1
|
Karim AS, Malone M, Bruno A, Eggler AL, Posner MA, Shakya KM. Assessment of air quality in the Philadelphia, Pennsylvania subway. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:196-204. [PMID: 39143148 PMCID: PMC12009735 DOI: 10.1038/s41370-024-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Subways are popular and efficient modes of transportation in cities. However, people are exposed to high levels of particulate matter (PM) in subways. Subway air quality in the United States has been investigated in a few cities, but data is lacking on simultaneous measurement of several pollutants, especially ultrafine particles (UFP) and black carbon (BC), in combination with different size fractions of PM. OBJECTIVES The goals of this study are to assess air quality in a belowground subway and compare it with outdoor ambient levels, to examine temporal variability of PM in the subway, and to analyze the correlation between PM and BC. METHODS Particulate matter of varying sizes (PM1, PM2.5, PM10), UFP, and BC were measured using DustTrak, nanoparticle detector, and micro aethalometer, respectively. Measurements were made at the belowground subway platform and the aboveground street level at 15th Street subway station in Philadelphia during summer 2022. RESULTS Belowground mean PM1, PM2.5, and PM10 were 112.2 ± 61.3 µg/m3, 120 ± 65.5 µg/m3, and 182.1 ± 132 µg/m3, respectively, which were 5.4, 5.7, and 7.6 times higher than the respective aboveground street levels. The UFP lung deposited surface area (LDSA) (59.4 ± 36.2 µm2/cm3) and BC (9.5 ± 5.4 μg/m3) belowground were 1.7 times and 10.7 times higher than the aboveground. The pollutant concentration varied from day-to-day on both the locations. A higher positive correlation was found between the belowground BC and PM2.5 (r = 0.51, p < 0.05) compared to the aboveground (r = 0.16, p < 0.05). IMPACT This study showed high levels of particulate matter exposure at a belowground subway station in Philadelphia. Particulate matter levels were about 5 to 8 times higher at belowground subway station than the corresponding aboveground street level. Higher levels were also observed for UFP lung deposited surface area (LDSA), while black carbon levels showed the highest concentration at the belowground level by a factor of ten compared to the aboveground level. The study shows the need for air quality management at belowground subways to reduce particulate matter exposure for the commuters.
Collapse
Affiliation(s)
- Anjum Shahina Karim
- Department of Geography and the Environment, Villanova University, Villanova, PA, USA
| | - Maeve Malone
- Department of Geography and the Environment, Villanova University, Villanova, PA, USA
| | - Alex Bruno
- Department of Geography and the Environment, Villanova University, Villanova, PA, USA
| | - Aimee L Eggler
- Department of Chemistry, Villanova University, Villanova, PA, USA
| | - Michael A Posner
- Department of Mathematics and Statistics, Villanova University, Villanova, PA, USA
| | - Kabindra M Shakya
- Department of Geography and the Environment, Villanova University, Villanova, PA, USA.
| |
Collapse
|
2
|
Tartakovsky D, Kordova-Biezuner L, Broday DM. PM 2.5 and NOX concentrations decrease as a result of a railway electrification. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:188. [PMID: 39853614 DOI: 10.1007/s10661-025-13654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
This work examines the impact of the electrification of the Holon-Bat Yam passenger train line (central Israel) on air pollutant concentrations using data collected from air quality monitoring stations that operated at the train stations across the electrified train line. We present statistically significant reduction in the annual average NO2, NO and NOX concentrations (29-45%, 79-85% and 65-75%, respectively), attributed to the electrification of the passenger train line. The drop in the NO and NOX concentrations was much stronger than in the NO2 concentrations, since NO is the main nitrogen species emitted by diesel locomotives. PM2.5 concentrations also significantly decreased, but only in two (out of the three) train stations situated along the electrified line. Following various analyses, we conclude that electrification of train lines reduces train locomotive emissions and improves the air quality at the stations, as expected, thus protecting the passengers and reducing their exposure to air pollutants. Although this study presents a specific case, the findings are expected to be applicable, at least quantitatively, to other locations, as railway electrification removes emissions associated with fossil-fuel-powered locomotives. This work supports railway electrification policy, which has the potential to substantially lower air pollution levels and diminish the passengers' exposure to harmful air pollutants.
