1
|
Yang L, Yu H, Zhao H, Xia C, Yu Q, Chen X, Cao G, Cai L, Meng S, Tang CY. Degradation of polyamide nanofiltration membranes by free chlorine and halide ions: Kinetics, mechanisms, and implications. WATER RESEARCH 2025; 272:122963. [PMID: 39689551 DOI: 10.1016/j.watres.2024.122963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The kinetics of polyamide membrane degradation by free chlorine and halide ions (Br- and Cl-) were innovatively evaluated based on physicochemical properties and filtration performance, using water/solute permeability coefficient in addition to bromide incorporation as important indicators. The reaction rate constants for the reduced water and H3BO3 permeability coefficient were 1-2 orders of magnitude higher at 0-1 h than 1-10 h. N-bromination and bromination-promoted hydrolysis are dominant degradation mechanisms at 0-1 h (reflected by the breakage of hydrogen bond, the increased Ca binding content, and the increased charge density), and ring-bromination further occurs at 1-10 h (reflected by the disappearance or weakening of aromatic amide band and the nearly constant hydrogen bond). The more reactive but less abundant brominating agents (Br2O, BrOCl, BrCl, and Br2) played significant roles in membrane degradation, contradicting the conventional belief that HOBr is the only reactive species. BrCl at pH 4.0 and BrOCl and Br2O at pH 7.0 made significantly higher contributions to membrane degradation than HOBr (>76 % vs. <13 %). The increased contribution of BrCl and Br2 with the increased [Cl-] and [Br-]ex (the excess bromide, defined as [Br-]o - [HOCl]o when [Br-]o > [HOCl]o), respectively, was responsible for the greater reduction of water permeability coefficient. The innovative and simple approach developed in this study provides important insights to evaluate and predict membrane degradation.
Collapse
Affiliation(s)
- Linyan Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Huihui Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Caiping Xia
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinyu Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China.
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lankun Cai
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong, PR China
| |
Collapse
|
2
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
3
|
Hu A, Liu Y, Zheng J, Wang X, Xia S, Van der Bruggen B. Tailoring properties and performance of thin-film composite membranes by salt additives for water treatment: A critical review. WATER RESEARCH 2023; 234:119821. [PMID: 36889093 DOI: 10.1016/j.watres.2023.119821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
During the fabrication of thin film composite (TFC) membranes by interfacial polymerization (IP), the utilization of salt additives is one of the effective methods to regulate membrane properties and performance. Despite gradually receiving widespread attention for membrane preparation, the strategies, effects and underlying mechanisms of using salt additives have not yet been systematically summarized. This review for the first time provides an overview of various salt additives used to tailor properties and performance of TFC membranes for water treatment. By classifying salt additives into organic and inorganic salts, the roles of added salt additives in the IP process and the induced changes in membrane structure and properties are discussed in detail, and the different mechanisms of salt additives affecting membrane formation are summarized. Based on these mechanisms, the salt-based regulation strategies have shown great potential for improving the performance and application competitiveness of TFC membranes, including overcoming the trade-off relationship between water permeability and salt selectivity, tailoring membrane pore size distribution for precise solute-solute separation, and enhancing membrane antifouling performance. Finally, future research directions are suggested to focus on the long-term stability assessment of salt-modified membranes, the combined use of different salt additives, and the integration of salt regulation with other membrane design or modification strategies.
