1
|
Ding R, Guida C, Pearce CI, Arenholz E, Grenèche JM, Gloter A, Scheinost AC, Kvashnina KO, Wang K, Fernandez-Martinez A, Mu Y, Rosso KM, Charlet L. Single rhenium atoms on nanomagnetite: Probing the recharge process that controls the fate of rhenium in the environment. SCIENCE ADVANCES 2025; 11:eadq3650. [PMID: 40378223 PMCID: PMC12083517 DOI: 10.1126/sciadv.adq3650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Understanding the redox transitions that control rhenium geochemistry is central to paleoredox and geochronology studies, as well as predicting the fate of chemically similar hazardous oxyanions in the environment such as pertechnetate. However, detailed mechanistic information regarding rhenium redox transitions in anoxic systems is scarce. Here, we performed a comprehensive laboratory study of rhenium redox transitions on variably oxidized magnetite nanoparticle surfaces. Through high-end spectroscopic and microscopic tools, we propose an abiotic transition pathway in which aqueous iron(II) ions in the presence of pure or preoxidized magnetite serve as an electron source to reduce rhenium(VII) to individual rhenium(IV) atoms or small polynuclear species on nanoparticle surfaces. Notably, iron(II) ions recharged preoxidized magnetite nanoparticles exhibit a maghemite core and a magnetite shell, challenging the traditional core-shell magnetite-maghemite model. This study provides a fundamental understanding of redox processes governing rhenium fate and transport in the environment and enables an improved basis for predicting its speciation in geochemical systems.
Collapse
Affiliation(s)
- Rongrong Ding
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Carolina Guida
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
- STARLAB, Department of Earth and Atmospheric Sciences, Central Michigan University, Brooks Hall 313A, Mount Pleasant, MI 48859, USA
- Grupo de Geología Médica y Forense, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Edificio 224, Oficina 411, Bogotá 111321, Colombia
| | | | - Elke Arenholz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jean-Marc Grenèche
- Institut des Molécules et Matériaux du Mans, IMMM, UMR CNRS 6283, Université du Maine, 72085 Le Mans Cedex, France
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS UMR 8502, 91405 Orsay, France
| | - Andreas C. Scheinost
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Kristina O. Kvashnina
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Kaifeng Wang
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark
| | - Alejandro Fernandez-Martinez
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Kevin M. Rosso
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laurent Charlet
- Institute of Earth Science (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, F-38000 Grenoble, France
| |
Collapse
|
2
|
Fan Y, Sun S, Gu X, Yan P, Zhang Y, Peng Y, He S. Tracing the electron transfer behavior driven by hydrophyte-derived carbon materials empowered autotrophic denitrification in iron-based constructed wetlands: Efficacy and enhancement mechanism. WATER RESEARCH 2025; 275:123169. [PMID: 39855019 DOI: 10.1016/j.watres.2025.123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored. Results indicated that the cumulative removal of TN in biochar-added ICW (BC-ICW) and activated carbon-added ICW (AC-ICW) increased by 29.04 % and 22.96 %, respectively. The carbon matrix of AC played the geo-conductor role to facilitate the rapid release of iron ions, as indicated by the higher TN removal efficiency of AC-ICW (45.36 ± 1.45 %) at the early stage, while the reduced conductivity of AC negatively impacted the nitrogen removal. BC-ICW exhibited intensified denitrification potential, with higher TN removal capacity (52.08 ± 3.04 %) and effluent Fe2+ concentration. Electroactive bacteria (EB) (Geobacter, Desulfovibrio, Shewanella, etc.) associated with extracellular electron transfer were enriched in BC-ICW, as well as the expanded niches breadth and improved microbial community diversity. The electron-shuttling effect of BC was mainly attributed to its oxygenated functional groups (quinone/phenolic moieties), which supported the electron transfer from EB to extracellular iron oxides, as evidenced by the increased Fe(III)(hydro)oxides bioavailability. Besides, biochar concurrently up-regulated the gene expression of electron transport chains/mediators and denitrification reductases, suggesting that BC boosted the active iron cycle and iron-mediated autotrophic denitrification in ICWs by accelerating intracellular and extracellular electron transfer. This work explored the electron transfer behavior of biomass-derived carbon materials coupled with ICWs to enhance denitrification, providing insights into the sustainable application of biomass derived carbon-assisted ICWs in tertiary treatment.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanjun Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
