1
|
Yan M, Mo S, Liu Z, Korshin G. Absorptivity Inversely Proportional to Spectral Slope in CDOM. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7156-7164. [PMID: 40167282 DOI: 10.1021/acs.est.5c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The application of the Bouguer-Lambert-Beer (BLB) Law is limited to dissolved organic matter (DOM) in the environment due to the wide distribution of overlapping chromophores with different molar absorptivities (ε). Here, we report our findings demonstrating the existence of an inverse relationship between ε and the spectral slope (S) in the absorption spectra of chromophoric DOM (CDOM). Specifically, ε values at 275 and 380 nm are directly proportional to the square of the root-mean-square width of the Gaussian peak (W2) located at 4.80 eV (258 nm) and 3.79 eV (327 nm), and W2 is inversely proportional to the values of S of the right half of log-transformed spectra of the Gaussian peak with respect to wavelength, corresponding to S at 275-295 and 380-443 nm in spectra, respectively. This finding expands the applicability of the BLB Law to uniformly quantify DOC concentrations in inland, coastal, and pelagic waters (30-3000 μmol·L-1, n = 7745, R2 = 0.97). Furthermore, the relationship between ε and S aids in interpreting the absorbance spectra of DOM, providing valuable insights into its composition and properties. This finding represents a significant advancement in expanding the applications of UV-vis spectroscopy in CDOM monitoring from micro to global scales.
Collapse
Affiliation(s)
- Mingquan Yan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Shansheng Mo
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Zhongli Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Gregory Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195-2700, United States
| |
Collapse
|
2
|
Li H, Hanson B, McKay G. Characterization of Natural Organic Matter and Humic Substance Isolates by Size Exclusion Chromatography following Reduction with Sodium Borohydride. ACS ENVIRONMENTAL AU 2025; 5:197-210. [PMID: 40125282 PMCID: PMC11926756 DOI: 10.1021/acsenvironau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 03/25/2025]
Abstract
Chemical reduction with sodium borohydride has been used for over four decades to probe the presence and function of carbonyl-containing moieties in dissolved organic matter (DOM). One of these structure-property relationships is the attenuation of UV-visible absorbance after borohydride reduction, an effect that has been observed universally across DOM of different origins. We previously demonstrated that DOM with similar bulk physicochemical properties exhibits bifurcating reactivity with borohydride depending on the source (i.e., soil vs. aquatic), as judged by the kinetics of fractional absorbance removal during reduction at a fixed borohydride:DOM mass ratio. This result and data from other studies suggest that a portion of borohydride-reducible chromophores in DOM may be inaccessible to the water solvent, explaining the incomplete absorbance attenuation even at very high borohydride mass excesses. Here, we study the reactivity of five DOM isolates with sodium borohydride via size exclusion chromatography coupled to total organic carbon, absorbance, and fluorescence detectors. Reduction with sodium borohydride resulted in quantifiable yet exceedingly small decreases in DOM molecular weight, suggesting that the reduction of carbonyl groups to alcohols does not markedly impact the DOM secondary structure. Interestingly, higher molecular weight DOM exhibited the most prominent changes in optical properties after reduction, suggesting that larger molecules contain a high proportion of borohydride-reducible moieties. Optical surrogates were inversely correlated to molecular weight across a single isolate, both native and reduced. However, the correlation broke down at lower molecular weights, wherein optical surrogates remained constant with continued decreases in elution volume, suggesting that there is an intrinsic lower limit to the ability of optical surrogates to capture further decreases in molecular weight. Overall, these results provide insights into the DOM structure and help inform future applications of sodium borohydride for studying the DOM source and reactivity.
