1
|
Huang C, Zeng Y, Guan K, Qi X, Liu YE, Lu Q, Wang S, Luo X, Mai B. Occurrence, composition, and spatial distribution of dechlorane plus in surface sediments of black-odorous urban rivers across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17472-17480. [PMID: 38342836 DOI: 10.1007/s11356-024-32341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
China, one of the two dechlorane plus (DP) producers, might have become a major area of DP pollution. The environmental contamination status of DP in sediments across the whole of China has not yet been studied. In the current study, the pollution levels, spatial distribution, and compositions of DP were investigated comprehensively in surface sediments from 173 black-odorous urban rivers across China for the first time. Total DP concentrations varied from not-detected to 39.71 ng/g dw, with an average concentration of 3.20 ± 4.74 ng/g dw, which was polluted by local emission sources and presented significant differences among different sampling cities. Among the seven administrative regions of China, DP concentrations were the highest in South China and showed a decreasing trend from southeastern coastal areas to northwest inland regions. Spearman's correlation analysis suggested that the gross industrial output, gross domestic product, and daily wastewater treatment capacity were not the principal factors controlling the spatial distribution of DP. The fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) varied from 0.19 to 0.88, with those in most sediments falling in the range of DP technical product (0.60 ~ 0.80), suggesting no apparent stereoselective enrichment occurred. Moreover, the anti-Cl11-DP was detected in sediments (n.d. ~ 0.40 ng/g dw), which showed significantly and insignificantly positive correlation with the anti-DP levels and fanti, respectively, implying it might mainly originate from the byproduct of DP technical product rather than the dechlorination of anti-DP.
Collapse
Affiliation(s)
- Chenchen Huang
- China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou, 221116, Jiangsu, People's Republic of China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China.
| | - Kelan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xuemeng Qi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yin-E Liu
- China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou, 221116, Jiangsu, People's Republic of China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| |
Collapse
|
2
|
Wang Q, Liu W, Meng L, Zeb A, Mo F, Wang J, Shi R. The interfacial interaction between Dechlorane Plus (DP) and polystyrene nanoplastics (PSNPs): An overlooked influence factor for the algal toxicity of PSNPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167129. [PMID: 37730039 DOI: 10.1016/j.scitotenv.2023.167129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
As pollution has attracted attention due to its wide distribution. An environmental concern that may be overlooked is that NPs additives are easily released into the environment due to their physical combination with NPs. However, the knowledge gaps still exist about the interfacial reactions of NPs and the additives (e.g. flame retardants) and the joint ecological effect. In the present study, fourier transform infrared (FTIR) spectrometer coupled with 2D correlation spectroscopy (2D-COS) analysis revealed the interfacial reactions between polystyrene nanoplastics (PSNPs) and Dechlorane Plus (DP). Results showed that carbon‑oxygen bonds and carbon‑chlorine bonds were the important binding sites during adhesion and DP could reduce the colloidal stability. Single and joint ecological effects of PSNPs and DP on the microalgae Chlorella vulgaris were further deliberated. Reduced photosynthetic efficiency (reduced Fv/Fm by 0.03 %), higher growth inhibition (16.15 %) and oxidative damage (increased ROS by 152 %) were observed in algae under co-exposure. Notably, DP could significantly increase the attachment of PSNPs to the surface of the algae. Metabolomics further revealed that co-exposure significantly down-regulated amino acid metabolism and tricarboxylic acid cycle (TCA) cycle, and up-regulated fatty acid metabolism. The present study provides new insights into the risk assessment of NPs in aquatic environment by investigating the interfacial reaction mechanism and combined ecotoxicity of NPs and additives.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingzuo Meng
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Hu Y, Li Z, Xiong J, Zhang Z, Yuan J, Tang Y, Jin T, Li H, Wu S. Occurrence and ecological risks of brominated flame retardants and dechlorane plus in sediments from the Pearl River Estuary and Daya Bay, South China. MARINE POLLUTION BULLETIN 2022; 185:114182. [PMID: 36257243 DOI: 10.1016/j.marpolbul.2022.114182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Considering the phasing-out of polybrominated diphenyl ethers (PBDEs), environmental concerns of PBDE alternatives and dechlorane plus (DP) are rising. Accordingly, this study investigates occurrence and ecological risks of PBDEs, PBDE alternatives and DPs in sediments of two littoral regions, the Pearl River Estuary (PRE) and Daya Bay (DYB), in southern China. Total PBDEs concentrations in surface sediments of the PRE and DYB were in the range (mean) of 0.30-28.7 (8.71) and 0.29-43.4 (6.05) ng/g dw, respectively. DP levels in surface sediments of the PRE (0.004-0.27 ng/g dw) were significantly higher than those in the DYB (0.005-0.24 ng/g dw) (p < 0.05). BDE 209 was the predominant component, followed by DBDPE, exhibiting regional variations in BFRs usage. Vertical profiles of BFRs and DP in the PRE and DYB sediment cores exhibited clear anthropogenic influences. Risk quotients suggest critical ecological risks of tetra-, penta- and deca-BDE congeners in all the surface sediments.
