1
|
Guo J, Jiang M, Li X, Farid MU, Deka BJ, Zhang B, Sun J, Wang Z, Yi C, Wong PW, Jeong S, Gu B, An AK. Springtail-inspired omniphobic slippery membrane with nano-concave re-entrant structures for membrane distillation. Nat Commun 2024; 15:7750. [PMID: 39237575 PMCID: PMC11377731 DOI: 10.1038/s41467-024-52108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Omniphobic membranes, due to their exceptional properties, have drawn significant attention for overcoming the bottleneck in membrane distillation (MD) technology. This study demonstrates an innovative method for fabricating an omniphobic membrane that is simple and facile compared to other methods such as wet/dry etching and photolithography. The surface morphology of springtails was imitated using electrospraying technique to coat a polyvinylidene fluoride substrate with concave-shaped polystyrene beads that were successfully developed by controlling the electrical traction (voltage) and air resistance (humidity). Then, the lipid coating of springtail surfaces was mimicked by dip-coating the membrane in a low-toxicity short-chain perfluoropolyether lubricant. The concave structure's tiny air pockets increased membrane hydrophobicity significantly, indicated by the fact that the first round of water bouncing took only 16.3 ms. Finally, in MD treatment of seawater containing 1.0 mM sodium dodecyl sulfate, the optimized omniphobic membrane maintained a stable 99.9% salt rejection rate.
Collapse
Affiliation(s)
- Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Mengnan Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Xiaolu Li
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Baoping Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Chunhai Yi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Environmental Engineering, Pusan National University, Pusan, South Korea
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju, South Korea
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Liu Z, Lu X, Wu C, Gu J, Wu Q. Exploiting the potential of a novel "in-situ latent heat recovery" in hollow-fiber vacuum membrane distillation process for simultaneously improved water production and energy efficiency. WATER RESEARCH 2024; 256:121586. [PMID: 38631240 DOI: 10.1016/j.watres.2024.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Thermal driven membrane distillation (MD) technology is a promising method for purifying & recovering various salty (especially high salty) or contaminated wastewaters with low-grade heat sources. However, the drawbacks of "high energy consumption" and "high cooling water consumption" pose special challenges for the future development of this technology. In this article, we report an innovative strategy called "in-situ heat transfer", which is based on the jacketed structure composed of hollow fiber membranes and capillary heat exchange tubes, to simplify the migration steps of condensation latent heat in MD heat recovery process. The results indicate that the novel heat recovery strategy exhibits higher growth rates both in the flux and gained output ratio (47.4 % and 173.1 %, respectively), and further reduces the system's dependence on cooling water. In sum, under the control of the "in-situ heat transfer" mechanism, the functional coupling of "vapor condensation (exothermic)" and "feed evaporation (endothermic)" in limited-domain space is an attractive alternative solution, because it eliminates the disadvantages of the imbalance between heat supply and demand in traditional heat recovery methods. Our research may facilitate the development of MD heat recovery modules for industrial applications, which will help to further achieve the goal of energy saving and emission reduction.
Collapse
Affiliation(s)
- Ziqiang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xiaolong Lu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China; State Key Laboratory of Membrane Materials and Membrane Applications, Tianjin Motimo Membrane Technology Co., Ltd., Tianjin 300457, PR China.
