-operate, and has high repeatability. With two thiol groups, DTT has been used as a surrogate of biological sulfurs that can be oxidized when exposed to ROS. Within the DTT measurement matrix, OP is defined as the DTT consumption rate. Often, the DTT consumption can be attributed to the presence of transition metals and quinones in PM as they can catalyze the oxidation of DTT through catalytic redox reactions. However, the DTT consumption by non-catalytic PM components has not been fully investigated. In addition, weak correlations between DTT consumption, ROS generation, and cellular responses have been observed in several studies, which also reveal the knowledge gaps between DTT-based OP measurements and their implication on health effects. In this review, we critically assessed the current challenges and limitations of DTT measurement, highlighted the understudied DTT consumption mechanisms, elaborated the necessity to understand both PM-bound and PM-induced ROS, and concluded with research needs to bridge the existing knowledge gaps.
Collapse
|
28
|
Wong JPS, Tsagkaraki M, Tsiodra I, Mihalopoulos N, Violaki K, Kanakidou M, Sciare J, Nenes A, Weber RJ. Effects of Atmospheric Processing on the Oxidative Potential of Biomass Burning Organic Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6747-6756. [PMID: 31091086 DOI: 10.1021/acs.est.9b01034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxidative potential (OP), which is the ability of certain components in atmospheric particles to generate reactive oxidative species (ROS) and deplete antioxidants in vivo, is a prevailing toxicological mechanism underlying the adverse health effects associated with exposure to ambient aerosols. While previous studies have identified the high OP of fresh biomass burning organic aerosols (BBOA), it remains unclear how it evolves throughout atmospheric transport. Using the dithiothreitol (DTT) assay as a measure of OP, a combination of field observations and laboratory experiments is used to determine how atmospheric aging transforms the intrinsic OP (OPmassDTT) of BBOA. For ambient BBOA collected during the fire seasons in Greece, OPmassDTT was observed to increase by a factor of 2.1 ± 0.9 for samples of atmospheric ages up to 68 h. Laboratory experiments indicate that aqueous photochemical aging (aging by UVB and UVA photolysis; as well as OH oxidation), as well as aging by ozone and atmospheric dilution can transform the OPmassDTT of the water-soluble fraction of wood smoke within 2 days of atmospheric transport. The results from this work suggest that the air quality impacts of biomass burning emissions can extend beyond regions near fire sites and should be accounted for.
Collapse
Affiliation(s)
- Jenny P S Wong
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , 30331 , United States
| | - Maria Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry , University of Crete , 70013 Heraklion , Crete Greece
| | - Irini Tsiodra
- Environmental Chemical Processes Laboratory, Department of Chemistry , University of Crete , 70013 Heraklion , Crete Greece
| | | | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering , École Polytechnique Fédérale de Lausanne , Lausanne , 1015 , Switzerland
| | - Maria Kanakidou
- Environmental Chemical Processes Laboratory, Department of Chemistry , University of Crete , 70013 Heraklion , Crete Greece
| | - Jean Sciare
- Energy Environment and Water Research , The Cyprus Institute , Nicosia 1645 , Cyprus
| | - Athanasios Nenes
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , 30331 , United States
- IERSD , National Observatory of Athens , Palea Penteli , 15236 , Greece
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering , École Polytechnique Fédérale de Lausanne , Lausanne , 1015 , Switzerland
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , 30331 , United States
| | - Rodney J Weber
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , 30331 , United States
| |
Collapse
|
29
|
Chen JY, Jiang H, Chen SJ, Cullen C, Ahmed CMS, Lin YH. Characterization of electrophilicity and oxidative potential of atmospheric carbonyls. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:856-866. [PMID: 30942229 DOI: 10.1039/c9em00033j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbonyls are reactive and electrophilic compounds found ubiquitously in the atmosphere. The interactions between atmospheric carbonyls and biological nucleophiles (e.g., thiol-containing compounds) have important implications on their toxicity, but the underlying mechanisms have not been fully understood. In this study, we used combined computational and experimental approaches to assess the reactivities of atmospheric carbonyls in respect to their electrophilic properties. Global electrophilicity indexes (ω) were calculated based on density functional theory. The reactivities of carbonyls with thiols were assessed using the dithiothreitol (DTT) assay as a surrogate of biological nucleophilic antioxidants. The computational results indicated that the ω of a given carbonyl compound is largely influenced by its molecular structure and adjacent functional groups. The calculated ω values showed a strong linear correlation with the logarithm of measured carbonyl mass-normalized DTT consumption rates (r2 = 0.8378 and 0.9899 for simple and α,β-unsaturated carbonyls, respectively). The removal of DTT through the nucleophilic addition pathway was confirmed by the detection of carbonyl-DTT adducts using the gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) technique. Our results demonstrated that electrophilicity index can be potentially used as a molecular descriptor to predict toxicity of atmospheric carbonyls towards thiol-containing biomolecules. This work also highlights the significance of carbonyls in interpreting DTT-based aerosol oxidative potential.
Collapse
Affiliation(s)
- Jin Y Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, USA.
| | - Huanhuan Jiang
- Department of Environmental Sciences, University of California, Riverside, California 92521, USA
| | - Stacy Jy Chen
- Department of Environmental Sciences, University of California, Riverside, California 92521, USA
| | - Cody Cullen
- Department of Chemical Engineering, University of California, Riverside, California 92521, USA
| | - C M Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, USA.
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, USA. and Department of Environmental Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
30
|
Isoprene, Methyl Vinyl Ketone and Methacrolein from TROICA-12 Measurements and WRF-CHEM and GEOS-CHEM Simulations in the Far East Region. ATMOSPHERE 2019. [DOI: 10.3390/atmos10030152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spatial and temporal distributions of isoprene and its oxidation products, methyl vinyl ketone and methacrolein in the Far East region of Russia were investigated. The measurement data were obtained from a mobile laboratory, which moved along the Trans-Siberian railway and from WRF-CHEM (Weather Research and Forecasting Chemical Model) and GEOS-CHEM (Goddard Earth Observing System Chemical Model) simulations. During the simulations, the RACM-MIM and MOZART mechanisms, included in the mesoscale WRF-CHEM model, as well as the Caltech Isoprene Scheme (CIS), built in the global GEOS-CHEM model, have been used. We found that the temporal distribution of the measured isoprene is in good agreement with the simulations. The measured isoprene, methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations demonstrate pronounced diurnal variations. The correlation between the measured isoprene and MVK + MACR was good (R ~ 0.60–0.86). However, the simulated correlation between MVK + MACR and isoprene is very low, with the data for the night-time and daytime values varying. The simulated MVK + MACR to isoprene ratio, in comparison with the experimental result, has pronounced diurnal variations. During twilight and the night-time, the simulated MVK + MACR to isoprene ratio is more than 10. We propose that, due to the validity of the kinetic equations only in the homogeneous system, all chemical and transport (CTM) models, based on these kinetic equations, are not able to show an adequate simulation at night in the weak mixing atmosphere, when the atmospheric structure becomes heterogeneous. At moderate latitudes, we recommend the use of the turbulent Damköhler number and the Kolmogorov Damköhler numbers, which characterize the limits of CTM applicability, as the quality flags at the air quality forecast simulations.
Collapse
|