Collapse
Affiliation(s)
- Yongxia Hu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jingjing Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zaiwang Zhang
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Jiaxin Yuan
- Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China
| | - Yi Tang
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Tao Jin
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huawei Li
- Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China.
| | - Shengjun Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
4
|
Haglund P, Rebryk A. Biomagnification and Temporal Trends of New and Emerging Dechloranes and Related Transformation Products in Baltic Sea Biota. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:406-412. [PMID: 35573270 PMCID: PMC9097483 DOI: 10.1021/acs.estlett.2c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 05/26/2023]
Abstract
To enhance knowledge of the environmental distribution and temporal trends of dechloranes and their transformation products (TPs) we performed suspect screening of Baltic Sea biota (eelpout, herring, harbor porpoise, guillemot and white-tailed sea eagle). Evaluation of new and "digitally frozen" gas chromatography/high-resolution mass spectrometry data revealed 31 compounds: five dechloranes (Dechlorane [Mirex], Dechlorane 602, Dechlorane 603, and syn-/anti-Dechlorane Plus [DP]), three isomers, and 23 TPs. Six new Dechlorane 603 TPs and two new DP TPs were detected, including one hydroxy-TP. Some TPs occurred at much higher concentrations than the parent compounds (e.g., Dechlorane 603 TPs were >10-fold more abundant than their parent). Concentrations of contaminants in the most contaminated species (white-tailed sea eagle) changed little over the period 1965-2017. Slow declines were detected for most compounds (median, 2% per year), although concentrations of DP and DP-TPs increased by 1% per year. Ten contaminants biomagnify, and the trophic magnification factors for TPs of Mirex, Dechlorane 602 and Dechlorane 603 (8.2 to 17.8) were similar to the parent compounds (6.6 to 12.4) and higher than that of DP (2.4, nonsignificant). The results are discussed in relation to the current review of DP for potential listing under the Stockholm Convention on POPs.
Collapse
|
5
|
Cong B, Li S, Liu S, Mi W, Liu S, Zhang Z, Xie Z. Source and Distribution of Emerging and Legacy Persistent Organic Pollutants in the Basins of the Eastern Indian Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4199-4209. [PMID: 35302762 DOI: 10.1021/acs.est.1c08743] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Persistent organic pollutants (POPs) have received significant and ongoing attention. To establish favorable regulatory policies, it is vital to investigate the occurrence, source, and budgets of POPs worldwide. POPs including phthalic acid esters (PAEs), organophosphate esters (OPEs), brominated flame retardants (BFRs), and highly chlorinated flame retardants (HFRs) have not yet been examined in the Eastern Indian Ocean (EIO). In this study, the distribution of POPs has been investigated from surface sediments with the depth of 4369-5742 m in the Central Indian Ocean Basin (CIOB) and Wharton Basin (WB) of EIO. The average (±SD) concentrations of ∑11PAEs, ∑11OPEs, ∑4 BFRs, and ∑5HFRs were 1202.0 ± 274.36 ng g-1 dw, 15.3 ± 7.23 ng g-1 dw, 327.6 ± 211.74 pg g-1 dw, and 7.9 ± 7.45 pg g-1 dw, respectively. The high abundance of low-molecular-weight (LMW) PAEs, chlorinated OPEs, LMW BDEs, and anti-Dechlorane Plus indicated the pollution characteristics in the EIO. Correlation analysis demonstrated that LMW compounds may be derived from the high-molecular-weight compounds. The monsoon circulation, currents, and Antarctic Bottom Water may be the main drivers. POP accumulation rate, depositional flux, and mass inventory in the Indian Ocean were also estimated.