3
|
Ding Y, Sheng A, Li X, Liu Y, Yan M, Takahashi Y, Liu J. Triplet-Excited Riboflavin Promotes Labile Fe(III) Accumulation and Changes Mineralization Pathways in Fe(II)-Catalyzed Ferrihydrite Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22148-22158. [PMID: 39630420 DOI: 10.1021/acs.est.4c08589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Flavins are well-known endogenous electron shuttles that facilitate long-distance extracellular electron transfer in dissimilatory iron reduction (DIR), but the effects of their photosensitivity on DIR and the transformation of metastable iron (oxyhydr)oxides like ferrihydrite (Fh) remain underexplored. This study compared the kinetics, pathways, and products of Fh transformation catalyzed by aqueous Fe(II) (Fe(II)aq) in the presence of oxidized riboflavin (RFox) at pH 7 under both dark and light conditions. While RFox has a negligible impact on Fe(II)-catalyzed Fh transformation in the dark, its photoexcited triplet state (3RF*) can significantly accelerate interfacial electron transfer (IET) from Fe(II)aq to Fh, increasing the reductive dissolution rate of Fh and boosting the accumulation rate of the key intermediate labile Fe(III) (Fe(III)labile) from 14.2 μM·h-1 to 35.6 μM·h-1. The 3RF*-promoted Fe(II)-Fh IET favors the oxolation of Fe(III)labile to lepidocrocite (Lp) over goethite (Gt) formation during Fh transformation and promotes the subsequent conversion of Lp to magnetite (Mt), altering the mineral products from sole Gt to a mixture of Lp (24.1%), Gt (45.4%), and Mt (30.5%). These findings highlight the notable effects of riboflavin as a photosensitizer on Fh biotransformation, with implications for microbial respiration and elemental cycling in natural environments.
Collapse
Affiliation(s)
- Yuefei Ding
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Anxu Sheng
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mingquan Yan
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Zhao S, Wang X, Wang Q, Sumpradit T, Khan A, Zhou J, Salama ES, Li X, Qu J. Application of biochar in microbial fuel cells: Characteristic performances, electron-transfer mechanism, and environmental and economic assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115643. [PMID: 37944462 DOI: 10.1016/j.ecoenv.2023.115643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Biochar is a by-product of thermochemical conversion of biomass or other carbonaceous materials. Recently, it has garnered extensive attention for its high application potential in microbial fuel cell (MFC) systems owing to its high conductivity and low cost. However, the effects of biochar on MFC system performance have not been comprehensively reviewed, thereby necessitating the evaluation of the efficacy of biochar application in MFCs. In this review, biochar characteristics were outlined based on recent publications. Subsequently, various applications of biochar in the MFC systems and their probable processes were summarized. Finally, proposals for future applications of biochar in MFCs were explored along with its perspectives and an environmental evaluation in the context of a circular economy. The purpose of this review is to gain comprehensive insights into the application of biochar in the MFC systems, offering important viewpoints on the effective and steady utilization of biochar in MFCs for practical application.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xu Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Qiutong Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tawatchai Sumpradit
- Microbiolgy and Parasitology Department, Naresuan University, Muang, Phitsanulok, Thailand
| | - Aman Khan
- Pakistan Agricultural Research Council, 20-Attaturk Avenue, Sector G-5/1, Islamabad, Pakistan
| | - Jia Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - El-Sayed Salama