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jie Gu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Qiang Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
3
|
Lawal DU, Abdulazeez I, Alsalhy QF, Usman J, Abba SI, Mansir IB, Sathyamurthy R, Kaleekkal NJ, Imteyaz B. Experimental Investigation of a Plate-Frame Water Gap Membrane Distillation System for Seawater Desalination. MEMBRANES 2023; 13:804. [PMID: 37755226 PMCID: PMC10536650 DOI: 10.3390/membranes13090804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023]
Abstract
This study presented a detailed investigation into the performance of a plate-frame water gap membrane distillation (WGMD) system for the desalination of untreated real seawater. One approach to improving the performance of WGMD is through the proper selection of cooling plate material, which plays a vital role in enhancing the gap vapor condensation process. Hence, the influence of different cooling plate materials was examined and discussed. Furthermore, two different hydrophobic micro-porous polymeric membranes of similar mean pore sizes were utilized in the study. The influence of key operating parameters, including the feed water temperature and flow rate, was examined against the system vapor flux and gained output ratio (GOR). In addition, the used membranes were characterized by means of different techniques in terms of surface morphology, liquid entry pressure, water contact angle, pore size distribution, and porosity. Findings revealed that, at all conditions, the PTFE membrane exhibits superior vapor flux and energy efficiency (GOR), with 9.36% to 14.36% higher flux at a 0.6 to 1.2 L/min feed flow rate when compared to the PVDF membrane. The copper plate, which has the highest thermal conductivity, attained the highest vapor flux, while the acrylic plate, which has an extra-low thermal conductivity, recorded the lowest vapor flux. The increasing order of GOR values for different cooling plates is acrylic < HDPE < copper < aluminum < brass < stainless steel. Results also indicated that increasing the feed temperature increases the vapor flux almost exponentially to a maximum flux value of 30.36 kg/m2hr. The system GOR also improves in a decreasing pattern to a maximum value of 0.4049. Moreover, a long-term test showed that the PTFE membrane, which exhibits superior hydrophobicity, registered better salt rejection stability. The use of copper as a cooling plate material for better system performance is recommended, while cooling plate materials with very low thermal conductivities, such as a low thermally conducting polymer, are discouraged.
Collapse
Affiliation(s)
- Dahiru U Lawal
- Interdisciplinary Research Centre for Membrane and Water Security (IRC-MWS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Centre for Membrane and Water Security (IRC-MWS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Qusay F Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Jamilu Usman
- Interdisciplinary Research Centre for Membrane and Water Security (IRC-MWS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Sani I Abba
- Interdisciplinary Research Centre for Membrane and Water Security (IRC-MWS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim B Mansir
- Department of Mechanical Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Centre for Energy Research and Training, Ahmadu Bello University, Zaria P.M.B. 1045, Nigeria
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology (NITC), Calicut 673601, Kerala, India
| | - Binash Imteyaz
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
5
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
6
|
Preparation and characterization of PPO/PS porous membrane for desalination via direct contact membrane distillation (DCMD). J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
An omniphobic membrane with macro-corrugation for the treatment of real pharmaceutical wastewater via membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Alharthi MS, Bamaga O, Abulkhair H, Organji H, Shaiban A, Macedonio F, Criscuoli A, Drioli E, Wang Z, Cui Z, Jin W, Albeirutty M. Evaluation of a Hybrid Moving Bed Biofilm Membrane Bioreactor and a Direct Contact Membrane Distillation System for Purification of Industrial Wastewater. MEMBRANES 2022; 13:16. [PMID: 36676823 PMCID: PMC9863120 DOI: 10.3390/membranes13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Integrated wastewater treatment processes are accepted as the best option for sustainable and unrestricted onsite water reuse. In this study, moving bed biofilm reactor (MBBR), membrane bioreactor (MBR), and direct contact membrane distillation (DCMD) treatment steps were integrated successively to obtain the combined advantages of these processes for industrial wastewater treatment. The MBBR step acts as the first step in the biological treatment and also mitigates foulant load on the MBR. Similarly, MBR acts as the second step in the biological treatment and serves as a pretreatment prior to the DCMD step. The latter acts as a final treatment to produce high-quality water. A laboratory scale integrated MBBR/MBR/DCMD experimental system was used for assessing the treatment efficiency of primary treated (PTIWW) and secondary treated (STIWW) industrial wastewater in terms of permeate water flux, effluent quality, and membrane fouling. The removal efficiency of total dissolved solids (TDS) and effluent permeate flux of the three-step process (MBBR/MBR/DCMD) were better than the two-step (MBR/DCMD) process. In the three-step process, the average removal efficiency of TDS was 99.85% and 98.16% when treating STIWW and PTIWW, respectively. While in the case of the two-step process, the average removal efficiency of TDS was 93.83% when treating STIWW. Similar trends were observed for effluent permeate flux values which were found, in the case of the three-step process, 62.6% higher than the two-step process, when treating STIWW in both cases. Moreover, the comparison of the quality of the effluents obtained with the analysed configurations with that obtained by Jeddah Industrial Wastewater Treatment Plant proved the higher performance of the proposed membrane processes.
