1
|
Gao R, Ding H, Gu M, Chen C, Sun Y, Xin Y, Liang S, Huang X. Mild Tuning of the Microbial Habitat via Titanium-Based Pre-coagulation Mitigates Reverse Osmosis Membrane Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40391935 DOI: 10.1021/acs.est.5c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Membrane fouling remains a persistent challenge in reverse osmosis (RO) systems. Devising effective strategies to mitigate membrane fouling has become crucial for sustainable water treatment. Here, we propose a titanium-based pre-coagulation strategy for RO fouling mitigation through regulation of the microbial habitat in RO feed. The pre-coagulation performance of Ti(SO4)2 for desulfurization wastewater and the subsequent RO fouling mechanism were systematically investigated. Our findings revealed that the Ti pre-coagulation induced an acidized environment, maintained a balance between organic and inorganic depositions, and fostered a beneficial microbial community that resisted rapid fouling. The 20 day RO operations in different pre-coagulation scenarios (Ti, Al, and Ctrl) showed that the Ti group membranes maintained the highest normalized flux at 57.15%, outperforming the Ctrl and Al groups by 7.92% and 15.16%, respectively. Microbial community analyses, including taxonomic profiling and metagenomic analysis, demonstrated that Ti-based pre-coagulation reduced the dominance of extracellular polymeric substance (EPS)-secreting genera, such as Sphingopyxis, while promoting Terrimonas and Paenarthrobacter, with acid-tolerance traits and reduced EPS production. This shift mitigated biofouling by enhancing microbial balance and limiting biofilm formation. These results underscored the potential of the Ti pre-coagulation-based microbial habitat tuning strategy in enhancing RO system sustainability, offering a practical solution for improving industrial wastewater treatment.
Collapse
Affiliation(s)
- Ruonan Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Haojie Ding
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mengyao Gu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Chao Chen
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yajun Sun
- Beijing Originwater Membrane Technology Company, Limited, Beijing 100097, People's Republic of China
| | - Yuchen Xin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Xia Huang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Chen J, Dai R, Wu Z, Wang Z. Upcycling End-of-Life Polyvinylidene Fluoride Membranes into Reverse Osmosis Membranes for Sustainable Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9849-9858. [PMID: 40331357 DOI: 10.1021/acs.est.5c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Membrane technology has been increasingly applied in water purification to address global water scarcity. However, commercial membranes inevitably reach the end-of-life (EoL) after long-term operation, which constrains the sustainability of membrane technology. Herein, we demonstrated the feasibility of upcycling real EoL poly(vinylidene fluoride) (PVDF) microfiltration (MF) membranes into reverse osmosis (RO) membranes with higher separation precision via the interfacial polymerization (IP) reaction. We highlighted that the EoL MF membrane, with a fouling-induced narrowed pore size and relatively hydrophobic properties, is preferred for upcycling. The resultant upcycled RO membrane exhibited a satisfactory NaCl rejection (98.6 ± 0.4%) with favorable water permeance (2.3 ± 0.7 L m-2 h-1 bar-1), comparable to the performance of commercial RO membranes. Real wastewater treatment evaluations confirmed the membrane stability and permeate safety. Life-cycle assessment and techno-economic analysis showed that this upcycling process promises environmental and economic benefits, potentially reducing CO2-eq emissions by 18.6% and costs by 76.5%-92.2% compared with the conventional membrane approach. This proof-of-concept study paves the way for creating a closed eco-loop of membrane recycling for sustainable water purification.
Collapse
Affiliation(s)
- Jiansuxuan Chen
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Li R, Zhang L, Zheng S, Liu W, Long L, Tang C. Enhanced removal of organic micropollutants using 2D metal-organic framework interlayered nanofiltration membrane. WATER RESEARCH 2025; 283:123852. [PMID: 40412040 DOI: 10.1016/j.watres.2025.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/03/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Organic micropollutants (OMPs) present considerable threats to both human health and the environment. Traditional thin film composite (TFC) nanofiltration (NF) polyamide membranes, despite their high water permeance and salt rejection capabilities, often fail to effectively remove OMPs. This study addresses this limitation by incorporating two-dimensional (2D) zinc(II) tetrakis(4-carboxy-phenyl)porphyrin (Zn-TCPP) metal-organic framework (MOF) nanosheets as interlayers in TFC membranes (TFNi), using a polyethylene glycol (PEG) assisted exfoliation technique to mitigate issues of nanosheet restacking and aggregation. The uniformly distributed MOF interlayers significantly improved pure water permeance from 10.6 to 32.1 L m⁻² h⁻¹ bar⁻¹ while maintaining a high rejection of 97.0% towards Na₂SO₄. Moreover, the optimized membrane showed significant improvements in OMP removal, attributed to the increased negative charge and greater hydrophilicity of the polyamide rejection layer. These findings highlight the potential of 2D MOF nanosheets as interlayers in developing high-performance membranes for effective OMP removal and water reuse.
Collapse
Affiliation(s)
- Ruiying Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Lingyue Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Shuang Zheng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Wenyu Liu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chuyang Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Hu Y, Sarkar P, Peng LE, Wang F, Yang Z, Tang CY. Design Ultrathin Polyamide Membranes against Funnel Effect: A Novel Zone-of-Influence-Based Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40378296 DOI: 10.1021/acs.est.5c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Ultrathin polyamide membranes have gained significant attention due to their potential to achieve high water permeance. Nevertheless, their water permeance is constrained by the substrate-induced funnel effect. For years, researchers have been investigating how substrates impact membrane water permeance. However, these studies generally rely on a trial-and-error approach to find the optimal substrate porosity, which is often time-consuming and offers limited insights. To establish a more intuitive framework for membrane design, we introduced a novel zone-of-influence (ZOI)-based approach for the first time. We first analyze the distinctively different funnel behaviors for thin and thick films through numerical simulations. Thin films, characterized by small ratios of film thickness over substrate pore size (i.e., aspect ratio θ ≤ 0.5), show a highly localized influence of substrate pores and present a more severe funnel effect than thick films with θ ≫ 1. This analysis leads to the concept of ZOI-a region of polyamide over a single substrate pore with water permeation efficiency exceeding a predefined threshold value. A linear relationship between ZOI and θ was observed, which enables an intuitive design to achieve a target water permeance by simply overlapping ZOIs of multiple pores, making it far more efficient than the traditional trial-and-error approach. We further developed an analytical model based on the superposition principle to unravel the fundamental structure-performance relationship between water permeation efficiency, aspect ratio and substrate porosity. This study provides convenient design tools for optimizing ultrathin membrane structure, offering critical guidance and deep insights for the advancement of high-performance membranes.
Collapse
Affiliation(s)
- Yaowen Hu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Fei Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
5
|
Chang H, Ma Z, Zhao H, Qu D, Liu C, Yan Z, Li R, Qu F, Liang H, Vidic RD. Regulating gypsum scaling-induced wetting in membrane distillation by heterogeneous crystallization: Role of filter media. WATER RESEARCH 2025; 274:123146. [PMID: 39847903 DOI: 10.1016/j.watres.2025.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Mineral scaling and scaling-induced wetting are critical issues in membrane distillation (MD) during treatment of saline wastewaters. Gypsum scaling and scaling-induced wetting in MD were successfully regulated by heterogeneous crystallization with in-line granular filtration in this study. Stable water recovery increased from 32.5 % to more than 52.5 % in one-cycle operation, depending on filter media properties. Because a large mass of crystals were retained or/and adsorbed in the granular filter, the scaling mass on membrane surface was reduced by 41.2 %, 23.1 %, 54.7 % and 78.1 % by filter charged with activated carbon, sand, fiber and activated alumina, respectively. When activated carbon, sand, fiber and activated alumina were used, the final MD fluxes were 1.58, 1.04, 1.96 and 3.43 times that without filter, and permeate conductivity decreased by 43.0 %, 46.8 %, 83.2 % and 81.3 %, respectively. The multi-cycle tests showed that heterogeneous crystallization gradually occurred in the granular filter, thereby promoting seeding-induced crystallization that reduced gypsum scaling and scaling-induced wetting in MD. Excellent anti-scaling and anti-wetting performance of in-line granular filtration was also confirmed for synthetic and real industrial wastewater. The results of this study provide guidance for mineral scaling control in MD to allow resource utilization for saline wastewater.