Collapse
Affiliation(s)
- Airan Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
4
|
Ni L, Wang K, Wang Z, Wang Y. Antibiofouling Characteristics and Mechanisms in an Anammox Membrane Bioreactor Based on an Optimized Photocatalytic Technology─Photocatalytic Optical Fibers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16144-16155. [PMID: 36269937 DOI: 10.1021/acs.est.2c04023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an ecofriendly photocatalytic antifouling technology for membrane bioreactors (MBRs), photocatalytic optical fibers (POFs) can decrease the replacement cost of modified membranes and prevent the proliferation of photosynthetic bacteria caused by direct light illumination. Here, POFs were applied in situ in an anaerobic ammonium oxidation (anammox) MBR for membrane biofouling control. Compared with the control MBR without POFs treatment, the average fouling cycle of the POFs-loaded MBR was extended by 137%, and the energy consumption caused by membrane fouling was saved by 18%. In the antibiofouling process, •OH was the key photocatalytic reactive species. On the fouled POFs-loaded membranes, the membrane-adhered foulant was significantly decreased by photocatalytic degradation of the proteins, polysaccharides and humic substances in the microbial metabolites. The membrane-attached bacteria were inactivated by the POFs by the mechanisms of cell-membrane destruction and cell-membrane permeabilization, which caused bacterial necrosis and apoptosis, respectively. Moreover, the total nitrogen-removal efficiencies of the two MBRs were maintained at 85.3-90.4%, and the abundance of anammox bacteria increased from 21.3% to 46.2% during the 202 days of operation, indicating an efficient anammox process with excellent nitrogen-removal performance, biomass retention, and anammox bacteria enrichment. The systematic insights into the antibiofouling performance and mechanisms of POFs in anammox MBRs will promote application and development of membrane-filtration technology in wastewater treatment using environmentally friendly and energy-efficient antifouling strategies.
Collapse
Affiliation(s)
- Lingfeng Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai200092, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai200092, P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai200092, P. R. China
| |
Collapse
|
5
|
A MOF-based trap with strong affinity toward low-concentration heavy metal ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
He H, Xu P, Wang D, Zhou H, Chen C. Polyoxometalate-modified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Turning waste into adsorbent: Modification of discarded orange peel for highly efficient removal of Cd(II) from aqueous solution. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Zhang X, Tian J, Xu R, Cheng X, Zhu X, Loh CY, Fu K, Zhang R, Wu D, Ren H, Xie M. In Situ Chemical Modification with Zwitterionic Copolymers of Nanofiltration Membranes: Cure for the Trade-Off between Filtration and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28842-28853. [PMID: 35709360 PMCID: PMC9247986 DOI: 10.1021/acsami.2c05311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Breaking the trade-off between filtration performance and antifouling property is critical to enabling a thin-film nanocomposite (TFC) nanofiltration (NF) membrane for a wide range of feed streams. We proposed a novel design route for TFC NF membranes by grafting well-defined zwitterionic copolymers of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and 2-aminoethyl methacrylate hydrochloride (AEMA) on the polyamide surfaces via an in situ surface chemical modification process. The successful grafting of a zwitterionic copolymer imparted the modified NF membranes with better surface hydrophilicity, a larger actual surface area (i.e., nodular structures), and a thinner polyamide layer. As a result, the water permeability of the modified membrane (i.e., TFC-10) was triple that of the pristine TFC membrane while maintaining high Na2SO4 rejection. We further demonstrated that the TFC-10 membrane possessed exceptional antifouling properties in both static adsorption tests and three cycles of dynamic protein and humic acid fouling tests. To recap, this work provides valuable insights and strategies for the fabrication of TFC NF membranes with simultaneously enhanced filtration performance and antifouling property.
Collapse
Affiliation(s)
- Xinyu Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jiayu Tian
- School
of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Ruiyang Xu
- International
Education School, Shandong Polytechnic College
(SDPC), Jining 272100, PR China
| | - Xiaoxiang Cheng
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ching Yoong Loh
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Kaifang Fu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ruidong Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
- .