Collapse
Affiliation(s)
| | - Levana Kordova-Biezuner
- Air Quality and Asbestos Division, Israeli Air Monitoring Network, Israeli Ministry of Environmental Protection, Tel Aviv, Israel
| | - David M Broday
- Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Font A, Hedges M, Han Y, Lim S, Bos B, Tremper AH, Green DC. Air quality on UK diesel and hybrid trains. ENVIRONMENT INTERNATIONAL 2024; 187:108682. [PMID: 38669721 DOI: 10.1016/j.envint.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Concentrations of particulate matter (PM10, PM2.5), ultrafine (UFP), particle number (PNC), black carbon (BC), nitrogen dioxide (NO2) and nitrogen oxides (NOX) were measured in train carriages on diesel and bi-mode trains on inter-city and long-distance journeys in the United Kingdom (UK) using a high-quality mobile measurement system. Air quality on 15 different routes was measured using highly-time resolved data on a total of 119 journeys during three campaigns in winter 2020 and summer 2021; this included 13 different train classes. Each journey was sampled 4-10 times with approximatively 11,000 min of in-train concentrations in total. Mean-journey concentrations were 7.552 µg m-3 (PM10); 3.936 µg m-3 (PM2.5); 333-11,300 # cm-3 (PNC); 225-9,131 # cm-3 (UFP); 0.6-11 µg m-3 (BC); 28-201 µg m-3 (NO2); and 130-3,456 µg m-3 (NOX). The impact of different factors on in-train concentrations was evaluated. The presence of tunnels was the factor with the largest impact on the in-train particle concentrations with enhancements by a factor of 40 greater than baseline for BC, and a factor 6 to 7 for PM and PNC. The engine fuel mode was the factor with the largest impact on NO2 with enhancements of up to 14-times larger when the train run on diesel compared to the times running on electric on hybrid trains. Train classes with an age < 10 years observed the lowest in-train PM, BC and NOX concentrations reflecting improvements in aspects of rail technology in recent years. Air quality on UK diesel trains is higher than ambient concentrations but has lower PM2.5 and PNC than most other transport modes, including subway systems, diesel and petrol cars. This paper adds significantly to the evidence on exposure to poor air quality in transport micro-environments and provides the industry and regulatory bodies with reference-grade measurements on which to establish in-train air quality guidelines.
Collapse
Affiliation(s)
- Anna Font
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom; IMT Nord Europe, Europe, Institut Mines-Télécom, Univ. Lille, Centre for Education, Research and Innovation in Energy Environment (CERI EE), 59000 Lille, France.
| | - Michael Hedges
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - Yiqun Han
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - Shanon Lim
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - Brendan Bos
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, United Kingdom
| |
Collapse
|
4
|
Rothmann MH, Møller P, Essig YJ, Gren L, Malmborg VB, Tunér M, Pagels J, Krais AM, Roursgaard M. Genotoxicity by rapeseed methyl ester and hydrogenated vegetable oil combustion exhaust products in lung epithelial (A549) cells. Mutagenesis 2023; 38:238-249. [PMID: 37232551 DOI: 10.1093/mutage/gead016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/25/2023] [Indexed: 05/27/2023] Open
Abstract
Biofuel is an attractive substitute for petrodiesel because of its lower environmental footprint. For instance, the polycyclic aromatic hydrocarbons (PAH) emission per fuel energy content is lower for rapeseed methyl ester (RME) than for petrodiesel. This study assesses genotoxicity by extractable organic matter (EOM) of exhaust particles from the combustion of petrodiesel, RME, and hydrogenated vegetable oil (HVO) in lung epithelial (A549) cells. Genotoxicity was assessed as DNA strand breaks by the alkaline comet assay. EOM from the combustion of petrodiesel and RME generated the same level of DNA strand breaks based on the equal concentration of total PAH (i.e. net increases of 0.13 [95% confidence interval (CI): 0.002, 0.25, and 0.12 [95% CI: 0.01, 0.24] lesions per million base pairs, respectively). In comparison, the positive control (etoposide) generated a much higher level of DNA strand breaks (i.e. 0.84, 95% CI: 0.72, 0.97) lesions per million base pairs. Relatively low concentrations of EOM from RME and HVO combustion particles (<116 ng/ml total PAH) did not cause DNA strand breaks in A549 cells, whereas benzo[a]pyrene and PAH-rich EOM from petrodiesel combusted using low oxygen inlet concentration were genotoxic. The genotoxicity was attributed to high molecular weight PAH isomers with 5-6 rings. In summary, the results show that EOM from the combustion of petrodiesel and RME generate the same level of DNA strand breaks on an equal total PAH basis. However, the genotoxic hazard of engine exhaust from on-road vehicles is lower for RME than petrodiesel because of lower PAH emission per fuel energy content.