Collapse
Affiliation(s)
- Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350108, China
| | - Shuang Li
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Shengfa Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhaohui Zhang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| |
Collapse
|
6
|
Wu JP, Li X, Tao L, Nie YT, Feng WL, Xu YC, Zeng YH, Luo XJ, Mai BX. Sex- and size-dependent accumulation of Dechlorane Plus flame retardant in a wild frog-eating snake Amphiesma stolata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118793. [PMID: 34998895 DOI: 10.1016/j.envpol.2022.118793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Despite several studies having addressed the bioaccumulation of Dechlorane Plus (DP) flame retardant in wildlife, there is still a dearth of information for reptiles in general and for snakes in particular. Here, we report the residue levels and trophic transfer of syn-, anti-, and anti-Cl11-DP in a frog-eating snake-namely, the striped keelback snake Amphiesma stolata-from a DP hotspot in South China. The concentrations of syn-, anti-, and anti-Cl11-DP in A. stolata ranged from 1.06-21.2, 2.13-21.5, and 0.16-10.6 ng/g lipid weight, respectively, with significantly higher levels in males compared with females. Statistical analysis showed that the concentrations of these chemicals were negatively correlated with body sizes (length and mass) of the snake. The fractional abundance of anti-DP (fanti) did not significantly differ either between the sexes or between A. stolata and its diet (i.e., frogs). However, fanti showed positive correlations with the snake's body size and negative correlations with ∑DP concentrations (summed concentrations of syn- and anti-DP), indicating that body size and DP residue levels are important factors influencing DP isomeric profiles in these snakes. Biomagnification factors estimated based on the relationship between A. stolata and frogs were 0.49 ± 0.01 (mean ± SE), 0.44 ± 0.09, and 1.79 ± 0.54 for syn-, anti-, and anti-Cl11-DP, respectively, suggesting trophic dilution of syn- and anti-DP and a mild biomagnification of anti-Cl11-DP from frogs to snakes.
Collapse
Affiliation(s)
- Jiang-Ping Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| | - Xiao Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Lin Tao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - You-Tian Nie
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Wen-Lu Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Ya-Chun Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
7
|
Cheng Y, Ding J, Liang X, Ji X, Xu L, Xie X, Zhang YK. Fractions Transformation and Dissipation Mechanism of Dechlorane Plus in the Rhizosphere of the Soil-Plant System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6610-6620. [PMID: 32252527 DOI: 10.1021/acs.est.9b06748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fractions transformation and dissipation mechanism of Dechlorane Plus (DP) in the rhizosphere of soil-plant system were investigated and characterized by a 150-day experiment using a rhizobox system. The depuration, accumulation, and translocation of DP in rice plants were observed. The contributions of plant uptake, microbial degradation, and bound-residue formation to DP dissipation under the rhizosphere effect were modeled and quantified. The gradients of DP concentrations correlated well with microbial biomass in the rhizosphere (R2 = 0.898). The rhizosphere facilitated the bioavailability of DP (excitation) and modified the bound-residue formation of DP (aging). DP concentrations in roots were positively correlated with the labile fraction of DP in soil (R2 = 0.852-0.961). There were spatiotemporal variations in the DP fractions. Dissolved and soil organic carbon were important influences on fraction transformation. Contributions to total DP dissipation were in the following ranges: microbial degradation (8.33-54.14%), bound-residue formation (3.64-16.43%), and plant uptake (0.54-3.85%). With all of these processes operating, the half-life of DP in the rhizosphere was 105 days. The stereoselectivity of DP isomers in both rice and DP fractions in soil were observed, suggesting a link between stereoselective bioaccumulation of DP in terrestrial organisms and dissipation pathways in soil.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Earth Sciences and Engineering, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Jue Ding
- College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Xiuyu Liang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xiaowen Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Earth Sciences and Engineering, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ling Xu