Phone: +44(0)1225 383246
| | - Huixue Ren
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ming Xie
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
9
|
Fallahnejad Z, Bakeri G, Ismail AF. Performance of TFN nanofiltration membranes through embedding internally modified titanate nanotubes. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1036-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Xu D, Zheng J, Zhang X, Lin D, Gao Q, Luo X, Zhu X, Li G, Liang H, Van der Bruggen B. Mechanistic Insights of a Thermoresponsive Interface for Fouling Control of Thin-Film Composite Nanofiltration Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1927-1937. [PMID: 35007424 DOI: 10.1021/acs.est.1c06156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In spite of extensive research, fouling is still the main challenge for nanofiltration membranes, generating an extra transport resistance and requiring a larger operational pressure in practical applications. We fabricated a highly antifouling nanofiltration membrane by grafting poly(N-isopropylacrylamide) (PNIPAM) chains on a bromine-containing polyamide layer. The resulting membrane was found to have a double permeance compared to the pristine membrane, while the rejection of multivalent ions remained the same. In addition, PNIPAM chains yielded a better deposition resistance and adhesion resistance, thereby mitigating the increase of fouling and promoting the recovery of flux during the filtration and traditional cleaning stages, respectively. Moreover, PNIPAM chains shrank when the water temperature was above the lower critical solution temperature (LCST), indicating the formation of a buffer layer between the membrane and pollutants. The buffer layer would eliminate the membrane-foulant interaction energy, thus further enhancing the detachment of pollutants. This simple and efficient cleaning method could act as an enhanced cleaning procedure to remove irreversible fouling. This provides new insights into the fabrication of enhanced antifouling membranes using smart responsive polymer chains.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Xin Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Qieyuan Gao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, P. R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
11
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
12
|
Enhancing the long-term separation stability of TFC membrane by the covalent bond between synthetic amino-substituted polyethersulfone substrate and polyamide layer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Xu M, Feng X, liu Z, Han X, Zhu J, Wang J, Bruggen BVD, Zhang Y. MOF laminates functionalized polyamide self-cleaning membrane for advanced loose nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Indika S, Wei Y, Hu D, Ketharani J, Ritigala T, Cooray T, Hansima MACK, Makehelwala M, Jinadasa KBSN, Weragoda SK, Weerasooriya R. Evaluation of Performance of Existing RO Drinking Water Stations in the North Central Province, Sri Lanka. MEMBRANES 2021; 11:membranes11060383. [PMID: 34073869 PMCID: PMC8225030 DOI: 10.3390/membranes11060383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
Reverse osmosis (RO) drinking water stations have been introduced to provide safe drinking water for areas with prevailing chronic kidney disease with unknown (CKDu) etiology in the dry zone of Sri Lanka. In this investigation, RO drinking water stations established by community-based organizations (CBO) in the North Central Province (NCP) were examined. Water samples were collected from source, permeate, and concentrate in each station to determine water quality and performance. Furthermore, the operators of the systems were interviewed to evaluate operational and maintenance practices to identify major issues related to the RO systems. Results show that the majority (>93%) of RO systems had higher salt rejection rates (>92%), while water recovery varied from 19.4% to 64%. The removal efficiencies of hardness and alkalinity were averaged at 95.8% and 86.6%, respectively. Most dominant ions such as Ca2+, Mg2+, K+, Na+, Ba2+, Sr2+ Cl−, F−, and SO42− showed higher rejections at averaged values of 93.5%, 97.4%, 86.6%, 90.8%, 95.4%, 96.3%, 95.7%, 96.6%, and 99.0%, respectively. Low recovery rates, lower fluoride levels in product water, and membrane fouling were the main challenges. Lack of knowledge and training were the major issues that could shorten the lifespan of RO systems.
Collapse
Affiliation(s)
- Suresh Indika
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.I.); (D.H.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.I.); (D.H.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Institute of Fundamental Studies, Hanthana Road, Kandy 20000, Sri Lanka;
- Correspondence: ; Tel.: +86-10-6284-9690
| | - Dazhou Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.I.); (D.H.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jegetheeswaran Ketharani
- Department of Civil Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (J.K.); (K.B.S.N.J.)
| | - Tharindu Ritigala
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.I.); (D.H.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Titus Cooray
- Department of Applied Earth Sciences, Uva Wellassa University, Badulla 90000, Sri Lanka;
| | - M. A. C. K. Hansima
- Post Graduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Madhubashini Makehelwala
- China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Peradeniya 20400, Sri Lanka;
| | - K. B. S. N. Jinadasa
- Department of Civil Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (J.K.); (K.B.S.N.J.)