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Nie M, Li X, Ding Y, Pan Y, Cai Y, Liu Y, Liu J. Effect of Stoichiometry on Nanomagnetite Sulfidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3002-3011. [PMID: 36745694 DOI: 10.1021/acs.est.2c08179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetite (Mt) has long been regarded as a stable phase with a low reactivity toward dissolved sulfide, but natural Mt with varying stoichiometries (the structural Fe(II)/Fe(III) ratio, xstru) might exhibit distinct reactivities in sulfidation. How Mt stoichiometry affects its sulfidation processes and products remains unknown. Here, we demonstrate that xstru is a master variable controlling the rates and extents of sulfide oxidation by magnetite nanoparticles (11 ± 2 nm). At pH = 7.0-8.0 and the initial Fe/S molar ratio of 10-50, the partially oxidized magnetite (xstru = 0.19-0.43) can oxidize dissolved sulfide to elemental sulfur (S0), but only surface adsorption of sulfide, without interfacial electron transfer (IET), occurs on the nearly stoichiometric magnetite (xstru = 0.47). The higher initial rate and extent of sulfide oxidation and S0 production are observed with the more oxidized magnetite that has the higher electron-accepting capability from surface-complexed sulfide (S(-II)(s)). The FeS clusters formed from magnetite sulfidation can be oxidized by the most oxidized magnetite with xstru = 0.19 but not by other magnetite particles. A linear relationship between the Gibbs free energy of reaction and the surface area-normalized initial rate of sulfide oxidation is observed in all experiments under the different conditions, suggesting the S(-II)(s)-magnetite IET dominates magnetite sulfidation at high Fe/S molar ratios and near-neutral pH.
Collapse
Affiliation(s)
- Mingjun Nie
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Yuefei Ding
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Yuguan Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing210023, China
| | - Yuanfeng Cai
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing210023, China
| | - Yuanyuan Liu
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Nanjing210023, China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| |
Collapse
|
6
|
Zhang L, Chen Z, Zhu S, Li S, Wei C. Effects of biochar on anaerobic treatment systems: Some perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128226. [PMID: 36328170 DOI: 10.1016/j.biortech.2022.128226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many anaerobic activities involve carbon, nitrogen, iron, and sulfur cycles. As a well-developed porous material with abundant functional groups, pyrolytic biochar has been widely researched in efforts to promote microbial activities. However, the lack of consensus on the biochar mechanism has limited its practical application. This review summarizes the effects of different pyrolysis temperatures, particle sizes, and dosages of biochar on microbial activities and community in Fe(III) reduction, anaerobic digestion, nitrogen removal, and sulfate reduction systems. It was found that biochar could promote anaerobic activities by stimulating electron transfer, alleviating toxicity, and providing suitable habitats for microbes. However, it inhibits microbial activities by releasing heavy metal ions or persistent free radicals and adsorbing signaling molecules. Finding a balance between the promotion and inhibition of biochar is therefore essential. This review provides valuable perspectives on how to achieve efficient and stable use of biochar in anaerobic systems.
Collapse
Affiliation(s)
- Liqiu Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zhuokun Chen
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shugeng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Robinson T, Latta DE, Leddy J, Scherer MM. Redox Potentials of Magnetite Suspensions under Reducing Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17454-17461. [PMID: 36394877 PMCID: PMC9730839 DOI: 10.1021/acs.est.2c05196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Predicting the redox behavior of magnetite in reducing soils and sediments is challenging because there is neither agreement among measured potentials nor consensus on which Fe(III) | Fe(II) equilibria are most relevant. Here, we measured open-circuit potentials of stoichiometric magnetite equilibrated over a range of solution conditions. Notably, electron transfer mediators were not necessary to reach equilibrium. For conditions where ferrous hydroxide precipitation was limited, Nernstian behavior was observed with an EH vs pH slope of -179 ± 4 mV and an EH vs Fe(II)aq slope of -54 ± 4 mV. Our estimated EHo of 857 ± 8 mV closely matches a maghemite|aqueous Fe(II) EHo of 855 mV, suggesting that it plays a dominant role in poising the solution potential and that it's theoretical Nernst equation of EH[mV] = 855 - 177 pH - 59 log [Fe2+] may be useful in predicting magnetite redox behavior under these conditions. At higher pH values and without added Fe(II), a distinct shift in potentials was observed, indicating that the dominant Fe(III)|Fe(II) couple(s) poising the potential changed. Our findings, coupled with previous Mössbauer spectroscopy and kinetic data, provide compelling evidence that the maghemite/Fe(II)aq couple accurately predicts the redox behavior of stoichiometric magnetite suspensions in the presence of aqueous Fe(II) between pH values of 6.5 and 8.5.