Collapse
Affiliation(s)
- Hang Li
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Blair Hanson
- Department of Civil, Environmental, and Architectural
Engineering and Environmental Engineering
Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Garrett McKay
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Calvert CT, Huskins NJ, Schnitzler EG. Intermolecular Interactions Enhance the Light Absorption of a Methoxyphenol Constituent of Biomass Burning Emissions. ACS ES&T AIR 2025; 2:406-415. [PMID: 40110392 PMCID: PMC11915197 DOI: 10.1021/acsestair.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Brown carbon (BrC) components of biomass burning organic aerosol (BBOA) absorb sunlight at visible wavelengths. However, it is not clear whether the total light absorption of this BrC is simply the sum of the contributions of the individual components or whether the components can bind noncovalently to give additional absorption through charge transfer. Here, intermolecular interactions between guaiacol and quinones (1,4-benzoquinone and 1,4-naphthoquinone) were identified in proxies of the nonpolar, water-insoluble phase of BBOA, using UV-vis spectroscopy. Guaiacol and its derivatives are some of the most abundant emissions of smoldering coniferous species. Enhanced light absorption occurred instantaneously upon mixing colorless guaiacol with either quinone in n-heptane and did not increase with time, in contrast to the absorbance changes that would be expected for a covalent product. This enhancement decreased by about 25% as the temperature increased from 303 to 323 K, consistent with exothermic association to give complexes, yielding enthalpies of complexation of -13.3 ± 0.6 and -12.3 ± 0.4 kJ mol-1 for guaiacol with benzoquinone and naphthoquinone, respectively. Enhancement was also observed upon gas-liquid partitioning of benzoquinone into thin films of guaiacol, for example, with a thickness of 20 μm. This multiphase processing, mimicking partitioning of quinones into liquid BBOA, produced absorption comparable to moderately absorbing BrC from other sources, suggestive of the atmospheric relevance of these interactions.
Collapse
Affiliation(s)
- Colton T Calvert
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Nathan J Huskins
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Elijah G Schnitzler
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
4
|
Li W, Liu G, Lei M, Zhou Y, Cui H, Du H. Spectral fingerprints of DOM-tungsten interactions: Linking molecular binding to conformational changes. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136649. [PMID: 39603123 DOI: 10.1016/j.jhazmat.2024.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Tungsten (W), a widely used yet understudied emerging contaminant, forms oxyanions in aqueous environments, distinguishing it from conventional heavy metals. While dissolved organic matter (DOM) demonstrates considerable potential for W binding, DOM-W interactions remain largely unexplored. Of particular significance, yet frequently overlooked, are the conformational changes in DOM during W binding processes. This study proposes a novel theoretical framework integrating superposition and charge transfer models to elucidate the complexity of these interactions. By combining spectroscopic techniques and photophysical models, we revealed that aromatic compounds containing 1-3 rings, especially monocyclic aromatic protein-like components, exhibit high affinity for W (logK=3.74-4.00). Phenolic hydroxyls served as primary binding sites for W, with aromatic rings facilitating binding through π interactions. Importantly, W binding to aromatic compounds induced conformational changes in DOM, transitioning from a loosely aggregated state to a more compact configuration. These changes facilitated W encapsulation within DOM through the synergistic effects of hydrophobic interactions, hydrogen/π-hydrogen bonding and π-stacking, potentially leading to stable trapping of W. Two-dimensional correlation spectroscopy analysis elucidated the sequential encapsulation process, involving phenolic, aromatic carboxylic/aliphatic carboxylic, polysaccharides, and aliphatics. The intricate behavior of DOM-W binding profoundly reshapes DOM's conformation, subtly yet significantly orchestrating W's binding affinity, environmental transport, and bioavailability in aquatic ecosystems.
Collapse
Affiliation(s)
- Weijun Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China
| | - Guobin Liu
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China
| | - Ming Lei
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China
| | - Yaoyu Zhou
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China
| | - Haojie Cui
- College of Resources, Hunan Agricultural University, Changsha 410127, China
| | - Huihui Du
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China.