| | | | - Rohan Weerasooriya
- National Institute of Fundamental Studies, Hanthana Road, Kandy 20000, Sri Lanka;
| |
Collapse
|
15
|
Wang D, Zhang Y, Cai Z, You S, Sun Y, Dai Y, Wang R, Shao S, Zou J. Corn Stalk-Derived Carbon Quantum Dots with Abundant Amino Groups as a Selective-Layer Modifier for Enhancing Chlorine Resistance of Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22621-22634. [PMID: 33950689 DOI: 10.1021/acsami.1c04777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low permeability and chlorine resistance of normal thin-film composite (TFC) membranes restrict their practical applications in many fields. This study reports the preparation of a high chlorine-resistant TFC membrane for forward osmosis (FO) by incorporating corn stalk-derived N-doped carbon quantum dots (N-CQDs) into the selective polyamide (PA) layer to construct a polydopamine (PDA) sub-layer (PTFCCQD). Membrane modification is characterized by surface morphology, hydrophilicity, Zeta potential, and roughness. Results show that TFCCQD (without PDA pretreatment) and PTFCCQD membranes possess greater negative surface charges and thinner layer-thickness (less than 68 nm). With N-CQDs and PDA pretreatment, the surface roughness of the PTFCCQD membrane decreases significantly with the co-existence of microsized balls and flocs with a dense porous structure. With the variation of concentration and type of draw solution, the PTFCCQD membrane exhibits an excellent permeability with low J(reverse salt flux)/J(water flux) values (0.1-0.25) due to the enhancement of surface hydrophilicity and the shortening of permeable paths. With 16,000 ppm·h chlorination, reverse salt flux of the PTFCCQD membrane (8.4 g m-2 h-1) is far lower than those of TFCCQD (136.2 g m-2 h-1), PTFC (127.6 g m-2 h-1), and TFC (132 g m-2 h-1) membranes in FO processes. The decline of salt rejection of the PTFCCQD membrane is only 8.2%, and the normalized salt rejection maintains 0.918 in the RO system (16,000 ppm·h chlorination). Super salt rejection is ascribed to the existence of abundant N-H bonds (N-CQDs), which are preferentially chlorinated by free chlorine to reduce the corrosion of the PA layer. The structure of the PA layer is stable during chlorination also due to the existence of various active groups grafted on the surface. This study may pave a new direction for the preparation of durable biomass-derivative (N-CQD)-modified membranes to satisfy much more possible applications.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhuang Cai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yubo Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Dai
- School of Civil Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Rongyue Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Siliang Shao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
16
|
Liu C, Wang W, Yang B, Xiao K, Zhao H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. WATER RESEARCH 2021; 195:116976. [PMID: 33706215 DOI: 10.1016/j.watres.2021.116976] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Membrane technology has been widely used in the wastewater treatment and seawater desalination. In recent years, the reverse osmosis (RO) membrane represented by polyamide (PA) has made great progress because of its excellent properties. However, the conventional PA RO membranes still have some scientific problems, such as membrane fouling, easy degradation after chlorination, and unclear mechanisms of salt retention and water flux, which seriously impede the widespread use of RO membrane technology. This paper reviews the progress in the research and development of the RO membrane, with key focus on the mechanisms and strategies of the contemporary separation, anti-fouling and chlorine resistance of the PA RO membrane. This review seeks to provide state-of-the-art insights into the mitigation strategies and basic mechanisms for some of the key challenges. Under the guidance of the fundamental understanding of each mechanism, operation and modification strategies are discussed, and reasonable analysis is carried out, which can address some key technical challenges. The last section of the review focuses on the technical issues, challenges, and future perspective of these mechanisms and strategies. Advances in synergistic mechanisms and strategies of the PA RO membranes have been rarely reviewed; thus, this review can serve as a guide for new entrants to the field of membrane water treatment and established researchers.