Collapse
Affiliation(s)
- Mamdouh S. Alharthi
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Omar Bamaga
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Hani Abulkhair
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Husam Organji
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Amer Shaiban
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Francesca Macedonio
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Alessandra Criscuoli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Zhaohui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mohammed Albeirutty
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization. Polymers (Basel) 2022; 14:polym14245439. [PMID: 36559805 PMCID: PMC9782556 DOI: 10.3390/polym14245439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Fluoropolymer membranes are applied in membrane operations such as membrane distillation and membrane crystallization where hydrophobic porous membranes act as a physical barrier separating two phases. Due to their hydrophobic nature, only gaseous molecules are allowed to pass through the membrane and are collected on the permeate side, while the aqueous solution cannot penetrate. However, these two processes suffer problems such as membrane wetting, fouling or scaling. Membrane wetting is a common and undesired phenomenon, which is caused by the loss of hydrophobicity of the porous membrane employed. This greatly affects the mass transfer efficiency and separation efficiency. Simultaneously, membrane fouling occurs, along with membrane wetting and scaling, which greatly reduces the lifespan of the membranes. Therefore, strategies to improve the hydrophobicity of membranes have been widely investigated by researchers. In this direction, hydrophobic fluoropolymer membrane materials are employed more and more for membrane distillation and membrane crystallization thanks to their high chemical and thermal resistance. This paper summarizes different preparation methods of these fluoropolymer membrane, such as non-solvent-induced phase separation (NIPS), thermally-induced phase separation (TIPS), vapor-induced phase separation (VIPS), etc. Hydrophobic modification methods, including surface coating, surface grafting and blending, etc., are also introduced. Moreover, the research advances on the application of less toxic solvents for preparing these membranes are herein reviewed. This review aims to provide guidance to researchers for their future membrane development in membrane distillation and membrane crystallization, using fluoropolymer materials.
Collapse
|
10
|
Liu D, Liu P, Liu D, Zhao J, Zhang T, Zhong L, Sun F, Liu J, Wang W. Binder-free in-situ reinforced nanofibrous membrane with anti-deformable pore structures for seawater concentration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Su YL, Beltsios KG, Su JF, Cheng LP. Preparation of poly(vinyl alcohol-co-ethylene) hollow fiber membranes for high-flux ultrafiltration applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Plasma-assisted facile fabrication of omniphobic graphene oxide membrane with anti-wetting property for membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Li H, Feng H, Li M, Zhang X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Xing X, Zhao Y, Xu C, He Y, Yang C, Xiao K, Zheng J, Deng B. Omniphobic Polyvinylidene Fluoride Membrane Decorated with a ZnO Nano Sea Urchin Structure: Performance Against Surfactant-Wetting in Membrane Distillation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Xing
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Yurong Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Yali He
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Chen Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Jianzhong Zheng
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Baolin Deng
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
16
|
Surface wettability of poly(vinylidene fluoride) nanoparticle assembly surfaces. Polym J 2022. [DOI: 10.1038/s41428-021-00612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Xu W, Wang Y, Guo QY, Wang X, Liu Y, Bian FG, Yan XY, Ni B, Cheng SZD. A robust platform to construct molecular patchy particles with a pentiptycene skeleton toward controlled mesoscale structures. Polym Chem 2022. [DOI: 10.1039/d2py00130f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new pentiptycene skeleton with orthogonally reactive sites and inherent D2h-symmetry to construct molecular pathy particles toward mesoscale structures.