| |
Collapse
|
5
|
Zhang C, Mo S, Liu Z, Chen B, Korshin G, Hertkorn N, Ni J, Yan M. Interpreting pH-Dependent Differential UV/VIS Absorbance Spectra to Characterize Carboxylic and Phenolic Chromophores in Natural Organic Matter. WATER RESEARCH 2023; 244:120522. [PMID: 37660469 DOI: 10.1016/j.watres.2023.120522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Natural organic matter (NOM) is critical for the biogeochemical cycles of energy and many elements in terrestrial and aquatic ecosystems, and protonation-active functional groups in NOM molecules, notably carboxylic and phenolic groups often mediate these critical environmental functions. Molecular heterogeneity, polydispersity and dynamic behavior of NOM complicate achieving an unambiguous description of its molecular properties and reactivity. This study demonstrates that differential ultraviolet-visible (UV/VIS) absorbance spectra (DAS) of NOM acquired at varying pH values exhibit several distinct features associated with the deprotonation of NOM molecules, independent of the environmental provenance of NOM (e.g., surface water, seawater, sediment, and wastewater). The protonation-active functionalities that contribute to the Gaussian distribution bands present in the DAS were identified here by comparing characteristic properties of the bands with the stoichiometries of NOM molecules ascertained by Ultrahigh-Resolution Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). The protonation-active individual chromophores universally present in NOM molecules were identified by a genetic molecular network analysis. The observed DAS features were closely modeled via superimposing DAS spectra of 51 individual protonation-active chromophores. Molecular orbital theory was applied to further interpret the deprotonation of these chromophores, their molecular structure, electron distribution, and electron transitions measured using DAS. The high sensitivity and easy implementation of the DAS approach allows using it as a powerful tool to quantify the molecular properties and reactivity of NOM at environmental concentrations.
Collapse
Affiliation(s)
- Chenyang Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Shansheng Mo
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Zhongli Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Bingya Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Gregory Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195-2700, United States
| | - Norbert Hertkorn
- Helmholtz-Centre Munich, German Research Center for Environmental Health, Research Unit Analytical Biogeochemistry (BGC), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Mingquan Yan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China..
| |
Collapse
|
6
|
Cai T, Zhang X, Zhang S, Ming Y, Zhang Q. Photochemical behaviors of dissolved organic matter in aquatic environment: Generation, characterization, influencing factors and practical application. ENVIRONMENTAL RESEARCH 2023; 231:116174. [PMID: 37209983 DOI: 10.1016/j.envres.2023.116174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/05/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Dissolved organic matter (DOM) widely exists in aquatic environment and plays a critical role in environmental photochemical reaction. The photochemical behaviors of DOM in sunlit surface waters have received widely attention because its photochemical effects for some coexisted substances in aquatic environment, especially for organic micropollutants degradation. Therefore, to gain a comprehensive understanding of the photochemical properties and environmental effects of DOM, we reviewed the influence of sources on the structure and composition of DOM with relevant identified techniques to analysis functional groups. Additionally, identification and quantification for reactive intermediates are discussed with a focus on influencing factors to produce reactive intermediates by DOM under solar irradiation. These reactive intermediates can promote the photodegradation of organic micropollutants in the environmental system. In future, attention should be paid to the photochemical properties of DOM and environmental effects in real environmental system and development of advanced techniques to study DOM.
Collapse
Affiliation(s)
- Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Yuanbo Ming
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai, 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
7
|
Wang Y, Ma J. Charge transfer interactions exist in extracellular polymeric substances: Comparison with natural organic matter. CHEMOSPHERE 2023:139030. [PMID: 37236282 DOI: 10.1016/j.chemosphere.2023.139030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Extracellular polymeric substances (EPS) and natural organic matter (NOM) are widely present in the environment. While the molecular basis of NOM's optical properties and reactivity after treatment with sodium borohydride (NaBH4) has been successfully explained by the charge transfer (CT) model, the corresponding structure basis and properties of EPS remain poorly understood. In this work, we investigated the reactivity and optical properties of EPS after NaBH4 treatment, comparing them to the corresponding changes in NOM. After reduction, EPS exhibited optical properties and a reactivity with Au3+ similar to NOM, manifesting an irreversible loss of visible absorption (≥70%) associated with blue-shifted fluorescence emission (8-11 nm) and a lower rate of gold nanoparticles formation (decreasing by ≥ 32%), which can be readily explained by the CT model as well. Furthermore, the absorbance and fluorescence spectra of EPS were solvent polarity dependent, contrary to the superposition model. These findings contribute to an original understanding of the reactivity and optical properties of EPS and facilitate further cross-disciplinary studies.