Collapse
Affiliation(s)
- Chao Liu
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjing Wang
- Institute of Ecology & Environment Governance, Hebei University, Baoding 071002, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Wang F, Zheng T, Wang P, Chen M, Wang Z, Jiang H, Ma J. Enhanced Water Permeability and Antifouling Property of Coffee-Ring-Textured Polyamide Membranes by In Situ Incorporation of a Zwitterionic Metal-Organic Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5324-5334. [PMID: 33728905 DOI: 10.1021/acs.est.0c07122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modulation of the polyamide structure is critically important for the reverse-osmosis performance of thin-film composite (TFC) membranes in the field of water reuse and desalination. Herein, zwitterionic nanoparticles of zeolitic imidazolate framework-8 (PZ@ZIF-8) were fabricated and incorporated into the polyamide active layer through the interfacial polymerization method. A hydrophilic, zwitterionic coffee-ring structure was formed on the surface of polyamide thin-film nanocomposite (TFN) membranes due to the adjusted diffusion rate of m-phenylenediamine (MPD) from the aqueous phase into the organic phase during the interfacial polymerization process. Surface characterization demonstrated that the coffee-ring structure increased the amounts of water transport channels on the membrane surface and the intrinsic pores of PZ@ZIF-8 maintained the salt rejection. Antifouling and bactericidal activities of TFN membranes were enhanced remarkably owing to the bacterial-"defending" and bacterial-"attacking" behaviors of hydrophilic and zwitterionic groups from PZ@ZIF-8 nanoparticles. This work would provide a promising method for the application of MOFs to enhance the bio-/organic-fouling resistance of TFN membranes with high water permeation and salt rejection.
Collapse
Affiliation(s)
- Feihong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mansheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haicheng Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
18
|
Inkjet printed single walled carbon nanotube as an interlayer for high performance thin film composite nanofiltration membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118901] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Wang C, Park MJ, Seo DH, Shon HK. Inkjet printing of graphene oxide and dopamine on nanofiltration membranes for improved anti-fouling properties and chlorine resistance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Hashiba K, Nakai S, Nishijima W, Ohno M, Gotoh T. Degradation of secondary polyamide reverse osmosis membrane by hypochlorite in the presence of calcium ions. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Chen S, Xie Y, Chinnappan A, Wei Z, Gu Q, He H, Fang Y, Zhang X, Lakshminarayanan R, Zhao W, Zhao C, Ramakrishna S. A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138876. [PMID: 32361445 DOI: 10.1016/j.scitotenv.2020.138876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The oil and bacteria adhesion during membrane separation process brings great challenges to the operation costs and membrane service life. Meantime, the strong chemical corrosion in sewage seriously limits the durability of membrane as well. Herein, a facile strategy is developed for fabricating highly stable and efficient zwitterionic nanofibrous membrane (NFM) with self-cleaning feature via the combination of in-situ cross-linking of poly (sulfobetaine methacrylate) (PSBMA) and electrospun poly (ether sulfone) (PES) nanofibers. Owing to the introduction of zwitterionic functional groups, the PSBMA/PES NFM exhibits superior antifouling ability (over 3 cycles of crude oil fouling/self-cleaning and up to 7 days of bacteria adhesion/repelling tests). Moreover, the membrane also presents remarkable chemical stability in acidic, alkaline and salty environments; and exhibits excellent separation performance for both layered oil/water mixture and oil-in-water emulsion as well. Furthermore, the membrane is capable to remove bacteria during the continuous oil/water mixture separation. Overall, the proposed strategy provides a new perspective into developing long-term antifouling membrane materials for complicated oily wastewater remediation in various corrosive environments.