Collapse
Affiliation(s)
- Monika Hezareh Rothmann
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden
| | - Louise Gren
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Vilhelm B Malmborg
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Martin Tunér
- Division of Combustion Engines, Lund University, SE-221 00 Lund, Sweden
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
5
|
Matthews JC, Chompoobut C, Navasumrit P, Khan MAH, Wright MD, Ruchirawat M, Shallcross DE. Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5316. [PMID: 37047932 PMCID: PMC10094290 DOI: 10.3390/ijerph20075316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Traffic is a major source of particulate pollution in large cities, and particulate matter (PM) level in Bangkok often exceeds the World Health Organisation limits. While PM2.5 and PM10 are both measured in Bangkok regularly, the sub-micron range of PM, of specific interest in regard to possible adverse health effects, is very limited. In the study, particle number concentration (PNC) was measured on public transport in Bangkok. A travel route through Bangkok using the state railway, the mass rapid transport underground system, the Bangkok Mass Transit System (BTS) Skytrain and public buses on the road network, with walking routes between, was taken whilst measuring particle levels with a hand-held concentration particle counter. The route was repeated 19 times covering different seasons during either morning or evening rush hours. The highest particle concentrations were found on the state railway, followed by the bus, the BTS Skytrain and the MRT underground with measured peaks of 350,000, 330,000, 33,000 and 9000 cm-3, respectively, though particle numbers over 100,000 cm-3 may be an underestimation due to undercounting in the instrument. Inside each form of public transport, particle numbers would peak when stopping to collect passengers (doors opening) and decay with a half-life between 2 and 3 min. There was a weak correlation between particle concentration on bus, train and BTS and Skytrain with carbon monoxide concentration, as measured at a fixed location in the city.
Collapse
Affiliation(s)
- James C. Matthews
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Chalida Chompoobut
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - M. Anwar H. Khan
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Matthew D. Wright
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Mathuros Ruchirawat
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Dudley E. Shallcross
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7375, South Africa
| |
Collapse
|
6
|
Morales-Betancourt R, Wilches-Mogollon MA, Sarmiento OL, Mendez Molano D, Angulo D, Filigrana P, Arellana J, Guzman LA, Garzon G, Gouveia N, Levy P, Diez-Roux AV. Commuter's personal exposure to air pollutants after the implementation of a cable car for public transport: Results of the natural experiment TrUST. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:160880. [PMID: 36516922 PMCID: PMC7616957 DOI: 10.1016/j.scitotenv.2022.160880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Commuters in urban settlements are frequently exposed to high concentrations of air pollutants due to their proximity to mobile sources, making exposure to traffic-related air pollutants an important public health issue. Recent trends in urban transport towards zero- and low-tailpipe emission alternatives will likely result in decreased exposure to air pollutants. The TrUST (Urban transformations and health) study offers a unique opportunity to understand the impacts of a new cable car (TransMiCable) in underserved communities within Bogotá, Colombia. The aims of this study are to assess the personal exposure to fine particulate matter (PM2.5), equivalent Black Carbon (eBC), and Carbon Monoxide (CO) in transport micro-environments and to estimate the inhaled dose per trip during mandatory multimodal trips before and after the implementation of the TransMiCable. We collected personal exposure data for Bus-Rapid-Transit (BRT) feeder buses, regular buses, informal transport, pedestrians, and TransMiCable. TransMiCable showed lower exposure concentration compared to BRT feeder and regular buses (PM2.5: 23.6 vs. 87.0 μg m-3 (P ≤ 0.001) and eBC: 5.2 vs. 28.2 μg m-3 (P ≤ 0.001), respectively). The mean concentration of PM2.5 and eBC inside the TransMiCable cabins were 62 % and 82 % lower than the mean concentrations in buses. Furthermore, using a Monte Carlo simulation model, we found that including the TransMiCable as a feeder is related to a 54.4 μg/trip reduction in PM2.5 inhaled dose and 35.8 μg/trip in eBC per trip. Those changes represent a 27 % and 34 % reduction in an inhaled dose per trip, respectively. Our results show that PM2.5, eBC, and CO inhaled dose for TransMiCable users is reduced due to lower exposure concentration inside its cabins and shorter travel time. The implementation of a cable car in Bogotá is likely to reduce air pollution exposure in transport micro-environments used by vulnerable populations living in semi-informal settlements.