Collapse
Affiliation(s)
- Wei Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Xiaoteng Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yuchu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Feng-Gang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Bo Ni
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China
- Nanjing Julong Science & Technology Company Limited, Nanjing, 210009, China
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
18
|
A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Naim R, Pei Sean G, Nasir Z, Mokhtar NM, Safiah Muhammad NA. Recent Progress and Challenges in Hollow Fiber Membranes for Wastewater Treatment and Resource Recovery. MEMBRANES 2021; 11:839. [PMID: 34832068 PMCID: PMC8617921 DOI: 10.3390/membranes11110839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
Membrane processes have been extensively employed in diverse applications, specifically in industrial wastewater treatment. The technological development in membrane processes has rapidly advanced and accelerated beyond its common principle and operation. Tremendous efforts have been made in the advancement of membrane materials, fabrication method, membrane modification and integration with other technologies that can augment the existing membrane processes to another level. This review presents the recent development of hollow fiber membranes applied in wastewater treatment and resource recovery. The membrane working principles and treatment mechanism were discussed thoroughly, with the recent development of these hollow fiber membranes highlighted based on several types of membrane application. The current challenges and limitations which may hinder this technology from expanding were critically described to offer a better perspective for this technology to be adopted in various potential applications.
Collapse
Affiliation(s)
- Rosmawati Naim
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia;
| | - Goh Pei Sean
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malysia, Johor Bahru 81310, Johor, Malaysia;
| | - Zinnirah Nasir
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia;
| | - Nadzirah Mohd Mokhtar
- Faculty of Civil Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia; (N.M.M.); (N.A.S.M.)
| | - Nor Amirah Safiah Muhammad
- Faculty of Civil Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia; (N.M.M.); (N.A.S.M.)
| |
Collapse
|
21
|
Xue X, Tan G, Zhu Z. All-Polymer and Self-Roughened Superhydrophobic PVDF Fibrous Membranes for Stably Concentrating Seawater by Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45977-45986. [PMID: 34523328 DOI: 10.1021/acsami.1c12775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Novel specially wettable membranes have been attracting significant attention for durable membrane distillation (MD). However, constructing a superhydrophobic interface often has to undergo complex modification procedures including roughness construction and hydrophobic modification. Herein, all-polymer and self-roughened superhydrophobic poly(vinylidene fluoride) fibrous membranes (PVDF FMs) with robustly stable pores were successfully constructed via electrospinning of fluorinated polyhedral oligomeric silsesquioxanes/PVDF (F-POSS/PVDF) emulsion solution in combination with hot-pressing. The comparative experiment reveals that proper hot-pressing, including adequate temperature and pressure, can help improve membrane pore stability by welding the intersecting fibers and increase the membrane surface hydrophobicity by transferring the inner fluorine chains to the outer fiber surface, simultaneously advancing membrane scaling and fouling resistance. Nevertheless, excessive temperature or pressure will destroy the interconnected pores and surface wettability of the PVDF FM. Significantly, the hot-pressing-treated F-POSS/PVDF FM shows a high water recovery (∼90%) and robust stability after five rounds of the concentration process toward concentrating natural seawater as a target. Thus, the all-polymer and self-roughened superhydrophobic PVDF FMs constructed via electrospinning combined with the thermal treatment have potential applications in concentrating hypersaline brines, which make up for the other membrane technology, including reverse osmosis and nanofiltration technologies that failed to concentrate hypersaline solutions.
Collapse
Affiliation(s)
- Xiangyang Xue
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guangming Tan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
22
|
Liu J, Guo H, Sun Z, Li B. Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Liao X, Wang Y, Liao Y, You X, Yao L, Razaqpur AG. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
In-situ electric-enhanced membrane distillation for simultaneous flux-increasing and anti-wetting. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Advances in seawater membrane distillation (SWMD) towards stand-alone zero liquid discharge (ZLD) desalination. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Seawater membrane distillation (SWMD) is a promising separation technology due to its ability to operate as a stand-alone desalination unit operation. This paper reviews approaches to improve laboratory-to-pilot-scale MD performance, which comprise operational strategies, module design, and specifically tailored membranes. A detailed comparison of SWMD and sea water reverse osmosis is presented to further analyze the critical shortcomings of SWMD. The unique features of SWMD, namely the ability to operate with extremely high salt rejection and at extreme feed concentration, highlight the SWMD potential to be operated under zero liquid discharge (ZLD) conditions, which results in the production of high-purity water and simultaneous salt recovery, as well as the elimination of the brine disposal cost. However, technical challenges, such as thermal energy requirements, inefficient heat transfer and integration, low water recovery factors, and lack of studies on real-case valuable-salt recovery, are impeding the commercialization of ZLD SWMD. This review highlights the possibility of applying selected strategies to push forward ZLD SWMD commercialization. Suggestions are projected to include intermittent removal of valuable salts, in-depth study on the robustness of novel membranes, module and configuration, utilization of a low-cost heat exchanger, and capital cost reduction in a renewable-energy-integrated SWMD plant.