Collapse
Affiliation(s)
- Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Amutha Chinnappan
- Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qilin Gu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Hongying He
- Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yuanlai Fang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
22
|
Xiang Y, Xu RG, Leng Y. Molecular Understanding of Ion Effect on Polyzwitterion Conformation in an Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7648-7657. [PMID: 32506917 DOI: 10.1021/acs.langmuir.0c01287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyzwitterions (PZs) are promising materials for the antifouling in reverse osmosis and nanofiltration membrane technology for water treatment. Fundamental understanding of the structure and molecular interactions involving zwitterions is crucial to the optimal design of antifouling in membrane separation. Here we employ the umbrella sampling and molecular dynamics simulations to investigate molecular interactions between sulfobetaine/carboxybetaine zwitterions and different metal ions (Na+, K+, and Ca2+) in an aqueous solution. The simulation results show that these ions can form stable or metastable contact ionic/solvent-shared-ionic pairs with zwitterions. Simulations at different grafting densities of PZ brush arrays reveal complex competitive association mechanisms, which are attributed to nonbonded electrostatic and van der Waals interactions among zwitterions, water molecules, and different metal ions in an aqueous environment. While the high-grafting density of the PZ brush array leads to a strong branch association between different zwitterions in water, this association is decreased at intermediate- and low-grafting densities due to strong zwitterion-water interactions. More importantly, adding ions into water at intermediate- and low-grafting densities further breaks down the zwitterion branch association, resulting in a randomly oriented and dispersed branch configuration with significant swelling of the polymers. The degree of swelling depends on the type of ions, which further changes the surface electrostatic potential of PZ coatings.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Rong-Guang Xu
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Yongsheng Leng
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
23
|
Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: A novel carbonate-based preoccupation strategy. J Colloid Interface Sci 2020; 571:155-165. [DOI: 10.1016/j.jcis.2020.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
|
24
|
Han H, Dai R, Wang Z. Fabrication of High-Performance Thin-Film Composite Nanofiltration Membrane by Dynamic Calcium-Carboxyl Intra-Bridging during Post-Treatment. MEMBRANES 2020; 10:E137. [PMID: 32629838 PMCID: PMC7407163 DOI: 10.3390/membranes10070137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022]
Abstract
Widespread applications of nanofiltration (NF) and reverse osmosis (RO)-based processes for water purification and desalination call for high-performance thin-film composite (TFC) membranes. In this work, a novel and facile modification method was proposed to fabricate high-performance thin-film composite nanofiltration membrane by introducing Ca2+ in the heat post-treatment. The introduction of Ca2+ induced in situ Ca2+-carboxyl intra-bridging, leading to the embedment of Ca2+ in the polyamide (PA) layer. This post modification enhanced the hydrophilicity and surface charge of NF membranes compared to the pristine membrane. More interestingly, the modified membrane had more nodules and exhibited rougher morphology. Such changes brought by the addition of Ca2+ enabled the significant increase of water permeability (increasing from 17.9 L·m-2·h-1·bar-1 to 29.8 L·m-2·h-1·bar-1) while maintaining a high selectivity (Na2SO4 rejection rate of 98.0%). Furthermore, the intra-bridging between calcium and carboxyl imparted the NF membranes with evident antifouling properties, exhibiting milder permeability decline of 4.2% (compared to 16.7% of NF-control) during filtration of sodium alginate solution. The results highlight the potential of using Ca2+-carboxyl intra-bridging post-treatment to fabricate high-performance TFC membranes for water purification and desalination.
Collapse
Affiliation(s)
| | | | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (H.H.); (R.D.)