Collapse
Affiliation(s)
- Thomas
C. Robinson
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa52242, United States
| | - Drew E. Latta
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa52242, United States
| | - Johna Leddy
- Department
of Chemistry, University of Iowa, Iowa City, Iowa52242, United States
| | - Michelle M. Scherer
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa52242, United States
| |
Collapse
|
8
|
Poulain A, Fernandez-Martinez A, Greneche JM, Prieur D, Scheinost AC, Menguy N, Bureau S, Magnin V, Findling N, Drnec J, Martens I, Mirolo M, Charlet L. Selenium Nanowire Formation by Reacting Selenate with Magnetite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14817-14827. [PMID: 36184803 DOI: 10.1021/acs.est.1c08377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The mobility of 79Se, a fission product of 235U and long-lived radioisotope, is an important parameter in the safety assessment of radioactive nuclear waste disposal systems. Nonradioactive selenium is also an important contaminant of drainage waters from black shale mountains and coal mines. Highly mobile and soluble in its high oxidation states, selenate (Se(VI)O42-) and selenite (Se(IV)O32-) oxyanions can interact with magnetite, a mineral present in anoxic natural environments and in steel corrosion products, thereby being reduced and consequently immobilized by forming low-solubility solids. Here, we investigated the sorption and reduction capacity of synthetic nanomagnetite toward Se(VI) at neutral and acidic pH, under reducing, oxygen-free conditions. The additional presence of Fe(II)aq, released during magnetite dissolution at pH 5, has an effect on the reduction kinetics. X-ray absorption spectroscopy analyses revealed that, at pH 5, trigonal gray Se(0) formed and that sorbed Se(IV) complexes remained on the nanoparticle surface during longer reaction times. The Se(0) nanowires grew during the reaction, which points to a complex transport mechanism of reduced species or to active reduction sites at the tip of the Se(0) nanowires. The concomitant uptake of aqueous Fe(II) and Se(VI) ions is interpreted as a consequence of small pH oscillations that result from the Se(VI) reduction, leading to a re-adsorption of aqueous Fe(II) onto the magnetite, renewing its reducing capacity. This effect is not observed at pH 7, where we observed only the formation of Se(0) with slow kinetics due to the formation of an oxidized maghemite layer. This indicates that the presence of aqueous Fe(II) may be an important factor to be considered when examining the environmental reactivity of magnetite.
Collapse
Affiliation(s)
- Agnieszka Poulain
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000Grenoble, France
| | | | - Jean-Marc Greneche
- Institut des Molécules et Matériaux du Mans, CNRS UMR-6283, Le Mans Université, F-72085Le Mans, France
| | - Damien Prieur
- The Rossendorf Beamline at ESRF, 71 avenue des Martyrs, 38043 Grenoble, France and HZDR Institute of Resource Ecology, Bautzener Landstrasse 400, 01328Dresden, Germany
| | - Andreas C Scheinost
- The Rossendorf Beamline at ESRF, 71 avenue des Martyrs, 38043 Grenoble, France and HZDR Institute of Resource Ecology, Bautzener Landstrasse 400, 01328Dresden, Germany
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005Paris, France
| | - Sarah Bureau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000Grenoble, France
| | - Valérie Magnin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000Grenoble, France
| | - Nathaniel Findling
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000Grenoble, France
| | - Jakub Drnec
- ESRF, 71 avenue des Martyrs, 38043Grenoble, France
| | | | - Marta Mirolo
- ESRF, 71 avenue des Martyrs, 38043Grenoble, France
| | - Laurent Charlet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000Grenoble, France
| |
Collapse
|
9
|