Collapse
Affiliation(s)
- Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Zeren Ma
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Huaxin Zhao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
| | - Rui Li
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
Cao T, Wang L, Pataroque KE, Wang R, Elimelech M. Relating Solute-Membrane Electrostatic Interactions to Solute Permeability in Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5819-5828. [PMID: 40070342 DOI: 10.1021/acs.est.4c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Despite the widespread use of reverse osmosis (RO) membranes in water desalination, the role of solute-membrane interactions in solute transport remains complex and relatively not well understood. This study elucidates the relationship between solute-membrane electrostatic interactions and solute permeability in RO membranes. The transport of salt and neutral molecules through charged polyamide (PA) and uncharged cellulose triacetate (CTA) RO membranes was examined. Results show that salt rejection and salt permeability in the PA membrane are highly dependent on the solution pH due to the variations of membrane charge density and the Donnan potential at the membrane-solution interface. Specifically, a higher salt rejection (and hence lower salt permeability) of the PA membrane is observed under alkaline conditions compared to acidic conditions. This observation is attributed to the enhanced Donnan potential at higher solution pH, which hinders co-ion partitioning into the membrane. In contrast, for salt transport through the CTA membrane and neutral solute transport through both membranes, solute permeability is independent of the solution pH and solute concentration due to the negligible Donnan effect. Overall, our results demonstrate the important role of solute-membrane electrostatic interactions, combined with steric exclusion, in regulating solute permeability in RO membranes.
Collapse
Affiliation(s)
- Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Li Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kevin E Pataroque
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Fan K, Zhang Z, Liu Y, Xu W, Wang X, Zhang TY, Xia S. Esterified Chlorine-Resistant Nanofiltration Membranes with Enhanced Removal of Disinfection Byproducts for Efficient Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2875-2885. [PMID: 39895043 DOI: 10.1021/acs.est.4c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The permeance-selectivity trade-off and chlorine sensitivity of conventional polyamide membranes limit further efficiency improvement and cost reduction of nanofiltration (NF) processes for drinking water treatment. To overcome these challenges, this study proposed a reconstruction-esterification strategy for the development of advanced NF membranes. Results showed that the combination of Na3PO4 solution post-treatment and polyol molecule grafting generated a thinner active layer with smaller and more uniform pores. More importantly, the critical role of alkaline post-treatment in reducing the residual amine groups of polyamide layers was revealed, which enhanced the chlorine resistance of membranes jointly with the effect of surface esterification. In comparison with the surface water purification performance of several commercial NF membranes, the obtained esterified membrane showed excellent selectivity between natural organic matter and salts, along with a reasonable water permeance. Moreover, the higher and stable removal capacity of the esterified membrane for disinfection byproducts and their precursors demonstrated its application advantage in the potential chlorination-NF-coupled process. The developed chlorine-resistant membrane and initially attempted NF filtration of chlorinated water in this study can help promote process innovation and highlight more benefits of NF technology for drinking water treatment.
Collapse
Affiliation(s)
- Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Ziyan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Weihua Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiaoping Wang
- School of Civil Engineering & Architecture, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Xu S, Zhao P, Liu H, Jiang Y, Song W, Tang CY, Wang X. Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:902-912. [PMID: 39807584 DOI: 10.1021/acs.est.4c08370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS). The SDBS-induced nanobubbles continuously facilitated the migration of the top layer of AL toward the upper space. During this process, the surface area of sunken AL in the cave-like structures initially exhibited an increase and then a decrease. Additionally, the larger interface significantly enhanced the surface area and delayed the rise in the top layer of AL in the cave-like structures. Therefore, the TFC membrane, utilizing a substrate with a pore size of 1.00 μm and assisted by 0.30 mM SDBS, exhibited remarkable flux enhancement (>63%) and reduced reverse sodium salt flux (>35%) in a forward osmosis system. Moreover, the roughness factor was introduced to directly quantify the effective surface area, which had a good correlation with the water flux. Our findings demonstrated the significant potential of utilizing substrates with a large pore size to overcome the inherent limitations of the TFC membrane.
Collapse
Affiliation(s)
- Subo Xu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Hao Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Yao Jiang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, PR China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518000, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
10
|
Zhang W, Zhao S, Li H, Lai C, Zhang S, Wen W, Tang CY, Meng F. Lignin alkali regulated interfacial polymerization towards ultra-selective and highly permeable nanofiltration membrane. Nat Commun 2025; 16:371. [PMID: 39753549 PMCID: PMC11699117 DOI: 10.1038/s41467-024-55595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer. The optimal membrane exhibited a remarkable water permeance of 26.0 L m-2 h-1 bar-1 and Cl-/SO42- selectivity of 191.0, which is superior to the state-of-the-art PA NF membranes. This study provides a cost-effective scalable strategy for fabricating ultra-selective and highly permeable NF membrane for precise ion-ion separation and small organic compounds removal.
Collapse
Affiliation(s)
- Wentian Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.
| | - Haiyun Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Cunxian Lai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.
| |
Collapse
|
11
|
Hundessa NK, Hu CC, Kang DY, Ajebe EG, Habet BA, Hung WS, Lee KR, Lai JY. A novel trimesoyl chloride/hyper branched polyethyleneimine/MOF (MIL-303)/P84 co-polyimide nanocomposite mixed matrix membranes with an ultra-thin surface cross linking layer for removing toxic heavy metal ions from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136221. [PMID: 39442308 DOI: 10.1016/j.jhazmat.2024.136221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
In this study, a positively charged nanofiltration (NF) nanocomposite mixed matrix membrane (MMM) was developed by incorporating metal-organic frameworks (MOFs) (MIL-303) into P84 co-polyimide and cross-linking with hyperbranched polyethyleneimine (HPEI). A very thin selective layer was subsequently formed on the cross-linked membrane surface using trimesoyl chloride (TMC). The incorporation of MIL-303 introduced specific water channels, enhancing the permeance of the nanocomposite MMMs. Additionally, it improved hydrophilicity and influenced the diffusion of the TMC monomer through the channels. The cross-linker HPEI resulted in NF membranes with increased electro-positivity and a reduced mean pore diameter. The very thin crosslinked TMC layer further improved permeance and heavy metal ions rejection of the membrane. This optimized membrane exhibited excellent rejection for both bivalent and monovalent ions, as well as heavy metal ions, effectively overcoming the common trade-off between permeance and rejection in NF membranes. The membrane demonstrated a remarkable permeance of 13.0 LMH/bar, coupled with exceptional rejection for heavy metal ions (96.8 % for Zn²⁺, 95.2 % for Ni²⁺, 95.7 % for Cu²⁺, 93.2 % for Pb²⁺, and 92.9 % for Cd²⁺). The TMC/HPEI/MIL-303/P84 system presented in this study holds significant promise for customizing high-performance positively charged NF membranes for the removal of heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Netsanet Kebede Hundessa
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan.