Collapse
Affiliation(s)
- Ya Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiahai Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Li H, McKay G. Fluorescence Quenching of Humic Substances and Natural Organic Matter by Nitroxide Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:719-729. [PMID: 36547376 DOI: 10.1021/acs.est.2c02220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fluorescence spectroscopy is one of the most frequently used techniques for studying dissolved organic matter (DOM) in natural and engineered systems. However, the spatial distribution and fluorophores, including local and interacting states, within DOM's larger structure remains poorly understood. In this study, we used two nitroxide fluorescence quenchers to evaluate the chemical and spatial heterogeneity of DOM fluorophores. Several results from quenching experiments with cationic 4-amino-TEMPO (tempamine), including downward-curving Stern-Volmer plots and spectral dependent quenching, show that multiple emitting species contribute to the observed emission even at a single excitation wavelength. Furthermore, for DOM isolates of diverse geographic origins (soil vs aquatic) and isolation procedures (reverse osmosis vs humic substances), the maximum extent of quenching occurs on the red edge of the emission spectra. For soil humic substance isolates, the spectral dependent quenching was significant enough to affect a blue shift in the average emission wavelength. The same soil humic substance isolates whose emission spectra were blue shifted by tempamine quenching were also blue shifted by decreasing solution pH and decreasing solvent polarity, which suggests a role for anionic fluorophores (e.g., hydroxybenzoic acids) in long wavelength fluorescence. Finally, curvature in Stern-Volmer plots indicate that between 10 and 50% of emitting species detected by steady-state fluorescence are inaccessible to quenching by tempamine, suggesting that this fraction of fluorophores may be inaccessible to water solvent. Results from this study provide an assessment of the spatial distribution of fluorophores within DOM and help to reconcile prior studies on the role of solvent polarity and pH on DOM fluorescence.
Collapse
Affiliation(s)
- Hang Li
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas77845, United States
| | - Garrett McKay
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas77845, United States
| |
Collapse
|
9
|
Qiu X, Ma S, Zhang J, Fang L, Guo X, Zhu L. Dissolved Organic Matter Promotes the Aging Process of Polystyrene Microplastics under Dark and Ultraviolet Light Conditions: The Crucial Role of Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10149-10160. [PMID: 35793149 DOI: 10.1021/acs.est.2c03309] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) interact frequently with dissolved organic matter (DOM) commonly found in the environment, but information on the aging behavior of MPs under the participation of DOM is still lacking. Thus, the polystyrene microplastic (PSMP) aging process with DOM participation was systematically studied by electron paramagnetic resonance spectroscopy, high-performance liquid chromatography, Fourier transform infrared (FTIR) spectroscopy, and two-dimensional correlation spectroscopy analyses under dark and ultraviolet (UV) light conditions. DOM was found to promote electron transfer to generate reactive oxygen species (ROS) under dark conditions and the aging of PSMPs, while the process of DOM generating ROS under UV light was more susceptible to photoelectrons and accelerated the aging process of PSMPs. However, among the four DOM types, fulvic acid (FA) has a more significant promoting effect on the aging process of PSMPs than humic acid, which can be attributed to the stronger conversion ability of FA to semiquinone radicals. Density functional theory calculations are used to describe the difference in the aging process of different structures of plastics with the participation of DOM. This study provides a necessary theoretical basis for the study of the migration of MPs in groundwater and deep surface water.