| |
Collapse
|
25
|
Shen L, Zhang X, Tian L, Li Z, Ding C, Yi M, Han C, Yu X, Wang Y. Constructing substrate of low structural parameter by salt induction for high-performance TFC-FO membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Dual-functional acyl chloride monomer for interfacial polymerization: Toward enhanced water softening and antifouling performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Shang W, Sun F, Jia W, Guo J, Yin S, Wong PW, An AK. High-performance nanofiltration membrane structured with enhanced stripe nano-morphology. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117852] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Liu Y, Yan W, Wang Z, Wang H, Zhao S, Wang J, Zhang P, Cao X. 1-methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117830] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117672] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Hu P, Tian B, Xu Z, Jason Niu Q. Fabrication of high performance nanofiltration membrane on a coordination-driven assembled interlayer for water purification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116192] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Tailoring the internal void structure of polyamide films to achieve highly permeable reverse osmosis membranes for water desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117518] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
|
33
|
Hao X, Gao S, Tian J, Wang S, Zhang H, Sun Y, Shi W, Cui F. New insights into the organic fouling mechanism of an in situ Ca 2+ modified thin film composite forward osmosis membrane. RSC Adv 2019; 9:38227-38234. [PMID: 35541777 PMCID: PMC9075835 DOI: 10.1039/c9ra06272f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 12/04/2022] Open
Abstract
In this study, the effect of organic substances on the fouling behavior of a thin film composite (TFC) membrane with in situ Ca2+ addition (TFC-Ca membrane) was evaluated. Bovine serum albumin (BSA), humic acid (HA) and sodium alginate (SA) were used as surrogate foulants for protein, natural organic substances and polysaccharides, respectively, thus enabling the analysis of foulant–membrane interaction in the membrane fouling process. Fouling experiments were carried out and the fouling mechanism was investigated by extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory. SEM-EDX, ICP-OES and TOC analysis were applied to characterize the fouled TFC-Ca membrane. Results suggested that the interfacial free energies obtained from advanced contact angle measurements were correlated strongly with the rates of membrane fouling. In situ Ca2+ addition in the TFC membrane resulted in the decrease of the interfacial adhesion free energy (i.e., foulant–membrane interaction) and thus the mitigation of membrane fouling. The permeate flux of TFC-Ca FO membrane after organic fouling could be fully restored by simple physical cleaning. The antifouling mechanism of Ca2+ pre-binding carboxyl groups in the TFC-Ca FO membrane was demonstrated, which provides new insights into the development of antifouling TFC membranes in the future. In this study, the effect of organic substances on the fouling behavior of a thin film composite (TFC) membrane with in situ Ca2+ addition (TFC-Ca membrane) was evaluated.![]()
Collapse
Affiliation(s)
- Xiujuan Hao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
| | - Shanshan Gao
- School of Civil Engineering and Transportation, Hebei University of Technology Tianjin 300401 China
| | - Jiayu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China .,School of Civil Engineering and Transportation, Hebei University of Technology Tianjin 300401 China
| | - Songxue Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
| | - Huizhong Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
| | - Yan Sun
- School of Civil Engineering, Chang'an University Xi'an 710061 China
| | - Wenxin Shi
- College of Urban Construction and Environmental Engineering, Chongqing University Chongqing 400044 China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University Chongqing 400044 China
| |
Collapse
|
34
|
Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117297] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers (Basel) 2019; 11:E1252. [PMID: 31362430 PMCID: PMC6723865 DOI: 10.3390/polym11081252] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 11/16/2022] Open
Abstract
Sustainable and affordable supply of clean, safe, and adequate water is one of the most challenging issues facing the world. Membrane separation technology is one of the most cost-effective and widely applied technologies for water purification. Polymeric membranes such as cellulose-based (CA) membranes and thin-film composite (TFC) membranes have dominated the industry since 1980. Although further development of polymeric membranes for better performance is laborious, the research findings and sustained progress in inorganic membrane development have grown fast and solve some remaining problems. In addition to conventional ceramic metal oxide membranes, membranes prepared by graphene oxide (GO), carbon nanotubes (CNTs), and mixed matrix materials (MMMs) have attracted enormous attention due to their desirable properties such as tunable pore structure, excellent chemical, mechanical, and thermal tolerance, good salt rejection and/or high water permeability. This review provides insight into synthesis approaches and structural properties of recent reverse osmosis (RO) and nanofiltration (NF) membranes which are used to retain dissolved species such as heavy metals, electrolytes, and inorganic salts in various aqueous solutions. A specific focus has been placed on introducing and comparing water purification performance of different classes of polymeric and ceramic membranes in related water treatment industries. Furthermore, the development challenges and research opportunities of organic and inorganic membranes are discussed and the further perspectives are analyzed.
Collapse
Affiliation(s)
- Zi Yang
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA.
| | - Yi Zhou
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA
| | - Zhiyuan Feng
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA
| | - Xiaobo Rui
- State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
| | - Tong Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|