Collapse
Affiliation(s)
- Ricardo Morales-Betancourt
- Department of Civil and Environmental Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia.
| | - Maria A Wilches-Mogollon
- Department of Industrial Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Olga L Sarmiento
- School of Medicine, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Daniela Mendez Molano
- Department of Civil and Environmental Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia; Universidad Manuela Beltrán, Unidad de Ingenieria Ambiental, Cra. 1 #No. 60-00, Bogotá, Colombia
| | - Daniela Angulo
- Department of Industrial Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Paola Filigrana
- School of Medicine, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Julian Arellana
- Department of Civil and Environmental Engineering, College of Engineering, Universidad del Norte, Barranquilla, Colombia
| | - Luis A Guzman
- Department of Civil and Environmental Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Gabriela Garzon
- Department of Industrial Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Nelson Gouveia
- Department of Preventive Medicine, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Paul Levy
- School of Medicine, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Ana V Diez-Roux
- Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States; Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Gutierrez CT, Loizides C, Hafez I, Brostrøm A, Wolff H, Szarek J, Berthing T, Mortensen A, Jensen KA, Roursgaard M, Saber AT, Møller P, Biskos G, Vogel U. Acute phase response following pulmonary exposure to soluble and insoluble metal oxide nanomaterials in mice. Part Fibre Toxicol 2023; 20:4. [PMID: 36650530 PMCID: PMC9843849 DOI: 10.1186/s12989-023-00514-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Acute phase response (APR) is characterized by a change in concentration of different proteins, including C-reactive protein and serum amyloid A (SAA) that can be linked to both exposure to metal oxide nanomaterials and risk of cardiovascular diseases. In this study, we intratracheally exposed mice to ZnO, CuO, Al2O3, SnO2 and TiO2 and carbon black (Printex 90) nanomaterials with a wide range in phagolysosomal solubility. We subsequently assessed neutrophil numbers, protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, Saa3 and Saa1 mRNA levels in lung and liver tissue, respectively, and SAA3 and SAA1/2 in plasma. Endpoints were analyzed 1 and 28 days after exposure, including histopathology of lung and liver tissues. RESULTS All nanomaterials induced pulmonary inflammation after 1 day, and exposure to ZnO, CuO, SnO2, TiO2 and Printex 90 increased Saa3 mRNA levels in lungs and Saa1 mRNA levels in liver. Additionally, CuO, SnO2, TiO2 and Printex 90 increased plasma levels of SAA3 and SAA1/2. Acute phase response was predicted by deposited surface area for insoluble metal oxides, 1 and 28 days post-exposure. CONCLUSION Soluble and insoluble metal oxides induced dose-dependent APR with different time dependency. Neutrophil influx, Saa3 mRNA levels in lung tissue and plasma SAA3 levels correlated across all studied nanomaterials, suggesting that these endpoints can be used as biomarkers of acute phase response and cardiovascular disease risk following exposure to soluble and insoluble particles.