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Eyasu Gebrie Ajebe
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Biadglign Ayalneh Habet
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan
| |
Collapse
|
12
|
Gan Q, Hu Y, Wu C, Yang Z, Peng LE, Tang CY. Nanofoamed Polyamide Membranes: Mechanisms, Developments, and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20812-20829. [PMID: 39529485 DOI: 10.1021/acs.est.4c06434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Thin film composite (TFC) polyamide membranes have been widely applied for environmental applications, such as desalination and water reuse. The separation performance of TFC polyamide membranes strongly depends on their nanovoid-containing roughness morphology. These nanovoids not only influence the effective filtration area of the polyamide film but also regulate the water transport pathways through the film. Although there have been ongoing debates on the formation mechanisms of nanovoids, a nanofoaming theory─stipulating the shaping of polyamide roughness morphology by nanobubbles of degassed CO2 and the vapor of volatile solvents─has gained much attention in recent years. In this review, we provide a comprehensive summary of the nanofoaming mechanism, including related fundamental principles and strategies to tailor nanovoid formation for improved membrane separation performance. The effects of nanovoids on the fouling behaviors of TFC membranes are also discussed. In addition, numerical models on the role of nanovoids in regulating the water transport pathways toward improved water permeance and antifouling ability are highlighted. The comprehensive summary on the nanofoaming mechanism in this review provides insightful guidelines for the future design and optimization of TFC polyamide membranes toward various environmental applications.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Yaowen Hu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, P.R. China
| |
Collapse
|
13
|
Tan Q, Shen Y, Sun J, Jian T, Lu W, Wu S, Zhao Z, Lei Q, Lin H. Effects of calcium ions and polysaccharides type on transparent exopolymer particle formation and the related fouling mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175775. [PMID: 39197790 DOI: 10.1016/j.scitotenv.2024.175775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Organics and divalent cations are the primary barriers constraining the performance of membrane technology, while the interactions between them and the detailed mechanisms of their impacts are still lacking in-depth analysis. In this study, sodium alginate and xanthan gum were selected as polysaccharides models, and the formation of transparent extracellular polymer particles (TEP) was assessed to examine the effect of Ca2+ and polysaccharides type on membrane fouling from both qualitative and quantitative perspectives. The results revealed that higher Ca2+ concentrations led to a greater abundance of TEP, and the transformation of TEP microstructure is a key factor for the membrane fouling change indicated by specific filtration resistance (SFR). TEP formed by sodium alginate underwent a transformation from amorphous-TEP (a-TEP) form to particle-TEP (p-TEP), corresponding to a unimodal pattern of SFR variation. With increasing Ca2+ concentration, the molecular interactions of xanthan gum became stronger, resulting in larger fibrous a-TEP and a continuous SFR increase. According to the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, TEP formed by xanthan gum exhibited higher adhesion energy, thus causing more severe membrane fouling. The SFR variation of the TEP system can be satisfactorily explained by the conception of chemical potential change in the filtration process depicted in Flory-Huggins theory. This study is the first work to introduce models regarding chemical potential and TEP microstructure, linking the system chemical potential and TEP microstructure with membrane fouling indicated by SFR. As all, this study provided a new perspective for analyzing the polysaccharide fouling behavior via TEP determination and further enhanced the understanding through thermodynamic analysis.
Collapse
Affiliation(s)
- Qiyin Tan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Yue Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahao Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Tao Jian
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Wen Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Sijin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Zengjian Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Qian Lei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
14
|
Lin Q, Ding X, Hou Y, Ali W, Li Z, Han X, Meng Z, Sun Y, Liu Y. Adsorption and separation technologies based on supramolecular macrocycles for water treatment. ECO-ENVIRONMENT & HEALTH 2024; 3:381-391. [PMID: 39281072 PMCID: PMC11401079 DOI: 10.1016/j.eehl.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 09/18/2024]
Abstract
The escalating challenges in water treatment, exacerbated by climate change, have catalyzed the emergence of innovative solutions. Novel adsorption separation and membrane filtration methodologies, achieved through molecular structure manipulation, are gaining traction in the environmental and energy sectors. Separation technologies, integral to both the chemical industry and everyday life, encompass concentration and purification processes. Macrocycles, recognized as porous materials, have been prevalent in water treatment due to their inherent benefits: stability, adaptability, and facile modification. These structures typically exhibit high selectivity and reversibility for specific ions or molecules, enhancing their efficacy in water purification processes. The progression of purification methods utilizing macrocyclic frameworks holds promise for improved adsorption separations, membrane filtrations, resource utilization, and broader water treatment applications. This review encapsulates the latest breakthroughs in macrocyclic host-guest chemistry, with a focus on adsorptive and membrane separations. The aim is to spotlight strategies for optimizing macrocycle designs and their subsequent implementation in environmental and energy endeavors, including desalination, elemental extraction, seawater energy harnessing, and sustainable extraction. Hopefully, this review can guide the design and functionality of macrocycles, offering a significantly promising pathway for pollutant removal and resource utilization.
Collapse
Affiliation(s)
- Qian Lin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Xiaolong Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yuansheng Hou
- QingHai Salt Lake Industry Co. Ltd., Golmud 816099, China
| | - Wajahat Ali
- Department of Chemistry, University of Baltistan, Skardu 16100, Pakistan
| | - Zichen Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhen Meng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| |
Collapse
|
15
|
Cheng P, Liu Y, Wei X, Fan K, Xia S. Distinct Efficacies of Interlayers in Tailoring Polyamide Nanofiltration Membrane Performance for Organic Micropollutant Removal: Dependent on Substrate Characteristics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14022-14033. [PMID: 39052879 DOI: 10.1021/acs.est.4c04648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Interlayered thin-film nanocomposite (TFN) membranes have shown the potential to boost nanofiltration performance for water treatment applications including the removal of organic micropollutants (OMPs). However, the effects of substrates have been overlooked when exploiting and evaluating the efficacy of certain kinds of interlayers in tailoring membrane performance. Herein, a series of TFN membranes were synthesized on different porous substrates with identical interlayers of metal-organic framework nanosheets. It was revealed that the interlayer introduction could narrow but not fully eliminate the difference in the properties among the polyamide layers formed on different substrates, and the membrane performance variation was prominent in distinct aspects. For substrates with small pore sizes exerting severe water transport hindrance, the introduced interlayer mainly enhanced membrane water permeance by affording the gutter effect, while it could be more effective in reducing membrane pore size by improving the interfacial polymerization platform and avoiding PA defects when using a large-pore-size substrate. By matching the selected substrates and interlayers well, superior TFN membranes were obtained with simultaneously higher water permeance and OMP rejections compared to three commercial membranes. This study helps us to objectively understand interlayer efficacies and attain performance breakthroughs of TFN membranes for more efficient water treatment.
Collapse
Affiliation(s)
- Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xinxin Wei
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Kaiming Fan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
16
|
Bleotu C, Matei L, Dragu LD, Necula LG, Pitica IM, Chivu-Economescu M, Diaconu CC. Viruses in Wastewater-A Concern for Public Health and the Environment. Microorganisms 2024; 12:1430. [PMID: 39065197 PMCID: PMC11278728 DOI: 10.3390/microorganisms12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/26/2024] Open
Abstract
Wastewater monitoring provides essential information about water quality and the degree of contamination. Monitoring these waters helps identify and manage risks to public health, prevent the spread of disease, and protect the environment. Standardizing the appropriate and most accurate methods for the isolation and identification of viruses in wastewater is necessary. This review aims to present the major classes of viruses in wastewater, as well as the methods of concentration, isolation, and identification of viruses in wastewater to assess public health risks and implement corrective measures to prevent and control viral infections. Last but not least, we propose to evaluate the current strategies in wastewater treatment as well as new alternative methods of water disinfection.