Collapse
Affiliation(s)
- Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100 China
| | - Sirui Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100 China
| | - Jianxiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100 China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100 China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100 China
| |
Collapse
|
10
|
Leresche F, Vialykh EA, Rosario-Ortiz FL. Computational Calculation of Dissolved Organic Matter Absorption Spectra. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:491-500. [PMID: 34905334 DOI: 10.1021/acs.est.1c06252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The absorption spectrum of dissolved organic matter (DOM) is a topic of interest to environmental scientists and engineers as it can be used to assess both the concentration and physicochemical properties of DOM. In this study, the UV-vis spectra for DOM model compounds were calculated using time-dependent density functional theory. Summing these individual spectra, it was possible to re-create the observed exponential shape of the DOM absorption spectra. Additionally, by predicting the effects of sodium borohydride reduction on the model compounds and then calculating the UV-vis absorbance spectra of the reduced compounds, it was also possible to correctly predict the effects of borohydride reduction on DOM absorbance spectra with a relatively larger decrease in absorbance at longer wavelengths. The contribution of charge-transfer (CT) interactions to DOM absorption was also evaluated, and the calculations showed that intra-molecular CT interactions could take place, while inter-molecular CT interactions were proposed to be less likely to contribute.
Collapse
Affiliation(s)
- Frank Leresche
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Elena A Vialykh
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
11
|
Song F, Li T, Shi Q, Guo F, Bai Y, Wu F, Xing B. Novel Insights into the Molecular-Level Mechanism Linking the Chemical Diversity and Copper Binding Heterogeneity of Biochar-Derived Dissolved Black Carbon and Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11624-11636. [PMID: 34197711 DOI: 10.1021/acs.est.1c00083] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biochar-derived dissolved black carbon (DBC) varies in chemical composition and significantly affects the environmental fate of metal ions. However, the intrinsic molecular composition of DBC fractions and their molecular interaction mechanisms with metal ions remain unclear. We propose a novel, molecular-level covariant binding mechanism to comparatively interpret the heterogeneities, active sites, and sequential responses of copper binding with molecular compounds in DBC and natural dissolved organic matter (DOM). Relatively large proportions of lipid/aliphatic/peptide-like compounds with low mass distributions and lignin-like compounds with oxidized/unsaturated groups existed in acidic- and alkaline-extracted DBC, respectively. A larger percentage of tannin-like/condensed aromatic compounds and higher average conditional stability constants (logK̅Cu) of visible fluorescent components were found for DOM than for DBC. Overall, 200-320 Da and 320-480 Da molecular components contributed significantly to the logK̅Cu values of UVA and visible fluorescent components, respectively, in DBC/DOM. Nitrogenous groups likely exhibited stronger binding affinities than phenolic/carboxylic groups. The sequential copper-binding responses of molecular compounds in DBC/DOM generally followed the order lipid/aliphatic/peptide-like compounds → tannin-like compounds → condensed aromatic compounds. These insights will improve the prediction of the potential effects of DBC on various contaminants and the risks of biochar application to ecosystems.
Collapse
Affiliation(s)
- Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Yakimov BP, Rubekina AA, Budylin GS, Zherebker AY, Kompanets VO, Chekalin SV, Vainer YG, Fadeev VV, Gorbunov MY, Perminova IV, Shirshin EA. Ultrafast Energy Transfer Determines the Formation of Fluorescence in DOM and Humic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10365-10377. [PMID: 34260209 DOI: 10.1021/acs.est.1c00998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Humification is a ubiquitous natural process of biomass degradation that creates multicomponent systems of nonliving organic matter, including dissolved organic matter (DOM) and humic substances (HS) in water environments, soils, and organic rocks. Despite significant differences in molecular composition, the optical properties of DOM and HS are remarkably similar, and the reason for this remains largely unknown. Here, we employed fluorescence spectroscopy with (sub)picosecond resolution to elucidate the role of electronic interactions within DOM and HS. We revealed an ultrafast decay component with a characteristic decay lifetime of 0.5-1.5 ps and spectral diffusion originating from excitation energy transfer (EET) in the system. The rate of EET was positively correlated to the fraction of aromatic species and tightness of aromatic species packing. Diminishing the number of EET donor-acceptor pairs by reduction with NaBH4 (decrease of the acceptor number), decrease of pH (decrease of the electron-donating ability), or decrease of the average particle size by filtration (less donor-acceptor pairs within a particle) resulted in a lower impact of the ultrafast component on fluorescence decay. Our results uncover the role of electronic coupling among fluorophores in the formation of DOM and HS optical properties and provide a framework for studying photophysical processes in heterogeneous systems of natural fluorophores.