Collapse
Affiliation(s)
- Claudia Torero Gutierrez
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark ,grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Charis Loizides
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Iosif Hafez
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Anders Brostrøm
- grid.5170.30000 0001 2181 8870National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Copenhagen, Denmark
| | - Henrik Wolff
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Helsinki, Finland
| | - Józef Szarek
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Trine Berthing
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Alicja Mortensen
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Martin Roursgaard
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anne Thoustrup Saber
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - George Biskos
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus ,grid.5292.c0000 0001 2097 4740Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
8
|
Morales Betancourt R, Galvis B, Mendez-Molano D, Rincón-Riveros JM, Contreras Y, Montejo TA, Rojas-Neisa DR, Casas O. Toward Cleaner Transport Alternatives: Reduction in Exposure to Air Pollutants in a Mass Public Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7096-7106. [PMID: 35333524 DOI: 10.1021/acs.est.1c07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Commuters are often exposed to higher concentrations of air pollutants due to its proximity to mobile sources. Despite recent trends in urban transport toward zero- and low-tailpipe emission alternatives, the assessments of the impact of these transformations on commuter exposure are limited by the low frequency of such studies. In this work, we use a unique data set of personal exposure concentration measurements collected over the span of 5 years to analyze changes due to the introduction of a new fleet for Bogotá's Bus Rapid Transit System. In that system, over a thousand Euro-II and -III diesel-powered buses were replaced with Euro-VI compressed natural gas and filter-equipped Euro-V diesel buses. We measured personal exposure concentrations of equivalent black carbon (eBC), fine particulate (PM2.5), and ultra fine particles (UFP) during and after the retirement of old buses and the introduction of new ones. Observations collected prior to the fleet renewal were used as baseline and later compared to data collected over two follow-up campaigns in 2019 and 2020. Significant reductions in the concentration of PM2.5 and eBC were observed during the 2019 campaign, with a 48% decrease for mean in-bus eBC (89.9 to 46.4 μg m-3) and PM2.5 (180.7 to 95.4 μg m-3) concentrations. Further reductions were observed during the 2020 follow-up, when the fleet renovation was completed, with mean in-bus eBC decreasing to 17.7 μg m-3 and PM2.5 to 42.3 μg m-3. These observations imply nearly a 5-fold reduction in eBC exposure and a 4-fold decrease in PM2.5. There was a much smaller reduction of in-bus UFP concentration between 2019 and 2020, indicating a persistent presence of high particle number concentrations in the near-road environment despite the fleet renovation process. In-bus UFP concentrations ranged between 65 000 and 104 500 cm-3 during the follow-up campaigns. The results in this work illustrate the immediate benefits of reducing personal exposure through the adoption of vehicles with more stringent emission standards.
Collapse
Affiliation(s)
- Ricardo Morales Betancourt
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Boris Galvis
- Chemical Engineering Program, Universidad de la Salle Cra. 2 No. 10-70, Bogotá, Colombia 111711
| | - Daniela Mendez-Molano
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
- Universidad Manuela Beltrán, Bogotá, Colombia 110231
| | - Juan Manuel Rincón-Riveros
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Yadert Contreras
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Thalia Alejandra Montejo
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Diego Roberto Rojas-Neisa
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Oscar Casas
- Center of Innovation and Technology ICP, Ecopetrol, Piedecuesta, Colombia 110231
| |
Collapse
|
9
|
Møller P, Roursgaard M. Biomarkers of DNA Oxidation Products: Links to Exposure and Disease in Public Health Studies. Chem Res Toxicol 2021; 34:2235-2250. [PMID: 34704445 DOI: 10.1021/acs.chemrestox.1c00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposure can increase the production of reactive oxygen species and deplete cellular antioxidants in humans, resulting in oxidatively generated damage to DNA that is both a useful biomarker of oxidative stress and indicator of carcinogenic hazard. Methods of oxidatively damaged DNA analysis have been developed and used in public health research since the 1990s. Advanced techniques detect specific lesions, but they might not be applicable to complex matrixes (e.g., tissues), small sample volume, and large-scale studies. The most reliable methods are characterized by (1) detecting relevant DNA oxidation products (e.g., premutagenic lesions), (2) not harboring technical problems, (3) being applicable to complex biological mixtures, and (4) having the ability to process a large number of samples in a reasonable period of time. Most effort has been devoted to the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG), which can be analyzed by chromatographic, enzymic, and antibody-based methods. Results from validation trials have shown that certain chromatographic and enzymic assays (namely the comet assay) are superior techniques. The enzyme-modified comet assay has been popular because it is technically simpler than chromatographic assays. It is widely used in public health studies on environmental exposures such as outdoor air pollution. Validated biomarker assays on oxidatively damaged DNA have been used to fill knowledge gaps between findings in prospective cohort studies and hazards from contemporary sources of air pollution exposures. Results from each of these research fields feed into public health research as approaches to conduct primary prevention of diseases caused by environmental or occupational agents.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
10
|
Particulate Matter Exposures under Five Different Transportation Modes during Spring Festival Travel Rush in China. Processes (Basel) 2021. [DOI: 10.3390/pr9071133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Serious traffic-related pollution and high population density during the spring festival (Chinese new year) travel rush (SFTR) increases the travelers’ exposure risk to pollutants and biohazards. This study investigates personal exposure to particulate matter (PM) mass concentration when commuting in five transportation modes during and after the 2020 SFTR: China railway high-speed train (CRH train), subway, bus, car, and walking. The routes are selected between Nanjing and Xuzhou, two major transportation hubs in the Yangtze Delta. The results indicate that personal exposure levels to PM on the CRH train are the lowest and relatively stable, and so it is recommended to take the CRH train back home during the SFTR to reduce the personal PM exposure. The exposure level to PM2.5 during SFTR is twice as high as the average level of Asia, and it is higher than the WHO air quality guideline (AQG).