Collapse
Affiliation(s)
- Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| |
Collapse
|
17
|
Chen J, Wang T, Dai R, Wu Z, Wang Z. Trade-off between Endocrine-Disrupting Compound Removal and Water Permeance of the Polyamide Nanofiltration Membrane: Phenomenon and Molecular Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9416-9426. [PMID: 38662937 DOI: 10.1021/acs.est.4c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The polyamide (PA) nanofiltration (NF) membrane has the potential to remove endocrine-disrupting compounds (EDCs) from water and wastewater to prevent risks to both the aquatic ecosystem and human health. However, our understanding of the EDC removal-water permeance trade-off by the PA NF membrane is still limited, although the salt selectivity-water permeance trade-off has been well illustrated. This constrains the precise design of a high-performance membrane for removing EDCs. In this study, we manipulated the PA nanostructures of NF membranes by altering piperazine (PIP) monomer concentrations during the interfacial polymerization (IP) process. The upper bound coefficient for EDC selectivity-water permeance was demonstrated to be more than two magnitudes lower than that for salt selectivity-water permeance. Such variations were derived from the different membrane-solute interactions, in which the water/EDC selectivity was determined by the combined effects of steric exclusion and the hydrophobic interaction, while the electrostatic interaction and steric exclusion played crucial roles in water/salt selectivity. We further highlighted the role of the pore number and residual groups during the transport of EDC molecules across the PA membrane via molecular dynamics (MD) simulations. Fewer pores decreased the transport channels, and the existence of residual groups might cause steric hindrance and dynamic disturbance to EDC transport inside the membrane. This study elucidated the trade-off phenomenon and mechanisms between EDC selectivity and water permeance, providing a theoretical reference for the precise design of PA NF membranes for effective removal of EDCs in water reuse.
Collapse
Affiliation(s)
- Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Arioli M, Puiggalí J, Franco L. Nylons with Applications in Energy Generators, 3D Printing and Biomedicine. Molecules 2024; 29:2443. [PMID: 38893319 PMCID: PMC11173604 DOI: 10.3390/molecules29112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Linear polyamides, known as nylons, are a class of synthetic polymers with a wide range of applications due to their outstanding properties, such as chemical and thermal resistance or mechanical strength. These polymers have been used in various fields: from common and domestic applications, such as socks and fishing nets, to industrial gears or water purification membranes. By their durability, flexibility and wear resistance, nylons are now being used in addictive manufacturing technology as a good material choice to produce sophisticated devices with precise and complex geometric shapes. Furthermore, the emergence of triboelectric nanogenerators and the development of biomaterials have highlighted the versatility and utility of these materials. Due to their ability to enhance triboelectric performance and the range of applications, nylons show a potential use as tribo-positive materials. Because of the easy control of their shape, they can be subsequently integrated into nanogenerators. The use of nylons has also extended into the field of biomaterials, where their biocompatibility, mechanical strength and versatility have paved the way for groundbreaking advances in medical devices as dental implants, catheters and non-absorbable surgical sutures. By means of 3D bioprinting, nylons have been used to develop scaffolds, joint implants and drug carriers with tailored properties for various biomedical applications. The present paper aims to collect evidence of these recently specific applications of nylons by reviewing the literature produced in recent decades, with a special focus on the newer technologies in the field of energy harvesting and biomedicine.
Collapse
Affiliation(s)
- Matteo Arioli
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Lourdes Franco
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| |
Collapse
|
19
|
Bilal A, Yasin M, Akhtar FH, Gilani MA, Alhmohamadi H, Younas M, Mushtaq A, Aslam M, Hassan M, Nawaz R, Aqsha A, Sunarso J, Bilad MR, Khan AL. Enhancing Water Purification by Integrating Titanium Dioxide Nanotubes into Polyethersulfone Membranes for Improved Hydrophilicity and Anti-Fouling Performance. MEMBRANES 2024; 14:116. [PMID: 38786950 PMCID: PMC11123263 DOI: 10.3390/membranes14050116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Water pollution remains a critical concern, one necessitated by rapidly increasing industrialization and urbanization. Among the various strategies for water purification, membrane technology stands out, with polyethersulfone (PES) often being the material of choice due to its robust mechanical properties, thermal stability, and chemical resistance. However, PES-based membranes tend to exhibit low hydrophilicity, leading to reduced flux and poor anti-fouling performance. This study addresses these limitations by incorporating titanium dioxide nanotubes (TiO2NTs) into PES nanofiltration membranes to enhance their hydrophilic properties. The TiO2NTs, characterized through FTIR, XRD, BET, and SEM, were embedded in PES at varying concentrations using a non-solvent induced phase inversion (NIPS) method. The fabricated mixed matrix membranes (MMMs) were subjected to testing for water permeability and solute rejection capabilities. Remarkably, membranes with a 1 wt% TiO2NT loading displayed a significant increase in pure water flux, from 36 to 72 L m2 h-1 bar-1, a 300-fold increase in selectivity compared to the pristine sample, and a dye rejection of 99%. Furthermore, long-term stability tests showed only a slight reduction in permeate flux over a time of 36 h, while dye removal efficiency was maintained, thus confirming the membrane's stability. Anti-fouling tests revealed a 93% flux recovery ratio, indicating excellent resistance to fouling. These results suggest that the inclusion of TiO2 NTs offers a promising avenue for the development of efficient and stable anti-fouling PES-based membranes for water purification.
Collapse
Affiliation(s)
- Ayesha Bilal
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (A.M.); (M.A.)
| | - Faheem Hassan Akhtar
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan;
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hamad Alhmohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Mohammad Younas
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan;
| | - Azeem Mushtaq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (A.M.); (M.A.)
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (A.M.); (M.A.)
| | - Mehdi Hassan
- Department of Chemistry, University of Baltistan, Skardu 16100, Pakistan
| | - Rab Nawaz
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally 32093, Kuwait;
| | - Aqsha Aqsha
- Department of Bioenergy Engineering and Chemurgy, Faculty of Industrial Technology, Institute Teknologi Bandung, Bandung 40132, Indonesia;
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching 93350, Sarawak, Malaysia;
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE 1410, Brunei
| | - Asim Laeeq Khan
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| |
Collapse
|
20
|
Sadare OO, Oke D, Olawuni OA, Olayiwola IA, Moothi K. Modelling and optimization of membrane process for removal of biologics (pathogens) from water and wastewater: Current perspectives and challenges. Heliyon 2024; 10:e29864. [PMID: 38698993 PMCID: PMC11064141 DOI: 10.1016/j.heliyon.2024.e29864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As one of the 17 sustainable development goals, the United Nations (UN) has prioritized "clean water and sanitation" (Goal 6) to reduce the discharge of emerging pollutants and disease-causing agents into the environment. Contamination of water by pathogenic microorganisms and their existence in treated water is a global public health concern. Under natural conditions, water is frequently prone to contamination by invasive microorganisms, such as bacteria, viruses, and protozoa. This circumstance has therefore highlighted the critical need for research techniques to prevent, treat, and get rid of pathogens in wastewater. Membrane systems have emerged as one of the effective ways of removing contaminants from water and wastewater However, few research studies have examined the synergistic or conflicting effects of operating conditions on newly developing contaminants found in wastewater. Therefore, the efficient, dependable, and expeditious examination of the pathogens in the intricate wastewater matrix remains a significant obstacle. As far as it can be ascertained, much attention has not recently been given to optimizing membrane processes to develop optimal operation design as related to pathogen removal from water and wastewater. Therefore, this state-of-the-art review aims to discuss the current trends in removing pathogens from wastewater by membrane techniques. In addition, conventional techniques of treating pathogenic-containing water and wastewater and their shortcomings were briefly discussed. Furthermore, derived mathematical models suitable for modelling, simulation, and control of membrane technologies for pathogens removal are highlighted. In conclusion, the challenges facing membrane technologies for removing pathogens were extensively discussed, and future outlooks/perspectives on optimizing and modelling membrane processes are recommended.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| | - Doris Oke
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Oluwagbenga A. Olawuni
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Idris A. Olayiwola
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
| | - Kapil Moothi
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
21
|
Sarkar P, Wu C, Yang Z, Tang CY. Empowering ultrathin polyamide membranes at the water-energy nexus: strategies, limitations, and future perspectives. Chem Soc Rev 2024; 53:4374-4399. [PMID: 38529541 DOI: 10.1039/d3cs00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
Collapse
Affiliation(s)
- Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
22
|
Long L, Guo H, Zhang L, Gan Q, Wu C, Zhou S, Peng LE, Tang CY. Engraving Polyamide Layers by In Situ Self-Etchable CaCO 3 Nanoparticles Enhances Separation Properties and Antifouling Performance of Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6435-6443. [PMID: 38551393 DOI: 10.1021/acs.est.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P R China
| | - Lingyue Zhang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chenyue Wu
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| |
Collapse
|
23
|
Wang Z, Liu Y, Wang L, Zha S, Zhang S, Jin J. Bendable and Chemically Stable Metal-Organic Hybrid Membranes for Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17016-17024. [PMID: 38514388 DOI: 10.1021/acsami.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Crystalline porous metal-organic materials are ideal building blocks for separation membranes because of their molecular-sized pores and highly ordered pore structure. However, creating ultrathin, defect-free crystalline membranes is challenging due to inevitable grain boundaries. Herein, we reported an amorphous metal-organic hybrid (MOH) membrane with controlled microporosity. The synthesis of the MOH membrane entails the use of titanium alkoxide and organic linkers containing di/multicarboxyl groups as monomers in the polymerization reaction. The resultant membranes exhibit similar microporosity to existing molecular sieve materials and high chemical stability against harsh chemical environments owing to the formation of stable Ti-O bonds between metal centers and organic linkers. An interfacial polymerization is developed to fabricate an ultrathin MOH membrane (thickness of the membrane down to 80 nm), which exhibits excellent rejections (>98% for dyes with molecular weights larger than 690 Da) and high water permeance (55 L m-2 h-1 bar-1). The membranes also demonstrate good flexibility, which greatly improves the processability of the membrane materials.