Collapse
Affiliation(s)
- Boris P Yakimov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Trubetskaya Street, 8-2, 119048 Moscow, Russia
| | - Anna A Rubekina
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, 119991 Moscow, Russia
| | - Gleb S Budylin
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Street, 5, Troitsk, 108840 Moscow, Russia
| | - Alexander Y Zherebker
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Skolkovo, 143026 Moscow, Russia
| | - Victor O Kompanets
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Street, 5, Troitsk, 108840 Moscow, Russia
| | - Sergey V Chekalin
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Street, 5, Troitsk, 108840 Moscow, Russia
| | - Yuri G Vainer
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Street, 5, Troitsk, 108840 Moscow, Russia
| | - Victor V Fadeev
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, 119991 Moscow, Russia
| | - Maxim Y Gorbunov
- Environmental Biology and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 57 US Highway 1, New Brunswick, New Jersey 08901-8554, United States
| | - Irina V Perminova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Evgeny A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Trubetskaya Street, 8-2, 119048 Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Street, 5, Troitsk, 108840 Moscow, Russia
| |
Collapse
|
13
|
Li H, McKay G. Relationships between the Physicochemical Properties of Dissolved Organic Matter and Its Reaction with Sodium Borohydride. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10843-10851. [PMID: 34291922 DOI: 10.1021/acs.est.1c01973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reaction of dissolved organic matter (DOM) with sodium borohydride has been used to understand the geographic origin of DOM and investigate the photophysical model underlying DOM's optical properties. However, the physicochemical properties of DOM (e.g., molecular size and charge) that influence the kinetics and ultimate reducibility of DOM by borohydride remain poorly characterized. Herein, we studied the kinetics of DOM-borohydride reactions by recording absorbance and fluorescence spectra at a high temporal frequency (every ∼10 min for 24 h) for a diverse set of DOM isolates of aquatic and soil origin. The reducibility of DOM by sodium borohydride (as judged by relative removal of initial absorbance) varied appreciably among the DOM samples studied, with soil humic substances being less reducible than aquatic humic substances and natural organic matter. While statistically significant correlations were found between the reducibility of DOM and descriptors of molecular size, these descriptors were not able to differentiate the reducibility of soil versus aquatic DOM isolates that had similar bulk properties. Thus, it appears that the extent of absorbance removal by borohydride is largely driven by the origin of the humic substance isolate (aquatic vs soil) instead of molecular size or charge. Borohydride reduction resulted in increased fluorescence emission across UV and visible excitation wavelengths. However, the enhanced emission at visible excitation decreased over a time period of hours to days, suggesting that reduction of an important subset of DOM chromophores is reversible. This reversibility in fluorescence emission is consistent with the small role of quinones in the absorbance of DOM but suggests a more important role for quinone-containing charge-transfer contacts in the fluorescence of DOM, particularly at visible excitation wavelengths.
Collapse
Affiliation(s)
- Hang Li
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77845, United States
| | - Garrett McKay
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
14
|
Ossola R, Jönsson OM, Moor K, McNeill K. Singlet Oxygen Quantum Yields in Environmental Waters. Chem Rev 2021; 121:4100-4146. [PMID: 33683861 DOI: 10.1021/acs.chemrev.0c00781] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Singlet oxygen (1O2) is a reactive oxygen species produced in sunlit waters via energy transfer from the triplet states of natural sensitizers. There has been an increasing interest in measuring apparent 1O2 quantum yields (ΦΔ) of aquatic and atmospheric organic matter samples, driven in part by the fact that this parameter can be used for environmental fate modeling of organic contaminants and to advance our understanding of dissolved organic matter photophysics. However, the lack of reproducibility across research groups and publications remains a challenge that significantly limits the usability of literature data. In the first part of this review, we critically evaluate the experimental techniques that have been used to determine ΦΔ values of natural organic matter, we identify and quantify sources of errors that potentially explain the large variability in the literature, and we provide general experimental recommendations for future studies. In the second part, we provide a qualitative overview of known ΦΔ trends as a function of organic matter type, isolation and extraction procedures, bulk water chemistry parameters, molecular and spectroscopic organic matter features, chemical treatments, wavelength, season, and location. This review is supplemented with a comprehensive database of ΦΔ values of environmental samples.