Collapse
|
26
|
Askari M, Liang CZ, Choong LT(S, Chung TS. Optimization of TFC-PES hollow fiber membranes for reverse osmosis (RO) and osmotically assisted reverse osmosis (OARO) applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Pan T, Liu J, Deng N, Li Z, Wang L, Xia Z, Fan J, Liu Y. ZnO Nanowires@PVDF nanofiber membrane with superhydrophobicity for enhanced anti-wetting and anti-scaling properties in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Janus membranes for membrane distillation: Recent advances and challenges. Adv Colloid Interface Sci 2021; 289:102362. [PMID: 33607551 DOI: 10.1016/j.cis.2021.102362] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Membrane distillation (MD) is a promising hybrid thermal-membrane separation technology that can efficiently produce freshwater from seawater or contaminated wastewater. However, the relatively low flux and the presence of fouling or wetting agents in feed solution negate the applicability of MD for long term operation. In recent years, 'two-faced' membranes or Janus membranes have shown promising potential to decrease wetting and fouling problem of common MD system as well as enhance the flux performance. In this review, a comprehensive study was performed to investigate the various fabrication, modification, and novel design processes to prepare Janus membranes and discuss their performance in desalination and wastewater treatment utilizing MD. The promising potential, challenges and future prospects relating to the design and use of Janus membranes for MD are also tackled in this review.
Collapse
|
29
|
Zhang W, Hu B, Wang Z, Li B. Fabrication of omniphobic PVDF composite membrane with dual-scale hierarchical structure via chemical bonding for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Koh E, Lee YT. Preparation of an omniphobic nanofiber membrane by the self-assembly of hydrophobic nanoparticles for membrane distillation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118134] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
32
|
Lu C, Su C, Cao H, Horseman T, Duan F, Li Y. Nanoparticle-free and self-healing amphiphobic membrane for anti-surfactant-wetting membrane distillation. J Environ Sci (China) 2021; 100:298-305. [PMID: 33279043 DOI: 10.1016/j.jes.2020.04.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 06/12/2023]
Abstract
In membrane distillation (MD), complicated feed water with amphiphilic contaminants induces fouling/wetting of the MD membrane and can even lead to process failure. This study reports a facile approach to fabricate robust and self-healing hybrid amphiphobic membranes for anti-surfactant-wetting MD based on the ultra-low surface energy of fluorinated polyhedral oligomeric silsesquioxanes (F-POSS) and its thermal induced motivation and rotation. The thermal treatment makes the membranes achieving amphiphobicity at a very low cost of F-POSS (13.04 wt.%), which is about 1/3 of without thermal treatment. The prepared membrane exhibits excellent amphiphobicity, i.e. ethanol contact angle of 120.3°, without using environmentally toxic fluorinated nanoparticles. Robust MD performance was observed for the amphiphobic membrane in concentrated sodium dodecyl sulfate (SDS) feed solutions. Furthermore, the fabricated membrane exhibited stable amphiphobicity even in extreme environments, including strong acid or alkaline solutions. In the event of a damaged or abraded membrane surface where the F-POSS can be removed, the amphiphobic membrane exhibits self-healing ability with additional thermal treatment. This simple approach without the use of nanoparticles provides an environmentally friendly way for fabrication of amphiphobic membranes for anti-surfactant-wetting membrane distillation.