Collapse
Affiliation(s)
- Zhigang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Liyao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shangwen Zha
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Department of Research and Development, Shanghai ECO Polymer Sci.&Tech. CO., Ltd, Shanghai 201306, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
24
|
Huang Y, Jeffrey P, Pidou M. UV/TiO 2 photocatalysis as post-treatment of anaerobic membrane bioreactor effluent for reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120628. [PMID: 38520856 DOI: 10.1016/j.jenvman.2024.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/05/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Advanced oxidation processes have been widely applied as a post-treatment solution to remove residual organic compounds in water reuse schemes. However, UV/TiO2 photocatalysis, which provides a sustainable option with no continuous chemical addition, has very rarely been studied to treat anaerobically treated effluents. In the current study, the removal of organics and nutrients from an anaerobic membrane bioreactor (AnMBR) effluent is evaluated during adsorption and photocatalysis processes under various conditions of TiO2 dose and UV intensity and compared to the effluent from an aerobic membrane bioreactor (AeMBR). The sequence for preferential adsorption on TiO2 was found to be phosphorus, inorganic carbon and then ammonia/organic carbon were found. The competing effect between the organics and nutrients, along with the low UV transmission efficiency caused by the need for high doses of TiO2, ultimately compromise the organic removal efficiency in the AnMBR permeate. TiO2 dosage was found to have a greater impact than UV intensity on improving the overall removal performance as nutrients are competing for the adsorption site but are not photodegraded. Under the same operational condition, the UV/TiO2 photocatalysis displayed a higher removal efficiency of organic matter and phosphorus in the AeMBR effluent due to a lower initial organics concentration and absence of ammonia as compared to the AnMBR effluent.
Collapse
Affiliation(s)
- Yu Huang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK430AL, United Kingdom
| | - Paul Jeffrey
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK430AL, United Kingdom
| | - Marc Pidou
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK430AL, United Kingdom.
| |
Collapse
|
25
|
Chen C, Shen L, Lin H, Zhao D, Li B, Chen B. Hydrogen-bonded organic frameworks for membrane separation. Chem Soc Rev 2024; 53:2738-2760. [PMID: 38333989 DOI: 10.1039/d3cs00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous materials that are formed through the interconnection of organic or metal-organic building units via intermolecular hydrogen bonds. The remarkable flexibility and reversibility of hydrogen bonds, coupled with the customizable nature of organic units, endow HOFs with mild synthesis conditions, high crystallinity, solvent processability, and facile self-healing and regeneration properties. Consequently, these features have garnered significant attention across various fields, particularly in the realm of membrane separation. Herein, we present an overview of the recent advances in HOF-based membranes, including their advanced fabrication strategies and fascinating applications in membrane separation. To attain the desired HOF-based membranes, careful consideration is dedicated to crucial factors such as pore size, stability, hydrophilicity/hydrophobicity, and surface charge of the HOFs. Additionally, diverse preparation methods for HOF-based membranes, including blending, in situ growth, solution-processing, and electrophoretic deposition, have been analyzed. Furthermore, applications of HOF-based membranes in gas separation, water treatment, fuel cells, and other emerging application areas are presented. Finally, the challenges and prospects of HOF-based membranes are critically pointed out.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
26
|
Yin R, Heuzard A, Li T, Ruan X, Lu S, Shang C. Advanced oxidation of recalcitrant chromophores in full-scale MBR effluent for non-potable reuse of leachate co-treated municipal wastewater. CHEMOSPHERE 2024; 351:141228. [PMID: 38237782 DOI: 10.1016/j.chemosphere.2024.141228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Wastewater non-potable reuse involves further processing of secondary effluent to a quality level acceptable for reuse and is a promising solution to combating water scarcity. Recalcitrant chromophores in landfill leachate challenge the water quality for non-potable reuse when leachate is co-treated with municipal wastewater. In this study, we first use multivariate statistical analysis to reveal that leachate is an important source (with a Pearson's coefficient of 0.82) of recalcitrant chromophores in the full-scale membrane bioreactor (MBR) effluent. We then evaluate the removal efficacies of chromophores by chlorination, breakpoint chlorination, and the chlorination-UV/chlorine advanced oxidation treatment. Conventional chlorination and breakpoint chlorination only partially remove chromophores, leaving a colour level exceeding the standards for non-potable reuse (>20 Hazen units). We demonstrate that pre-chlorination (with an initial chlorine dosing of 20 mg/L as Cl2) followed by UV radiation (with a UV fluence of 500 mJ/cm2) effectively degraded recalcitrant chromophores (>90%). By quantifying the electron donating capacity (EDC) and radical scavenging capacity (RSC) of the reclaimed water, we demonstrate that pre-chlorination reduces EDC and RSC by up to 64%, increases UV transmittance by 32%, and increases radical yields from UV photolysis of chlorine by 1.7-2.2 times. The findings advance fundamental understanding of the alteration of dissolved coloured substances by (photo)chlorination treatment and provide implications for applying advanced oxidation processes in treating wastewater effluents towards sustainable non-potable reuse.
Collapse
Affiliation(s)
- Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Arnaud Heuzard
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tao Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China State Construction Engineering (Hong Kong) Limited, Wan Chai, Hong Kong
| | - Xinyi Ruan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
27
|
Wang YJ, Li CX, Meng Y, Guo ZY, Cui S, Fu XZ, Liu HQ, Xia WQ, Li WW. Coagulation/co-catalytic membrane integrated system for fouling-resistant and efficient water purification. WATER RESEARCH 2024; 250:121055. [PMID: 38159544 DOI: 10.1016/j.watres.2023.121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Low-pressure catalytic membranes allow efficient rejection of particulates and simultaneously removing organics pollutant in water, but the accumulation of dissolved organic matters (DOM) on membrane surface, which cover the catalytic sites and cause membrane fouling, challenges their stable operation in practical wastewater treatment. Here we propose a ferric salt-based coagulation/co-catalytic membrane integrated system that can effectively mitigate the detrimental effects of DOM. Ferric salt (Fe3+) serving both as a DOM coagulant to lower the membrane fouling and as a co-catalyst with the membrane-embedded MoS2 nanosheets to drive perxymonosulfate (PMS) activation and pollutant degradation. The membrane functionalized with 2H-phased MoS2 nanosheets showed improved hydrophilicity and fouling resistance relative to the blank polysulfone membrane. Attributed to the DOM coagulation and co-catalytic generation of surface-bound radicals for decontamination at membrane surface, the catalytic membrane/PMS/ Fe3+ system showed much less membrane fouling and 2.6 times higher pollutant degradation rate in wastewater treatment than the catalytic membrane alone. Our work imply a great potential of coagulation/co-catalytic membrane integrated system for water purification application.