Collapse
|
11
|
Font A, Tremper AH, Lin C, Priestman M, Marsh D, Woods M, Heal MR, Green DC. Air quality in enclosed railway stations: Quantifying the impact of diesel trains through deployment of multi-site measurement and random forest modelling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114284. [PMID: 32443191 DOI: 10.1016/j.envpol.2020.114284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Concentrations of the air pollutants (NO2 and particulate matter) were measured for several months and at multiple locations inside and outside two enclosed railway stations in the United Kingdom - Edinburgh Waverly (EDB) and London King's Cross (KGX) - which, respectively, had at the time 59% and 18% of their train services powered by diesel engines. Average concentrations of NO2 were above the 40 μg m-3 annual limit value outside the stations and were further elevated inside, especially at EDB. Concentrations of PM2.5 inside the stations were 30-40% higher at EDB than outside and up to 20% higher at KGX. Concentrations of both NO2 and PM2.5 were highest closer to the platforms, especially those with a higher frequency of diesel services. A random-forest regression model was used to quantify the impact of numbers of different types of diesel trains on measured concentrations allowing prediction of the impact of individual diesel-powered rolling stock.
Collapse
Affiliation(s)
- Anna Font
- MRC PHE Centre for Environment and Health, King's College London, 150 Stamford St, London, SE1 9NH, UK.
| | - Anja H Tremper
- MRC PHE Centre for Environment and Health, King's College London, 150 Stamford St, London, SE1 9NH, UK
| | - Chun Lin
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Max Priestman
- MRC PHE Centre for Environment and Health, King's College London, 150 Stamford St, London, SE1 9NH, UK
| | - Daniel Marsh
- MRC PHE Centre for Environment and Health, King's College London, 150 Stamford St, London, SE1 9NH, UK
| | - Michael Woods
- RSSB, The Helicon, 1 South Place, London, EC2M 2RB, UK
| | - Mathew R Heal
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - David C Green
- MRC PHE Centre for Environment and Health, King's College London, 150 Stamford St, London, SE1 9NH, UK
| |
Collapse
|
12
|
Sauvé JF, Stapleton EM, O’Shaughnessy PT, Locke SJ, Josse PR, Altmaier RW, Silverman DT, Liu D, Albert PS, Beane Freeman LE, Hofmann JN, Thorne PS, Jones RR, Friesen MC. Diesel Exhaust Exposure during Farming Activities: Statistical Modeling of Continuous Black Carbon Concentrations. Ann Work Expo Health 2020; 64:503-513. [PMID: 32219300 PMCID: PMC7313260 DOI: 10.1093/annweh/wxaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Daily driving of diesel-powered tractors has been linked to increased lung cancer risk in farmers, yet few studies have quantified exposure levels to diesel exhaust during tractor driving or during other farm activities. We expanded an earlier task-based descriptive investigation of factors associated with real-time exposure levels to black carbon (BC, a surrogate of diesel exhaust) in Iowa farmers by increasing the sample size, collecting repeated measurements, and applying statistical models adapted to continuous measurements. METHODS The expanded study added 43 days of sampling, for a total of 63 sample days conducted in 2015 and 2016 on 31 Iowa farmers. Real-time, continuous monitoring (30-s intervals) of personal BC concentrations was performed using a MicroAeth AE51 microaethelometer affixed with a micro-cyclone. A field researcher recorded information on tasks, fuel type, farmer location, and proximity to burning biomass. We evaluated the influence of these variables on log-transformed BC concentrations using a linear mixed-effect model with random effects for farmer and day and a first-order autoregressive structure for within-day correlation. RESULTS Proximity to diesel-powered equipment was observed for 42.5% of the overall sampling time and on 61 of the 63 sample days. Predicted geometric mean BC concentrations were highest during grain bin work, loading, and harvesting, and lower for soil preparation and planting. A 68% increase in BC concentrations was predicted for close proximity to a diesel-powered vehicle, relative to far proximity, while BC concentrations were 44% higher in diesel vehicles with open cabins compared with closed cabins. Task, farmer location, fuel type, and proximity to burning biomass explained 8% of within-day variance in BC concentrations, 2% of between-day variance, and no between-farmer variance. CONCLUSION Our findings showed that farmers worked frequently near diesel equipment and that BC concentrations varied between tasks and by fuel type, farmer location, and proximity to burning biomass. These results could support the development of exposure models applicable to investigations of health effects in farmers associated with exposure to diesel engine exhaust.