Collapse
Affiliation(s)
- Chun Lu
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chunlei Su
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbin Cao
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China.
| | - Thomas Horseman
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Feng Duan
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Li
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
33
|
Chen YR, Xin R, Huang X, Zuo K, Tung KL, Li Q. Wetting-resistant photothermal nanocomposite membranes for direct solar membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Effects of different secondary nano-scaled roughness on the properties of omniphobic membranes for brine treatment using membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Zou L, Zhang X, Gusnawan P, Zhang G, Yu J. Crosslinked PVDF based hydrophilic-hydrophobic dual-layer hollow fiber membranes for direct contact membrane distillation desalination: from the seawater to oilfield produced water. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Hollow fiber membranes with hierarchical spherulite surface structure developed by thermally induced phase separation using triple-orifice spinneret for membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Chen Y, Lu KJ, Japip S, Chung TS. Can Composite Janus Membranes with an Ultrathin Dense Hydrophilic Layer Resist Wetting in Membrane Distillation? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12713-12722. [PMID: 32877174 DOI: 10.1021/acs.est.0c04242] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tackling membrane wetting is an ongoing challenge for large-scale applications of membrane distillation (MD). Herein, composite Janus MD membranes comprising an ultrathin dense hydrophilic layer are developed by layer-by-layer assembling cationic polyethyleneimine and anionic poly(sodium 4-styrenesulfonate) polyelectrolytes on a hydrophobic polyvinylidene fluoride substrate. Using surfactant-containing saline water as the feed with low surface tension, experiments reveal that the number of polyelectrolyte layers, rather than surface wettability or surface charge, determines the anti-wetting performance of the composite Janus membranes. More deposited layers yield higher wetting resistance. With the aid of positron annihilation spectroscopy, this study, for the first time, demonstrates the origin of the excellent wetting resistance of the composite Janus membranes. The effective pore size of the polyelectrolyte multilayer decreases with an increase in the number of the deposited layer. The membrane with an ultrathin hydrophilic multilayer of 48 nm has a sufficiently small pore size to sieve out surfactant molecules from the feed solution via a size exclusion mechanism, thus protecting the hydrophobic substrate from being wetted by the low-surface-tension feed water. This study may pave the way for developing next-generation anti-wetting Janus membranes for robust membrane distillation.
Collapse
Affiliation(s)
- Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, 117456 Singapore
| | - Kang-Jia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Susilo Japip
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Tai-Shung Chung
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, 117456 Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
38
|
Li C, Li X, Du X, Zhang Y, Wang W, Tong T, Kota AK, Lee J. Elucidating the Trade-off between Membrane Wetting Resistance and Water Vapor Flux in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10333-10341. [PMID: 32702974 DOI: 10.1021/acs.est.0c02547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane distillation (MD) has been receiving considerable attention as a promising technology for desalinating industrial wastewaters. While hydrophobic membranes are essential for the process, increasing membrane surface hydrophobicity generally leads to the reduction of water vapor flux. In this study, we investigate the mechanisms responsible for this trade-off relation in MD. We prepared hydrophobic membranes with different degrees of wetting resistance through coating quartz fiber membranes with a series of alkylsilane molecules while preserving the fiber structures. A trade-off between wetting resistance and water vapor flux was observed in direct-contact MD experiments, with the least-wetting-resistant membrane exhibiting twice as high vapor flux as the most wetting-resistant membrane. Electrochemical impedance analysis, combined with fluorescence microscopy, elucidated that a lower wetting resistance (still water-repelling) allows deeper penetration of the liquid-air interfaces into the membrane, resulting in an increased interfacial area and therefore a larger evaporative vapor flux. Finally, we performed osmotic distillation experiments employing anodized alumina membranes that possess straight nanopores with different degrees of wetting resistance, observed no trade-off, and substantiated this proposed mechanism. Our study provides a guideline to tailor the membrane surface wettability to ensure stable MD operations while maximizing the water recovery rate.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuewei Du