Collapse
Affiliation(s)
- Yun-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, PR China
| | - Chen-Xuan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Yan Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, PR China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, PR China
| | - Shuo Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, PR China
| | - Xian-Zhong Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Hou-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, PR China
| | - Wen-Qi Xia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, PR China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, PR China.
| |
Collapse
|
28
|
Samarasinghe LV, Muthukumaran S, Baskaran K. Recent advances in visible light-activated photocatalysts for degradation of dyes: A comprehensive review. CHEMOSPHERE 2024; 349:140818. [PMID: 38056717 DOI: 10.1016/j.chemosphere.2023.140818] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The rapid development in industrialization and urbanization coupled with an ever-increasing world population has caused a tremendous increase in contamination of water resources globally. Synthetic dyes have emerged as a major contributor to environmental pollution due to their release in large quantities into the environment, especially owing to their high demand in textile, cosmetics, clothing, food, paper, rubber, printing, and plastic industries. Photocatalytic treatment technology has gained immense research attention for dye contaminated wastewater treatment due to its environment-friendliness, ability to completely degrade dye molecules using light irradiation, high efficiency, and no generation of secondary waste. Photocatalytic technology is evolving rapidly, and the foremost goal is to synthesize highly efficient photocatalysts with solar energy harvesting abilities. The current review provides a comprehensive overview of the most recent advances in highly efficient visible light-activated photocatalysts for dye degradation, including methods of synthesis, strategies for improving photocatalytic activity, regeneration and their performance in real industrial effluent. The influence of various operational parameters on photocatalytic activity are critically evaluated in this article. Finally, this review briefly discusses the current challenges and prospects of visible-light driven photocatalysts. This review serves as a convenient and comprehensive resource for comparing and studying the fundamentals and recent advancements in visible light photocatalysts and will facilitate further research in this direction.
Collapse
Affiliation(s)
| | - Shobha Muthukumaran
- Institute for Sustainability Industries and Liveable Cities, College of Sport, Health & Engineering, Victoria University, Melbourne, VIC, 8001, Australia
| | - Kanagaratnam Baskaran
- Faculty of Science, Engineering and Built Environment, Deakin University, Victoria, 3216, Australia
| |
Collapse
|
29
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
30
|
Chang H, Zhu Y, Huang L, Yan Z, Qu F, Liang H. Mineral scaling induced membrane wetting in membrane distillation for water treatment: Fundamental mechanism and mitigation strategies. WATER RESEARCH 2023; 247:120807. [PMID: 37924685 DOI: 10.1016/j.watres.2023.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
The scaling-induced wetting phenomenon seriously affects the application of membrane distillation (MD) technology in hypersaline wastewater treatment. Unlike the large amount of researches on membrane scaling and membrane wetting, scaling-induced wetting is not sufficiently studied. In this work, the current research evolvement of scaling-induced wetting in MD was systematically summarized. Firstly, the theories involving scaling-induced wetting were discussed, including evaluation of scaling potential of specific solutions, classical and non-classical crystal nucleation and growth theories, observation and evolution of scaling-induced processes. Secondly, the primary pretreatment methods for alleviating scaling-induced wetting were discussed in detail, focusing on adding agents composed of coagulation, precipitation, oxidation, adsorption and scale inhibitors, filtration including granular filtration, membrane filtration and mesh filtration and application of external fields including sound, light, heat, electromagnetism, magnetism and aeration. Then, the roles of operation conditions and cleaning conditions in alleviating scaling-induced wetting were evaluated. The main operation parameters included temperature, flow rate, pressure, ultrasound, vibration and aeration, while different types of cleaning reagents, cleaning frequency and a series of assisted cleaning measures were summarized. Finally, the challenges and future needs in the application of nucleation theory to scaling-induced wetting, the speculation, monitoring and mitigation of scaling-induced wetting were proposed.
Collapse
Affiliation(s)
- Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China.
| | - Yingyuan Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Lin Huang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
31
|
Liu W, Long L, Yang Z, Wang L, Gan Q, Zhou S, Sarkar P, Guo H, Tang CY. Enhancing the removal of organic micropollutants by nanofiltration membrane with Fe (III)-tannic acid interlayer: Mechanisms and environmental implications. WATER RESEARCH 2023; 245:120623. [PMID: 37729696 DOI: 10.1016/j.watres.2023.120623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/03/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Nanofiltration technology has been applied in a variety of water treatment scenarios. However, conventional thin-film composite (TFC) membranes fail to remove emerging organic micropollutants (OMPs) efficiently. Here we applied thin-film nanocomposite membrane with an interlayer (TFNi) of Fe (III)-tannic acid to remove various types of OMPs, such as endocrine disrupting chemicals (EDCs), pharmaceutically active compounds (PhACs), and perfluoroalkyl substances (PFASs). Compared to the pristine TFC membrane, TFNi membrane exhibited crumpled morphology and its rejection layer was denser, better cross-linked and possessed smaller average pore size with narrower distribution. Significant enhancement in water-OMPs selectivity of PhACs and PFASs was observed. The mechanism lies in the effects of interlayer in improving the membrane permeance to water and meanwhile reducing the permeance to some OMPs by enhancing size exclusion effects. This work confirms the effectiveness of using TFNi membrane to simultaneously enhance the OMPs rejection and water permeance. The unraveled mechanism might inspire the future development of high-performance nanofiltration membranes targeting OMPs removal.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shenghua Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Guo
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
32
|
Jiang C, Zhang M, Hou Y. Thin-Film Composite Membrane with Porous Interlayer Composed of Dendritic Mesoporous Silica Nanoparticles for Enhanced Nanofiltration. Polymers (Basel) 2023; 15:3912. [PMID: 37835961 PMCID: PMC10574978 DOI: 10.3390/polym15193912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Positively charged nanofiltration (NF) membranes show great potential in the fields of water treatment and resource recovery. However, this kind of NF membrane usually suffers from relatively low water permeance. Herein, a positively charged NF membrane with a porous interlayer is developed, where the interlayer is formed by assembling dendritic mesoporous silica nanoparticles (DMSNs) after the formation of a polyamide layer. This post-assembly strategy avoids the adverse effect of the interlayer on the formation of positively charged NF membranes. The porous DMSN interlayer provides abundant connected channels for water transport, thus endowing the NF membrane with enhanced water permeance. A series of DMSNs with different sizes was synthesized, and their influence on membrane formation and membrane performance was systematically investigated. The optimized membrane exhibits a CaCl2 rejection rate of 95.2% and a water flux of 133.6 L·h-1·m-2, which is 1.6 times that of the control group without an interlayer. This work represents an approach to the fabrication of a positively charged NF membrane with porous interlayers for high-efficiency cation rejection.