Wang XM, Wang L, Chen L, Tian LJ, Zhu TT, Wu QZ, Hu YR, Zheng LR, Li WW. AQDS Activates Extracellular Synergistic Biodetoxification of Copper and Selenite via Altering the Coordination Environment of Outer-Membrane Proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13786-13797. [PMID: 36098667 DOI: 10.1021/acs.est.2c04130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The biotransformation of heavy metals in the environment is usually affected by co-existing pollutants like selenium (Se), which may lower the ecotoxicity of heavy metals, but the underlying mechanisms remain unclear. Here, we shed light on the pathways of copper (Cu2+) and selenite (SeO32-) synergistic biodetoxification by Shewanella oneidensis MR-1 and illustrate how such processes are affected by anthraquinone-2,6-disulfonate (AQDS), an analogue of humic substances. We observed the formation of copper selenide nanoparticles (Cu2-xSe) from synergistic detoxification of Cu2+ and SeO32- in the periplasm. Interestingly, adding AQDS triggered a fundamental transition from periplasmic to extracellular reaction, enabling 14.7-fold faster Cu2+ biodetoxification (via mediated electron transfer) and 11.4-fold faster SeO32- detoxification (via direct electron transfer). This is mainly attributed to the slightly raised redox potential of the heme center of AQDS-coordinated outer-membrane proteins that accelerates electron efflux from the cells. Our work offers a fundamental understanding of the synergistic detoxification of heavy metals and Se in a complicated environmental matrix and unveils an unexpected role of AQDS beyond electron mediation, which may guide the development of more efficient environmental remediation and resource recovery biotechnologies.
Collapse
Affiliation(s)
- Xue-Meng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Li Wang
- School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei 230026, China
| | - Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Ting-Ting Zhu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Qi-Zhong Wu
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
- School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei 230026, China
| | - Yi-Rong Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Li-Rong Zheng
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| |
Collapse
|
10
|
Cao J, Li N, Jiang J, Xu Y, Zhang B, Luo X, Hu Y. Activated carbon as an insoluble electron shuttle to enhance the anaerobic ammonium oxidation coupled with Fe(III) reduction process. ENVIRONMENTAL RESEARCH 2022; 204:111972. [PMID: 34487698 DOI: 10.1016/j.envres.2021.111972] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an autotrophic biological nitrogen removal (BNR) technique in treating low-C/N wastewater. However, the nitrogen removal rate of Feammox is limited by the extracellular electron transfer. In this study, wood activated carbon (AC) was chosen as electron shuttle to enhance the start-up of the Feammox process. Within an operational period of 150 days, the NH4+-N removal efficiency reached 97.9-99.5% with a volumetric loading rate (VLR) of 0.04-0.06 kg N m-3 d-1. Batch experiments indicated that compared with Fe2O3-AQDS and Fe2O3 groups, Fe2O3-AC group showed higher catalytic performance and TN removal efficiency reached 85.7%. Quinone (CO) and phenolic (-OH) chemical groups of AC were equipped with electron transfer capacity (76.51 ± 9.27 μmol e- g-1). Moreover, Fe(II)/Fe(III) species and the secondary iron minerals were found in our system. Microbial analysis showed that Proteobacteria and Acidobacteriota, which observed with relatively high abundance, were played an important role in the integrated Feammox system. This study demonstrates the significant influence of AC on Feammox process and provides an enhanced biological nitrogen removal strategy for practice engineering application.
Collapse
Affiliation(s)
- Jie Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ning Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Beiping Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaonan Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yingbin Hu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
11
|
Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor M, Tratnyek PG, Zhang H. Fe(II) Redox Chemistry in the Environment. Chem Rev 2021; 121:8161-8233. [PMID: 34143612 DOI: 10.1021/acs.chemrev.0c01286] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.