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80526, United States
| | - Ying Zhang
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wei Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80526, United States
| | - Arun Kumar Kota
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
39
|
Qing W, Wu Y, Li X, Shi X, Shao S, Mei Y, Zhang W, Tang CY. Omniphobic PVDF nanofibrous membrane for superior anti-wetting performance in direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118226] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Fang C, Zhang X, Gong X, Feng W, Zhu L, Matsuyama H. Enhancing membrane surface antifouling by implanting amphiphilic polymer brushes using a swelling induced entrapment technique. Colloids Surf B Biointerfaces 2020; 195:111212. [PMID: 32645593 DOI: 10.1016/j.colsurfb.2020.111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/31/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022]
Abstract
In this work, a swelling induced entrapment technique was developed to enhance the hydrophilicity and antifouling performances of polypropylene (PP) microfiltration membranes. By this method, three amphiphilic polymers with different chemical structures (i.e., a homopolymer (polypropylene glycol), a di-block copolymer (oligoethylene glycol monooctadecylether), and a tri-block copolymer of ethylene glycol (EO) and propylene glycol) were successfully implanted onto membrane surfaces to be polymer brushes with high density, without having a significant effect on the membrane pore structure. The polymer brushes significantly enhanced the hydrophilicity and protein fouling resistance of the membrane. In particular, when using the di-block copolymer with a short hydrophilic EO chain, the modified membrane showed a low water contact angle, down to 20°, and low adsorption of bovine serum albumin of 1.1 μg cm-2. Furthermore, the implanted polymer brushes exhibited excellent durability. The hydrophobic segments of amphiphilic polymers played a leading role in the implantation and stability of the brushes on the PP membrane surface. This work provides a feasible strategy to achieve surface hydrophilicity and antifouling performances in a hydrophobic membrane for use in high-efficiency water treatment.
Collapse
Affiliation(s)
- Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China; Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Xinyu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xiaona Gong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Weilin Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
41
|
Kharraz JA, Farid MU, Khanzada NK, Deka BJ, Arafat HA, An AK. Macro-corrugated and nano-patterned hierarchically structured superomniphobic membrane for treatment of low surface tension oily wastewater by membrane distillation. WATER RESEARCH 2020; 174:115600. [PMID: 32088385 DOI: 10.1016/j.watres.2020.115600] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
A hierarchically assembled superomniphobic membrane with three levels of reentrant structure was designed and fabricated to enable effective treatment of low surface tension, hypersaline oily wastewaters using direct contact membrane distillation (DCMD). The overall structure is a combination of macro corrugations obtained by surface imprinting, with the micro spherulites morphology achieved through the applied phase inversion method and nano patterns obtained by fluorinated Silica nanoparticles (SiNPs) coating. This resulted in a superomniphobic membrane surface with remarkable anti-wetting properties repelling both high surface tension water and low surface tension oils. Measurements of contact angle (CA) with DI water, an anionic surfactant, oil, and ethanol demonstrated a robust wetting resistance against low surface tension liquids showing both superhydrophobicity and superoleophobicity. CA values of 160.8 ± 2.3° and 154.3 ± 1.9° for water and oil were obtained, respectively. Calculations revealed a high liquid-vapor interface for the fabricated membrane with more than 89% of the water droplet contact area being with air pockets entrapped between adjacent SiNPs and only 11% come into contact with the solid membrane surface. Moreover, the high liquid-vapor interface imparts the membrane with high liquid repellency, self-cleaning and slippery effects, characterized by a minimum droplet-membrane interaction and complete water droplet bouncing on the surface within only 18 ms. When tested in DCMD with synthetic hypersaline oily wastewaters, the fabricated superomniphobic membrane demonstrated stable, non-wetting MD operation over 24 h, even at high concentrations of low surface tension 1.0 mM Sodium dodecyl sulfate and 400 ppm oil, potentially offering a sustainable option for treatment of low surface tension oily industrial wastewater.