Collapse
Affiliation(s)
- Rachele Ossola
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Oskar Martin Jönsson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Kyle Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, 84322 Logan, Utah, United States
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Vialykh EA, McKay G, Rosario-Ortiz FL. Computational Assessment of the Three-Dimensional Configuration of Dissolved Organic Matter Chromophores and Influence on Absorption Spectra. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15904-15913. [PMID: 33269593 DOI: 10.1021/acs.est.0c05860] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The three-dimensional configuration of dissolved organic matter (DOM) is an important factor in determining the role of DOM in natural and engineered systems, yet there is still considerable uncertainty regarding the formation and potential stability of molecular aggregates within DOM. In this paper, we describe a computational assessment of the three-dimensional configuration of DOM. Specifically, we were interested in evaluating the hypothesis that DOM forms thermodynamically stable molecular aggregates that as a result were potentially shielded from water solvent molecules. Molecular dynamics simulations of DOM model compounds carefully selected based on ultrahigh-resolution mass spectrometry data revealed that, while DOM does indeed form molecular aggregates, the large majority of molecules (especially, O-atom bearing molecules) are solvent accessible. Additionally, these computations revealed that molecular aggregates are weak and dissociate when placed in organic solvents (tetrahydrofuran, methyl tert-butyl ether). Time-dependent density functional theory calculations demonstrated long-wavelength absorbance for both model DOM chromophores and their molecular aggregates. This study has important implications for determining the origin of DOM optical properties and for enhancing our collective understanding of DOM three-dimensional structures.
Collapse
Affiliation(s)
- Elena A Vialykh
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Garrett McKay
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Chen Y, Liu J, Zhang X, Blough NV. Time-Resolved Fluorescence Spectra of Untreated and Sodium Borohydride-Reduced Chromophoric Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12109-12118. [PMID: 32845124 DOI: 10.1021/acs.est.0c03135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Time-resolved fluorescence spectra of chromophoric dissolved organic matter (CDOM) from different sources were acquired using UV (280 and 375 nm) and visible light (440 and 640 nm) excitation to probe the structural basis of the emission properties of CDOM. Emission decays were faster at the blue and red edges, particularly at the red edge, relative to those acquired from 480 to 550 nm. Based on the lifetime distribution and multiexponential analysis of the emission decays recorded at different time resolution, current findings demonstrate that the components recovered based on a superposition model have no defined physical meaning. A substantial increase in steady-state fluorescence intensity and only small changes (<30%) of amplitude-weighted average lifetime caused by sodium borohydride reduction suggest that intramolecular fluorescence quenching occurs mainly through formation of ground state charge-transfer interactions. Short-lived species (lifetime < 100 ps) dominate the emission decays over wavelengths from 400 to 800 nm, particularly under excitation at long wavelengths (440 and 640 nm). Compared to locally excited (LE) states, the contribution of charge-transfer excited (ECT) states and other short-lived species to the steady-state emission is small because of their very rapid nonradiative relaxation. This study suggests that a careful choice of observation wavelength is needed to distinguish LE states from ECT states.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | - Juan Liu
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | - Xu Zhang
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | - Neil V Blough
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
17
|
McKay G. Emerging investigator series: critical review of photophysical models for the optical and photochemical properties of dissolved organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1139-1165. [PMID: 32270849 DOI: 10.1039/d0em00056f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical measurements (absorbance and fluorescence) are widely used to track dissolved organic matter (DOM) quantity and quality in natural and engineered systems. Despite many decades of research on the optical properties of DOM, there is a lack of understanding with regards to the underlying photophysical model that is the basis for these optical properties. This review both summarizes advances to date on the photophysical properties of DOM and seeks to critically evaluate the photophysical models for DOM optical properties. Recent studies have refined the quantitative understanding of DOM photophysical properties such as excited state lifetimes and energies, rates of different photophysical processes, and quantum yields. Considering fundamental models, more clarity is needed on whether DOM photophysical processes are due to a superposition of non-interacting components (superposition model), or whether a portion of optical signals can be ascribed to electronically interacting moieties, for example in the form of electron donor-acceptor complexes (charge transfer model). Multiple studies over more than two decades have provided evidence for the charge transfer model. Questions have been raised, however, about the broad applicability of the charge transfer model. The charge transfer and superposition model are critically reviewed in light of this current research. Recommendations are given for future studies to help clarify the accuracy of these competing photophysical models.