- Nanjing Innovation Center for Environmental Protection Industry Company, Limited, Nanjing 210042, P. R. China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of Earth Sciences and Engineering, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- Nanjing Innovation Center for Environmental Protection Industry Company, Limited, Nanjing 210042, P. R. China
| | - You-Kuan Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
8
|
Guo J, Li Z, Ranasinghe P, Rockne KJ, Sturchio NC, Giesy JP, Li A. Halogenated flame retardants in sediments from the Upper Laurentian Great Lakes: Implications to long-range transport and evidence of long-term transformation. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121346. [PMID: 31628060 DOI: 10.1016/j.jhazmat.2019.121346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Most hydrophobic halogenated flame retardants (HFRs) are highly accumulative and persistent in aquatic sediments. The objective of this study was to reveal spatial distributions, temporal trends, and transformation of selected legacy and emerging HFRs in sediments of Lakes Superior, Michigan, and Huron. We collected Ponar grab samples at 112 locations and sediment cores at 28 sites in the three lakes, and measured concentrations of 19 brominated FRs and 12 chlorinated FRs. Based on grab samples, concentrations were higher at southeastern and sites near Sleeping Bear Dunes of Lake Michigan, and Saginaw Bay and the North Channel of Lake Huron. The annual loadings of polybrominated diphenyl either (PBDEs) and Dechlorane Plus (DPs) to sediment have leveled off or been declining since 2000, while loadings of DBDPE and Dec604 have increased since the 1960s in most cores. The concentration ratio of BB101 to BB153 increased with sediment depth, suggesting the occurrence of in situ debromination of BB153. The ratio of dechlorinated anti-Cl11DP over anti-DP increases with the increasing latitude of sampling locations, suggesting the occurrence of dechlorination of anti-DP to anti-Cl11DP during transport. This ratio also increases with increasing sediment age in most cores, implying in situ dechlorination over time.
Collapse
Affiliation(s)
- Jiehong Guo
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhuona Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Prabha Ranasinghe
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Karl J Rockne
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Neil C Sturchio
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Cao Z, Chen Q, Ren M, Zhang L, Shen F, Wang X, Shi S, Zhao Y, Yan G, Peng J. Higher health risk resulted from dermal exposure to PCBs than HFRs and the influence of haze. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:223-231. [PMID: 31271988 DOI: 10.1016/j.scitotenv.2019.06.429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
To investigate the influence of haze on human dermal exposure to a series of halogenated flame retardants (HFRs) and polychlorinated biphenyls (PCBs), paired forehead wipes were collected from 46 volunteers (23 males, 23 females) using gauze pads soaked in isopropyl alcohol under heavy and light haze pollution levels. The median levels of ∑27HFRs and ∑27PCBs in all 92 samples were 672 and 1300ng/m2, respectively. Decabromodiphenyl ether (BDE-209) (171ng/m2) and decabromodiphenylethane (DBDPE) (134ng/m2) were the dominant components of HFRs, indicating that dermal exposure may also be the significant pathway for non-volatile compounds. PCB-37 contributed the most to ∑27PCBs, with a median concentration of 194ng/m2, followed by PCB-60 (141ng/m2). Generally, PBDE, PCB and DD (dehalogenated derivatives of DPs) levels on the foreheads of female participants (291, 1340, 0.92ng/m2) were higher (p=0.037, 0.001, and 0.031, respectively) than those of male participants (226, 989, and 0.45ng/m2). A significant difference (p=0.001) in PCBs was found between light (1690ng/m2) and heavy (996ng/m2) haze pollution conditions. Nevertheless, HFR levels under heavy (median=595ng/m2, ranging from 295 to 1490ng/m2) and light haze pollution conditions (ranging from 205 to 1220ng/m2 with a median of 689ng/m2) did not show significant differences (p=0.269). The non-carcinogenic health risk resulting from dermal exposure to ∑8HFRs and ∑27PCBs was 8.72×10-5 and 1.63×10-2, respectively, raising more concern about populations' exposure to PCBs than HFRs.
Collapse
Affiliation(s)
- Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China.