Collapse
Affiliation(s)
- Jianzhi Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adele Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaopeng Huang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Paul G Tratnyek
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Tunable Mn Oxidation State and Redox Potential of Birnessite Coexisting with Aqueous Mn(II) in Mildly Acidic Environments. MINERALS 2020. [DOI: 10.3390/min10080690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the dominant manganese oxide mineral phase in terrestrial and aquatic environments, birnessite plays an important role in many biogeochemical processes. The coexistence of birnessite with aqueous Mn2+ is commonly found in the subsurface environments undergoing Mn redox cycling. This study investigates the change in Mn average oxidation state (AOS) of birnessite after reaction with 0.1–0.4 mM Mn2+ at pH 4.5–6.5, under conditions in which phase transformation of birnessite by Mn2+ was not detectable. The amount of Mn2+ uptake by birnessite and the equilibrium concentration of Mn(III) proportionally increased with the initial concentration of Mn2+. The Mn AOS of birnessite particles became 3.87, 3.75, 3.64, and 3.53, respectively, after reaction with 0.1, 0.2, 0.3, and 0.4 mM Mn2+ at pH 5.5. Oxidation potentials (Eh) of birnessite with different AOS values were estimated using the equilibrium concentrations of hydroquinone oxidized by the birnessite samples, indicating that Eh was linearly proportional to AOS. The oxidation kinetics of bisphenol A (BPA), a model organic pollutant, by birnessite suggest that the logarithms of surface area-normalized pseudo-first-order initial rate constants (log kSA) for BPA degradation by birnessite were linearly correlated with the Eh or AOS values of birnessite with AOS greater than 3.64.
Collapse
|
13
|
Sheng A, Li X, Arai Y, Ding Y, Rosso KM, Liu J. Citrate Controls Fe(II)-Catalyzed Transformation of Ferrihydrite by Complexation of the Labile Fe(III) Intermediate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7309-7319. [PMID: 32421322 DOI: 10.1021/acs.est.0c00996] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ferrihydrite (Fh) is generally associated with dissolved organic matter (DOM) in natural environments due to a strong sorption affinity at circumneutral pH and its high specific surface area. In suboxic conditions, aqueous Fe(II) (Fe(II)aq) can catalyze transformation of Fh into more stable crystalline Fe(III) phases, but how DOM influences the transformation kinetics and pathway is still unclear. Using citrate as a surrogate, we have examined Fh transformation with 1 mM Fe(II)aq and 0-60 μM citrate at pH 7.2. We focus on quantifying the time-dependent concentrations of sorbed Fe(II), structural Fe(II), and a key intermediate species, labile Fe(III) (Fe(III)labile), resulting from interfacial electron transfer (IET), and how these species correlate with the evolution of lepidocrocite (Lp), magnetite (Mt), and goethite (Gt) products. Low concentrations of citrate significantly impact the proportions of Lp/Gt, and the collective results reveal that its effect is primarily through its ability to complex labile Fe(III) and thereby disrupt polymerization into product crystallites, as opposed to modifying the surface properties of Fh or inhibiting IET. The emergence of a Mt coprecipitate is observed in the transformation experiments with 5-10 μM citrate, when the Fe(II)/Fe(III)labile ratio on/near the Fh surface is close to 0.5, the stoichiometric Fe(II)/Fe(III) ratio in Mt. At the molecular level, the findings suggest that citrate, and by extension DOM, can modify the relative rates of olation and oxolation reactions that assemble labile Fe(III) into various product minerals.