Collapse
Affiliation(s)
- Chi Jiang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China (Y.H.)
| | - Mengmeng Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China (Y.H.)
| | - Yingfei Hou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China (Y.H.)
| |
Collapse
|
33
|
Long L, Peng LE, Zhou S, Gan Q, Li X, Jiang J, Han J, Zhang X, Guo H, Tang CY. NaHCO 3 addition enhances water permeance and Ca/haloacetic acids selectivity of nanofiltration membranes for drinking water treatment. WATER RESEARCH 2023; 242:120255. [PMID: 37356158 DOI: 10.1016/j.watres.2023.120255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The existence of disinfection by-products such as haloacetic acids (HAAs) in drinking water severely threatens water safety and public health. Nanofiltration (NF) is a promising strategy to remove HAAs for clean water production. However, NF often possesses overhigh rejection of essential minerals such as calcium. Herein, we developed highly selective NF membranes with tailored surface charge and pore size for efficient rejection of HAAs and high passage of minerals. The NF membranes were fabricated through interfacial polymerization (IP) with NaHCO3 as an additive. The NaHCO3-tailored NF membranes exhibited high water permeance up to ∼24.0 L m - 2 h - 1 bar-1 (more than doubled compared with the control membrane) thanks to the formation of stripe-like features and enlarged pore size. Meanwhile, the tailored membranes showed enhanced negative charge, which benefitted their rejection of HAAs and passage of Ca and Mg. The higher rejection of HAAs (e.g., > 90%) with the lower rejection of minerals (e.g., < 30% for Ca) allowed the NF membranes to achieve higher minerals/HAAs selectivity, which was significantly higher than those of commercially available NF membranes. The simultaneously enhanced membrane performance and higher minerals/HAAs selectivity would greatly boost water production efficiency and water quality. Our findings provide a novel insight to tailor the minerals/micropollutants selectivity of NF membranes for highly selective separation in membrane-based water treatment.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
34
|
Shemer H, Wald S, Semiat R. Challenges and Solutions for Global Water Scarcity. MEMBRANES 2023; 13:612. [PMID: 37367816 DOI: 10.3390/membranes13060612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Climate change, global population growth, and rising standards of living have put immense strain on natural resources, resulting in the unsecured availability of water as an existential resource. Access to high-quality drinking water is crucial for daily life, food production, industry, and nature. However, the demand for freshwater resources exceeds the available supply, making it essential to utilize all alternative water resources such as the desalination of brackish water, seawater, and wastewater. Reverse osmosis desalination is a highly efficient method to increase water supplies and make clean, affordable water accessible to millions of people. However, to ensure universal access to water, various measures need to be implemented, including centralized governance, educational campaigns, improvements in water catchment and harvesting technologies, infrastructure development, irrigation and agricultural practices, pollution control, investments in novel water technologies, and transboundary water cooperation. This paper provides a comprehensive overview of measures for utilizing alternative water sources, with particular emphasis on seawater desalination and wastewater reclamation techniques. In particular, membrane-based technologies are critically reviewed, with a focus on their energy consumption, costs, and environmental impacts.
Collapse
Affiliation(s)
- Hilla Shemer
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shlomo Wald
- Wald Industries, Tor HaAviv 1, Rehovot 7632101, Israel
| | - Raphael Semiat
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
35
|
Yang Z, Wu C, Tang CY. Making waves: Why do we need ultra-permeable nanofiltration membranes for water treatment? WATER RESEARCH X 2023; 19:100172. [PMID: 36860551 PMCID: PMC9969056 DOI: 10.1016/j.wroa.2023.100172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the last few decades, developing ultra-permeable nanofiltration (UPNF) membranes has been a focus research area to support NF-based water treatment. Nevertheless, there have been ongoing debates and doubts on the need for UPNF membranes. In this work, we share our perspectives on why UPNF membranes are desired for water treatment. We analyze the specific energy consumption (SEC) of NF processes under various application scenarios, which reveals the potential of UPNF membranes for reducing SEC by 1/3 to 2/3 depending on the prevailing transmembrane osmotic pressure difference. Furthermore, UPNF membranes could potentially enable new process opportunities. Vacuum-driven submerged NF-modules could be retrofitted to existing water/wastewater treatment plants, offering lower SEC and lower cost compared to conventional NF systems. Their use in submerged membrane bioreactors (NF-MBR) can recycle wastewater into high-quality permeate water, which enables energy-efficient water reuse in a single treatment step. The ability for retaining soluble organics may further extend the application of NF-MBR for anaerobic treatment of dilute municipal wastewater. Critical analysis of membrane development reveals huge rooms for UPNF membranes to attain improved selectivity and antifouling performance. Our perspective paper offers important insights for the future development of NF-based water treatment technology, which could potentially lead to a paradigm shift in this burgeoning field.
Collapse
|
36
|
Wang L, He J, Heiranian M, Fan H, Song L, Li Y, Elimelech M. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. SCIENCE ADVANCES 2023; 9:eadf8488. [PMID: 37058571 PMCID: PMC10104469 DOI: 10.1126/sciadv.adf8488] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
We performed nonequilibrium molecular dynamics (NEMD) simulations and solvent permeation experiments to unravel the mechanism of water transport in reverse osmosis (RO) membranes. The NEMD simulations reveal that water transport is driven by a pressure gradient within the membranes, not by a water concentration gradient, in marked contrast to the classic solution-diffusion model. We further show that water molecules travel as clusters through a network of pores that are transiently connected. Permeation experiments with water and organic solvents using polyamide and cellulose triacetate RO membranes showed that solvent permeance depends on the membrane pore size, kinetic diameter of solvent molecules, and solvent viscosity. This observation is not consistent with the solution-diffusion model, where permeance depends on the solvent solubility. Motivated by these observations, we demonstrate that the solution-friction model, in which transport is driven by a pressure gradient, can describe water and solvent transport in RO membranes.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Jinlong He
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1572, USA
| | - Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Lianfa Song
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409-1023, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1572, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| |
Collapse
|
37
|
Scheepers D, Casimiro A, Borneman Z, Nijmeijer K. Addressing Specific (Poly)ion Effects for Layer-by-Layer Membranes. ACS APPLIED POLYMER MATERIALS 2023; 5:2032-2042. [PMID: 36935653 PMCID: PMC10012173 DOI: 10.1021/acsapm.2c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 05/12/2023]
Abstract
Layer-by-layer (LbL) assembly of the alternating adsorption of oppositely charged polyions is an extensively studied method to produce nanofiltration membranes. In this work, the concept of chaotropicity of the polycation and its counterion is introduced in the LbL field. In general, the more chaotropic a polyion, the lower its effective charge, charge availability, and hydrophilicity. Here, this is researched for the well-known PDADMAC (polydiallyldimethylammonium chloride) and PAH (poly(allylamine) hydrochloride), and the synthesized PAMA (polyallylmultimethylammonium), with two different counterions (I- and Cl-). Higher chaotropicity (PDADMAC > PAMA-I > PAMA-Cl > PAH) translates into a reduced charge availability and a more pronounced extrinsic charge compensation, resulting in more mass adsorption and a higher pure water permeability. PAMA-containing membranes show the most interesting results in the series. Due to its molecular structure, the chaotropicity of this polycation perfectly lies between PDADMAC and PAH. Overall, the chaotropicity of PAMA membranes allows for the formation of the right balance between extrinsic and intrinsic charge compensation with PSS. Moreover, modifying the nature of the counterions of PAMA (I- or Cl-) allows to tune the density of the multilayer and results in lower size exclusion abilities with PAMA-I compared to PAMA-Cl (higher MWCO and lower MgSO4 retention). In general, the contextualization of the polyion interaction within the specific (poly)ion effects expands the understanding of the influence of the charge density of polycations without ignoring the chemical nature of the functional groups in their monomer units.