Collapse
Affiliation(s)
- Jean-François Sauvé
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Emma M Stapleton
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Patrick T O’Shaughnessy
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Sarah J Locke
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Pabitra R Josse
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ralph W Altmaier
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Danping Liu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Paul S Albert
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Melissa C Friesen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
13
|
Møller P, Scholten RH, Roursgaard M, Krais AM. Inflammation, oxidative stress and genotoxicity responses to biodiesel emissions in cultured mammalian cells and animals. Crit Rev Toxicol 2020; 50:383-401. [PMID: 32543270 DOI: 10.1080/10408444.2020.1762541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biodiesel fuels are alternatives to petrodiesel, especially in the transport sector where they have lower carbon footprint. Notwithstanding the environmental benefit, biodiesel fuels may have other toxicological properties than petrodiesel. Particulate matter (PM) from petrodiesel causes cancer in the lung as a consequence of delivery of genotoxic polycyclic aromatic hydrocarbons, oxidative stress and inflammation. We have reviewed articles from 2002 to 2019 (50% of the articles since 2015) that have described toxicological effects in terms of genotoxicity, oxidative stress and inflammation of biodiesel exhaust exposure in humans, animals and cell cultures. The studies have assessed first generation biodiesel from different feedstock (e.g. rapeseed and soy), certain second generation fuels (e.g. waste oil), and hydrogenated vegetable oil. It is not possible to rank the potency of toxicological effects of specific biodiesel fuels. However, exposure to biodiesel exhaust causes oxidative stress, inflammation and genotoxicity in cell cultures. Three studies in animals have not indicated genotoxicity in lung tissue. The database on oxidative stress and inflammation in animal studies is larger (13 studies); ten studies have reported increased levels of oxidative stress biomarkers or inflammation, although the effects have been modest in most studies. The cell culture and animal studies have not consistently shown a different potency in effect between biodiesel and petrodiesel exhausts. Both increased and decreased potency have been reported, which might be due to differences in feedstock or combustion conditions. In conclusion, combustion products from biodiesel and petrodiesel fuel may evoke similar toxicological effects on genotoxicity, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Hadrup N, Zhernovkov V, Jacobsen NR, Voss C, Strunz M, Ansari M, Schiller HB, Halappanavar S, Poulsen SS, Kholodenko B, Stoeger T, Saber AT, Vogel U. Acute Phase Response as a Biological Mechanism-of-Action of (Nano)particle-Induced Cardiovascular Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907476. [PMID: 32227434 DOI: 10.1002/smll.201907476] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/15/2023]
Abstract
Inhaled nanoparticles constitute a potential health hazard due to their size-dependent lung deposition and large surface to mass ratio. Exposure to high levels contributes to the risk of developing respiratory and cardiovascular diseases, as well as of lung cancer. Particle-induced acute phase response may be an important mechanism of action of particle-induced cardiovascular disease. Here, the authors review new important scientific evidence showing causal relationships between inhalation of particle and nanomaterials, induction of acute phase response, and risk of cardiovascular disease. Particle-induced acute phase response provides a means for risk assessment of particle-induced cardiovascular disease and underscores cardiovascular disease as an occupational disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Carola Voss
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Boris Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
- DTU Health, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
15
|