Collapse
Affiliation(s)
- Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Hassan A Arafat
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
42
|
Li M, Lu KJ, Wang L, Zhang X, Chung TS. Janus membranes with asymmetric wettability via a layer-by-layer coating strategy for robust membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Preparation of re-entrant and anti-fouling PVDF composite membrane with omniphobicity for membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117563] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Wang LY, Yu LE, Chung TS. Effects of relative humidity, particle hygroscopicity, and filter hydrophilicity on filtration performance of hollow fiber air filters. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Chen Y, Lu KJ, Chung TS. An omniphobic slippery membrane with simultaneous anti-wetting and anti-scaling properties for robust membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117572] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Li X, Shan H, Cao M, Li B. Facile fabrication of omniphobic PVDF composite membrane via a waterborne coating for anti-wetting and anti-fouling membrane distillation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117262] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation. Adv Colloid Interface Sci 2019; 273:102022. [PMID: 31494337 DOI: 10.1016/j.cis.2019.102022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
Membrane distillation (MD) has been touted as a promising technology for niche applications such as desalination of surfactant- and oil-containing feed streams. Hitherto, the deployment of conventional hydrophobic MD membranes for such applications is limited and unsatisfactory. This is because the presence of surfactants and oils in aqueous feed streams reduces the surface-tension of these media significantly and the attachment of these contaminants onto hydrophobic membrane surfaces often leads to membrane fouling and pore wetting, which compromises on the quantity and quality of water recovered. Endowing MD membranes with surfaces of special wettabilities has been proposed as a strategy to combat membrane fouling and pore wetting. This involves the design of local kinetic energy barriers such as multilevel re-entrant surface structures, surfaces with ultralow surface-energies, and interfacial hydration layers to impede transition to the fully-wetted Wenzel state. This review critiques the state-of-the-art fabrication and surface-modification methods as well as practices used in the development of omniphobic and Janus MD membranes with specific emphasis on the advances, challenges, and future improvements for application in challenging surfactant- and oil-containing feed streams.
Collapse
|
48
|
Lu KJ, Chen Y, Chung TS. Design of omniphobic interfaces for membrane distillation - A review. WATER RESEARCH 2019; 162:64-77. [PMID: 31255782 DOI: 10.1016/j.watres.2019.06.056] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solutions may easily wet the membranes. In recent years, omniphobic membranes that exhibit strong repellence towards liquids with a wide range of surface tensions have been proposed as a promising solution to deal with the wetting problem. In this paper, we aim to provide a comprehensive review of omniphobic interfaces and illustrate their fundamental working principles, innovative design approaches and novel applications on membrane distillation. The review may provide insights in designing stable solid-liquid-vapor interfaces and serve as a guidance for the development of robust anti-wetting membranes for industrial wastewater reclamation via membrane distillation.
Collapse
Affiliation(s)
- Kang Jia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore; NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
49
|
Li Z, Xu ZL, Huang BQ, Li YX, Wang M. Three-channel stainless steel hollow fiber membrane with inner layer modified by nano-TiO2 coating method for the separation of oil-in-water emulsions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Siyal MI, Lee CK, Park C, Khan AA, Kim JO. A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:45-66. [PMID: 31078929 DOI: 10.1016/j.jenvman.2019.04.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Investigations on membrane materials for membrane distillation (MD) and its applications have been ongoing since the 1990s. However, a lack of materials that produce robustly stable and up-to-the-mark membranes for MD for different industrial applications remains an ongoing problem. This paper provides an overview of materials developed for MD applications. Although key aspects of published articles reviewed in this paper pertain to MD membranes synthesized for desalination, future MD can also be applied to organic wastewater containing surfactants with inorganic compounds, either with the help of hybrid treatment processes or with customized membrane materials. Many industrial discharges produce effluents at a very high temperature, which is an available driving force for MD. However, there remains a lack of cost-effective membrane materials. Amphiphobic and omniphobic membranes have recently been developed for treating emulsified and shale gas produced water, but the problem of organic fouling and pore wetting remains a major challenge, especially when NaCl and other inorganic impurities are present, which further deteriorate separation performance. Therefore, further advancements in materials are required for the treatment of emulsified industrial wastewater containing surfactants, salts, and for oil or shale gas wastewater for its commercialized reuse. Integrated MD systems, however, may represent a major change in shale gas wastewater and emulsified wastewater that are difficult to treat.
Collapse
Affiliation(s)
- Muhammad Irfan Siyal
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea; Department of Materials and Testing, National Textile University, Faisalabad, Pakistan
| | - Chang-Kyu Lee
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Chansoo Park
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Aftab Ahmed Khan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|