| | - Qiaoying Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Meihui Ren
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ling Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Fangfang Shen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoying Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Youhua Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jianbiao Peng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Zhang X, Di Lorenzo RA, Helm PA, Reiner EJ, Howard PH, Muir DCG, Sled JG, Jobst KJ. Compositional space: A guide for environmental chemists on the identification of persistent and bioaccumulative organics using mass spectrometry. ENVIRONMENT INTERNATIONAL 2019; 132:104808. [PMID: 31182229 PMCID: PMC6754779 DOI: 10.1016/j.envint.2019.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 05/11/2023]
Abstract
Since 2001, twenty-eight halogenated groups of persistent organic pollutants (POPs) have been banned or restricted by the Stockholm Convention. Identifying new POPs among the hundreds of thousands of anthropogenic chemicals is a major challenge that is increasingly being met by state-of-the-art mass spectrometry (MS). The first step to identification of a contaminant molecule (M) is the determination of the type and number of its constituent elements, viz. its elemental composition, from mass-to-charge (m/z) measurements and ratios of isotopic peaks (M + 1, M + 2 etc.). Not every combination of elements is possible. Boundaries exist in compositional space that divides feasible and improbable compositions as well as different chemical classes. This study explores the compositional space boundaries of persistent and bioaccumulative organics. A set of ~305,134 compounds (PubChem) was used to visualize the compositional space occupied by F, Cl, and Br compounds, as defined by m/z and isotope ratios. Persistent bioaccumulative organics, identified by in silico screening of 22,049 commercial chemicals, reside in more constrained regions characterized by a higher degree of halogenation. In contrast, boundaries surrounding non-halogenated chemicals could not be defined. Finally, a script tool (R code) was developed to select potential POPs from high resolution MS data. When applied to household dust (SRM 2585), this approach resulted in the discovery of previously unknown chlorofluoro flame retardants.
Collapse
Affiliation(s)
- Xianming Zhang
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada
| | - Robert A Di Lorenzo
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto M5T 3H7, Canada
| | - Paul A Helm
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada
| | - Eric J Reiner
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada
| | - Philip H Howard
- SRC, Environmental Science Center, 6502 Round Pond Road, North Syracuse, New York, United States of America
| | - Derek C G Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto M5T 3H7, Canada
| | - Karl J Jobst
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton L8S 4M1, Canada.
| |
Collapse
|
11
|
Liu X, Wu Y, Zhang X, Shen L, Brazeau AL, Adams DH, Marler H, Watts BD, Chen D. Novel Dechlorane Analogues and Possible Sources in Peregrine Falcon Eggs and Shark Livers from the Western North Atlantic Regions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3419-3428. [PMID: 30852890 DOI: 10.1021/acs.est.8b06214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During the investigation of dechlorane-related chemicals in North American wildlife, two unknown polychlorinated compounds (referred to as U1 and U2) were discovered. After extensive sample cleanup, structural information on U1 and U2 was characterized by gas chromatography (GC) coupled with single quadrupole mass spectrometer (MS) or GC-quadrupole time-of-flight (QToF) MS. Mass spectral evidence suggests that both U1 and U2 are structurally related to Dechlorane 603 (Dec603; C17H8Cl12), an analogue of the chlorinated flame retardant Dechlorane Plus. From the results we suspect U1 (C17H9Cl11) to be a monohydro analogue of Dec603 (i.e., one chlorine atom in Dec603 is replaced by a hydrogen atom). U1 may be formed via the degradation of Dec603's stereoisomers or present as an impurity in commercial Dec603 products. Mass spectral characterization of U2 (C17H7OCl11) suggests it is a carbonylic derivative of Dec603, likely formed via metabolic transformation of Dec603 or its photoisomer. Semiquantitative measurement revealed that U1 and U2 were present at estimated median concentrations of 49 ng/g lipid weight (lw) and 59 ng/g lw in peregrine falcon ( Falco peregrinus) eggs, from the mid-Atlantic region of the United States, and 4.6 and 3.0 ng/g lw in shortfin mako shark ( Isurus oxyrinchus) livers from the western North Atlantic Ocean, respectively. Our results demonstrate the occurrence of these two novel Dec603-related chemicals in both terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Yan Wu
- Cooperative Wildlife Research Laboratory and Department of Zoology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Xianming Zhang
- Ontario Ministry of the Environment, Conservation and Parks , Toronto , Ontario M9P 3V6 , Canada
| | - Li Shen
- Ontario Ministry of the Environment, Conservation and Parks , Toronto , Ontario M9P 3V6 , Canada
| | - Allison L Brazeau
- Wellington Laboratories Inc. , 345 Southgate Drive , Guelph , Ontario N1G 3M5 , Canada
| | - Douglas H Adams
- Cape Canaveral Scientific Inc. , 220 Surf Road , Melbourne Beach , Florida 32951 , United States
| | - Hillary Marler
- Cooperative Wildlife Research Laboratory and Department of Zoology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Bryan D Watts
- Center for Conservation Biology , The College of William and Mary , Williamsburg , Virginia 23185 , United States
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| |
Collapse
|