Ma Y, Bellini N, Scholten RH, Andersen MHG, Vogel U, Saber AT, Loft S, Møller P, Roursgaard M. Effect of combustion-derived particles on genotoxicity and telomere length: A study on human cells and exposed populations. Toxicol Lett 2020; 322:20-31. [PMID: 31923465 DOI: 10.1016/j.toxlet.2020.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/15/2022]
Abstract
Particulate matter (PM) from combustion processes has been associated with oxidative stress to DNA, whereas effects related to telomere dysfunction are less investigated. We collected air-borne PM from a passenger cabin of a diesel-propelled train and at a training facility for smoke diving exercises. Effects on oxidative stress biomarkers, genotoxicity measured by the comet assay and telomere length in PM-exposed A549 cells were compared with the genotoxicity and telomere length in peripheral blood mononuclear cells (PBMCs) from human volunteers exposed to the same aerosol source. Although elevated levels of DNA strand breaks and oxidatively damaged DNA in terms of Fpg-sensitive sites were observed in PBMCs from exposed humans, the PM collected at same locations did not cause genotoxicity in the comet assay in A549 cells. Nevertheless, A549 cells displayed telomere length shortening after four weeks exposure to PM. This is in line with slightly shorter telomere length in PBMCs from exposed humans, although it was not statistically significant. In conclusion, the results indicate that genotoxic potency measured by the comet assay of PM in A549 cells may not predict genotoxicity in exposed humans, whereas telomere length measurements may be a novel indicator of genotoxic stress in cell cultures and humans.
Collapse
Affiliation(s)
- Yanying Ma
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Nicoletta Bellini
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen Ø, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen Ø, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen Ø, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark.
| |
Collapse
|
16
|
Andersen MHG, Frederiksen M, Saber AT, Wils RS, Fonseca AS, Koponen IK, Johannesson S, Roursgaard M, Loft S, Møller P, Vogel U. Health effects of exposure to diesel exhaust in diesel-powered trains. Part Fibre Toxicol 2019; 16:21. [PMID: 31182122 PMCID: PMC6558821 DOI: 10.1186/s12989-019-0306-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short-term controlled exposure to diesel exhaust (DE) in chamber studies have shown mixed results on lung and systemic effects. There is a paucity of studies on well-characterized real-life DE exposure in humans. In the present study, 29 healthy volunteers were exposed to DE while sitting as passengers in diesel-powered trains. Exposure in electric trains was used as control scenario. Each train scenario consisted of three consecutive days (6 h/day) ending with biomarker samplings. RESULTS Combustion-derived air pollutants were considerably higher in the passenger carriages of diesel trains compared with electric trains. The concentrations of black carbon and ultrafine particles were 8.5 μg/m3 and 1.2-1.8 × 105 particles/cm3 higher, respectively, in diesel as compared to electric trains. Net increases of NOx and NO2 concentrations were 317 μg/m3 and 36 μg/m3. Exposure to DE was associated with reduced lung function and increased levels of DNA strand breaks in peripheral blood mononuclear cells (PBMCs), whereas there were unaltered levels of oxidatively damaged DNA, soluble cell adhesion molecules, acute phase proteins in blood and urinary excretion of metabolites of polycyclic aromatic hydrocarbons. Also the microvascular function was unaltered. An increase in the low frequency of heart rate variability measures was observed, whereas time-domain measures were unaltered. CONCLUSION Exposure to DE inside diesel-powered trains for 3 days was associated with reduced lung function and systemic effects in terms of altered heart rate variability and increased levels of DNA strand breaks in PBMCs compared with electric trains. TRIAL REGISTRATION ClinicalTrials.Gov ( NCT03104387 ). Registered on March 23rd 2017.
Collapse
Affiliation(s)
- Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark. .,The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark.
| | - Marie Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.,The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Ana Sofia Fonseca
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Ismo K Koponen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Sandra Johannesson
- Department of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark.,DTU Health Tech., Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|