Collapse
|
38
|
Cheng J, Li Z, Bao X, Zhang R, Zhang Z, Hai G, Sun K, Shi W. Retarding the diffusion rate of piperazine through the interface of aqueous/organic phase: Bis-tris propane tuned the trans-state of ultra-low concentration piperazine. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
39
|
Zhang H, Li X, Xu T. Two-dimensional graphene oxide nanochannel membranes for ionic separation. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
40
|
Hu Y, Wang F, Yang Z, Tang CY. Modeling nanovoid-enhanced water permeance of thin film composite membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
41
|
Gan Q, Wu C, Long L, Peng LE, Yang Z, Guo H, Tang CY. Does Surface Roughness Necessarily Increase the Fouling Propensity of Polyamide Reverse Osmosis Membranes by Humic Acid? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2548-2556. [PMID: 36719958 DOI: 10.1021/acs.est.2c07872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surface roughness has crucial influence on the fouling propensity of thin film composite (TFC) polyamide reverse osmosis (RO) membranes. A common wisdom is that rougher membranes tend to experience more severe fouling. In this study, we compared the fouling behaviors of a smooth polyamide membrane (RO-s) and a nanovoid-containing rough polyamide membrane (RO-r). Contrary to the traditional belief, we observed more severe fouling for RO-s, which can be ascribed to its uneven flux distribution caused by the "funnel effect". Additional tracer filtration tests using gold nanoparticles revealed a more patchlike particle deposition pattern, confirming the adverse impact of "funnel effect" on membrane water transport. In contrast, the experimentally observed lower fouling propensity of the nanovoid-containing rough membrane can be explained by: (1) the weakened "funnel effect" thanks to the presence of nanovoids, which can regulate the water transport pathway through the membrane and (2) the decreased average localized flux over the membrane surface due to the increased effective filtration area for the nanovoid-induced roughness features. The current study provides fundamental insights into the critical role of surface roughness in membrane fouling, which may have important implications for the future development of high-performance antifouling membranes.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| |
Collapse
|
42
|
Chemical Cleaning and Membrane Aging of Poly(vinylidene fluoride) (PVDF) Membranes Fabricated via Non-solvent Induced Phase Separation (NIPS) and Thermally Induced Phase Separation (TIPS). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
43
|
A novel single-scan printing approach for polyamide membranes by electrospray technique on polydopamine pre-coated substrate. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Gan Q, Peng LE, Yang Z, Sun PF, Wang L, Guo H, Tang CY. Demystifying the Role of Surfactant in Tailoring Polyamide Morphology for Enhanced Reverse Osmosis Performance: Mechanistic Insights and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1819-1827. [PMID: 36652351 DOI: 10.1021/acs.est.2c08076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surfactant-assisted interfacial polymerization (IP) has shown strong potential to improve the separation performance of thin film composite polyamide membranes. A common belief is that the enhanced performance is attributed to accelerated amine diffusion induced by the surfactant, which can promote the IP reaction. However, we show enhanced membrane performance for Tween 80 (a common surfactant), even though it decreased the amine diffusion. Indeed, the membrane performance is closely related to its polyamide roughness features with numerous nanovoids. Inspired by the nanofoaming theory that relates the roughness features to nanobubbles degassed during the IP reaction, we hypothesize that the surfactant can stabilize the generated nanobubbles to tailor the formation of nanovoids. Accordingly, we obtained enlarged nanovoids when the surfactant was added below its critical micelle concentration (CMC). In addition, both the membrane permeance and selectivity were enhanced, thanks to the enlarged nanovoids and reduced defects in the polyamide layer. Increasing the concentration above CMC resulted in shrunken nanovoids and deteriorated performance, which can be ascribed to the decreased stabilization effect caused by micelle formation. Interestingly, better antifouling performance was also observed for the surfactant-assisted membranes. Our current study provides mechanistic insights into the critical role of surfactant during the IP reaction, which may have important implications for more efficient membrane-based desalination and water reuse.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Peng-Fei Sun
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| |
Collapse
|
45
|
Nickerson TR, Antonio EN, McNally DP, Toney MF, Ban C, Straub AP. Unlocking the potential of polymeric desalination membranes by understanding molecular-level interactions and transport mechanisms. Chem Sci 2023; 14:751-770. [PMID: 36755730 PMCID: PMC9890600 DOI: 10.1039/d2sc04920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Polyamide reverse osmosis (PA-RO) membranes achieve remarkably high water permeability and salt rejection, making them a key technology for addressing water shortages through processes including seawater desalination and wastewater reuse. However, current state-of-the-art membranes suffer from challenges related to inadequate selectivity, fouling, and a poor ability of existing models to predict performance. In this Perspective, we assert that a molecular understanding of the mechanisms that govern selectivity and transport of PA-RO and other polymer membranes is crucial to both guide future membrane development efforts and improve the predictive capability of transport models. We summarize the current understanding of ion, water, and polymer interactions in PA-RO membranes, drawing insights from nanofiltration and ion exchange membranes. Building on this knowledge, we explore how these interactions impact the transport properties of membranes, highlighting assumptions of transport models that warrant further investigation to improve predictive capabilities and elucidate underlying transport mechanisms. We then underscore recent advances in in situ characterization techniques that allow for direct measurements of previously difficult-to-obtain information on hydrated polymer membrane properties, hydrated ion properties, and ion-water-membrane interactions as well as powerful computational and electrochemical methods that facilitate systematic studies of transport phenomena.
Collapse
Affiliation(s)
- Trisha R Nickerson
- Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80309 USA
| | - Emma N Antonio
- Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80309 USA
- Materials Science and Engineering Program, University of Colorado Boulder Boulder CO 80309 USA
| | - Dylan P McNally
- Materials Science and Engineering Program, University of Colorado Boulder Boulder CO 80309 USA
| | - Michael F Toney
- Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder CO 80309 USA
- Materials Science and Engineering Program, University of Colorado Boulder Boulder CO 80309 USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder Boulder CO 80309 USA
| | - Chunmei Ban
- Materials Science and Engineering Program, University of Colorado Boulder Boulder CO 80309 USA
- Department of Mechanical Engineering, University of Colorado Boulder Boulder CO 80309 USA
| | - Anthony P Straub
- Materials Science and Engineering Program, University of Colorado Boulder Boulder CO 80309 USA
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder Boulder Colorado 80309 USA
| |
Collapse
|
46
|
Li J, Qiu X, Ren S, Liu H, Zhao S, Tong Z, Wang Y. High performance electroactive ultrafiltration membrane for antibiotic resistance removal from wastewater effluent. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Zhao Q, Zhao DL. Thermoresponsive Magnetic Ionic Liquids as Forward Osmosis Draw Solutes for Seawater Desalination. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
48
|
Alias NH, Aziz MHA, Adam MR, Aizudin M, Ang EH. Polymeric/ceramic membranes for water reuse. RESOURCE RECOVERY IN DRINKING WATER TREATMENT 2023:65-92. [DOI: 10.1016/b978-0-323-99344-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
49
|
Zhao H, Yang L, Chen X, Wang J, Bai L, Cao G, Cai L, Tang CY. Reactivity of various brominating agents toward polyamide nanofiltration membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
von Eiff D, Yeo J, An AK, Chopra SS. Comparative Economic and Life Cycle Analysis of Future Water Supply Mix Scenarios for Hong Kong - A Water Scarce City. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116370. [PMID: 36308784 DOI: 10.1016/j.jenvman.2022.116370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Increasing urbanization and changes in climate have placed increasing stress on urban water supply systems. Policy makers have increasingly adopted alternative water supply sources, such as desalination and water reclamation to meet this challenge, however these technologies may increase the negative environmental impacts of the water supply system. These alternative sources are energy intensive, and more expensive to produce, which raises questions about their sustainability. In this study, a Life Cycle Assessment (LCA) and a economic portfolio choice model were used to determine the impacts of Hong Kong's long term water policy. The results of our study show that the current water policy will increase the carbon emissions of producing 1 m3 of freshwater by 11% to 1.65 kg CO2-Eq due to the addition of desalination. However, a fit-for-purpose water policy approach only increases emission by 4%, to 1.54 kg CO2-Eq, by instead relying on water reclamation to offset freshwater consumption. Impacts from increased energy consumption were mitigated by improved wastewater treatment, which reduced CH4 emissions. Although, ozone layer impacts increased due to higher NOx and N2O emissions, highlighting the need to consider emissions from wastewater treatment processes when evaluating water reclamation processes. Impacts to water prices were also minimized when reclaimed water was chosen over desalination, due to its lower unit production cost. By considering both cost and environmental impacts of such system level changes, decision makers can more accurately evaluate different water supply approaches for data-driven policymaking.
Collapse
Affiliation(s)
- David von Eiff
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Joonho Yeo
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|