Collapse
Affiliation(s)
- Anxu Sheng
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Yuefei Ding
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kevin M Rosso
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Zhao X, Liu B, Wang X, Chen C, Ren N, Xing D. Single molecule sequencing reveals response of manganese-oxidizing microbiome to different biofilter media in drinking water systems. WATER RESEARCH 2020; 171:115424. [PMID: 31887545 DOI: 10.1016/j.watres.2019.115424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Rapid sand biofiltration (RSBF) is widely used for the removal of contaminants from drinking water treatment systems. Biofilm microbiomes in the biofilter media play essential roles in biotransformation of contaminants, but is not comprehensively understood. This study reports on Mn(II) oxidation and the core microbiomes in magnetite sand RSBF (MagS-RSBF) and manganese sand RSBF (MnS-RSBF). MnS-RSBF showed a relatively higher Mn(II) removal rate (40-91.2%) than MagS-RSBF during the start-up. MagS-RSBF and MnS-RSBF had similar Mn(II) removal rates (94.13% and 99.16%) over stable operation for 80 days. Mn(II) removal rates at different depths in the MnS-RSBF reactor significantly changed with operation time, and the filter in the upper layer of MnS-RSBF made the largest contribution to Mn(II) oxidation once operation had stabilized. PacBio single molecule sequencing of full-length 16S rRNA gene indicated that biofilter medium had a significant impact on the core microbiomes of the biofilms from the two biofilters. The magnetite sand biofilter facilitated the enrichment of Mn(II)-oxidizing biofilms. The dominant populations consisted of Pedomicrobium, Pseudomonas, and Hyphomicrobium in the RSBF, which have been affiliated with putative manganese-oxidizing bacteria (MnOB). The relative abundance of Pedomicrobium manganicum increased with operation time in both RSBF reactors. In addition, Nordella oligomobilis and Derxia gummosa were statistically correlated with Mn(II) oxidation. Species-species co-occurrence networks indicated that the microbiome of MnS-RSBF had more complex correlations than that of MagS-RSBF, implying that biofilter medium substantially shaped the microbial community in the RSBF. Hyphomicrobium and nitrite-oxidizing Nitrospira moscoviensis were positively correlated. The core microbiomes' composition of both RSBF reactors converged over operation time. A hybrid biofilter medium with magnetite sand and manganese sand may therefore be best in rapid sand filtration for Mn(II) oxidation.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
15
|
Demangeat E, Pédrot M, Dia A, Bouhnik-Le-Coz M, Davranche M, Cabello-Hurtado F. Surface modifications at the oxide/water interface: Implications for Cu binding, solution chemistry and chemical stability of iron oxide nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113626. [PMID: 31796322 DOI: 10.1016/j.envpol.2019.113626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The oxidation of magnetite into maghemite and its coating by natural organic constituents are common changes that affect the reactivity of iron oxide nanoparticles (IONP) in aqueous environments. Certain ubiquitous compounds such as humic acids (HA) and phosphatidylcholine (PC), displaying a high affinity for both copper (Cu) and IONP, could play a critical role in the interactions involved between both compounds. The adsorption of Cu onto four different IONP was studied: magnetite nanoparticles (magnNP), maghemite NP (maghNP), HA- and PC-coated magnetite NP (HA-magnNP and PC-magnNP, respectively). According to the results, the percentage of adsorbed Cu increases with increasing pH, irrespective of the IONP. Thus, protonation/deprotonation reactions are likely involved within Cu adsorption mechanism. Contrary to the other studied IONP, HA-magnNP favor Cu adsorption at most of the pH tested including acidic pH (pH = 3), suggesting that part of the active surface sites for Cu2+ were not grabbed by protons. The Freundlich adsorption isotherm of HA-magnNP provides the highest sorption constant KF (bonding energy) and n value which supports a heterogeneous sorption process. The heterogeneous adsorption between HA-magnNP and Cu2+ can be explained by both the diversity of the binding sites HA procured and the formation of multidendate complexes between Cu2+ and some of the HA functional groups. Such favorable adsorption process was neither observed on PC-coated-magnNP nor on maghNP, whose behaviors were comparable to that of magnNP. On another hand, HA and PC coatings considerably reduced iron (Fe) dissolution from magnNP as compared with magnNP. It was suggested that HA and PC coatings either provided efficient shield against Fe leaching or fostered dissolved Fe re-adsorption onto the functional groups at the coated magnNP surfaces. Thus, this study can help to better understand the complex interfacial reactions between cations-organic matter-colloidal surfaces which are relevant in environmental and agricultural contexts. This work showed that magnetite NP properties can be affected by surface modifications, which drive NP chemical stability and Cu adsorption, thereby affecting the global water chemistry.
Collapse
Affiliation(s)
- Edwige Demangeat
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Mathieu Pédrot
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France.
| | - Aline Dia
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | | | - Mélanie Davranche
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | | |
Collapse
|