Collapse
Affiliation(s)
- Garrett McKay
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
18
|
Yan S, Liu Y, Lian L, Li R, Ma J, Zhou H, Song W. Photochemical formation of carbonate radical and its reaction with dissolved organic matters. WATER RESEARCH 2019; 161:288-296. [PMID: 31202115 DOI: 10.1016/j.watres.2019.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 05/27/2023]
Abstract
The carbonate radical (CO3•-) is a strong oxidative radical that is generated via the reactions of HCO3-/CO32- with hydroxyl radical (HO•) or triplet states of dissolved organic matter (3DOM∗) in sunlit surface water. The bimolecular reaction rate constants of CO3•- with various DOM isolates ( [Formula: see text] ) were calculated as 15-239 (mg of C/L)-1 s-1 and were correlate to the bulk DOM properties, such as the content of phenolic moieties, the specific UV absorbance (SUVA), the E2/E3 value, and the fluorescence index (FI). The spectroscopic E2/E3 values was found to strongly correlated (R2 = 0.93) with [Formula: see text] , and an empirical equation was established. Our results also demonstrate that CO3•- is involved in the photobleaching of dissolved organic matter (DOM) and in particular reacts with electron-donor moieties, leading to faster decay rates at long wavelengths of UV-vis absorption. Furthermore, a model was developed to calculate the steady-state concentrations of CO3•- during DOM photobleaching. These results allow us to estimate the reactivity of DOM with CO3•- and to evaluate the role of CO3•- in sunlit surface water. It will also allow a better assessment of the concentration and utilization of CO3•- during the application of advanced oxidation processes.
Collapse
Affiliation(s)
- Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yingjie Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Lushi Lian
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Rui Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Jianzhong Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Huaxi Zhou
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
19
|
Schendorf TM, Del Vecchio R, Bianca M, Blough NV. Combined Effects of pH and Borohydride Reduction on Optical Properties of Humic Substances (HS): A Comparison of Optical Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6310-6319. [PMID: 31063364 DOI: 10.1021/acs.est.9b01516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The combined effects of pH and borohydride reduction on the optical properties of a series of humic substances and a lignin model were examined to probe the molecular moieties and interactions that give rise to the observed optical properties of these materials. Increasing the pH from 2 to 12 produced significantly enhanced absorption across the spectra of all samples, with distinct spectral responses observed over pH ranges attributable to the deprotonation of carboxylic acids and phenols. Borohydride reduction substantially attenuated the broadband absorption enhancements with pH, clearly indicating that the loss of absorption due to ketone/aldehyde reduction is coupled with the pH-dependent increase in absorption due to deprotonation of carboxylic acids and phenols. These results cannot be easily explained by a superposition of the spectra of independently absorbing chromophores (superposition model) but are readily interpretable within a charge transfer (CT) model. Changes of fluorescence emission with pH for both untreated and borohydride reduced samples suggest that a pH-dependent structural reorganization of the HS may also be influencing the fluorescence emission. Independent of optical model, these results demonstrate that chemical tests targeted to specific moieties can identify distinct structural differences among HS sources as well as provide insight into the molecular moieties and interactions that produce the observed optical and photochemical properties.
Collapse
|