1
|
Chen J, Wang R, Wang C, Wang P, Gao H, Hu Y, Nie Q, Zhang S. Enhanced microbial degradation of hexabromocyclododecane in riparian sediments through regulating flooding regimes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137406. [PMID: 40098214 DOI: 10.1016/j.jhazmat.2025.137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Hexabromocyclododecane (HBCD), a persistent halogenated organic pollutant, has been commonly detected in river sediments, especially in riparian zones, but strategies for promoting its microbial degradation remain insufficiently explored. This study hypothesized that regulating the flooding regime of sediments could accelerate microbial degradation of HBCD in riparian zones and evaluated the underlying mechanisms. Results showed that, compared with high-frequency flooding-drying or no alternations, the low-frequency flooding-drying alternation (6 weeks of flooding and 6 weeks of drying, 6F:6D) significantly promoted microbial degradation of HBCD. This may be due to changes in sediment redox potential under the 6F:6D regime, facilitating the sequential reductive debromination and aerobic degradation process of HBCD. The abundances of organohalide-respiring bacteria (Dehalococcoides spp. and Dehalogenimonas spp.) were always high in the 6F:6D regime, irrespective of flooding or drying periods. Furthermore, the complex bacterial co-occurrence patterns, specific ecological clusters, and potential keystone species including the genera Methylibium, Nitrospira, and Dehalococcoides, may play important degradative roles of HBCD in the 6F:6D regime. Overall, microbial degradation of HBCD can be promoted under low-frequency flooding-drying alternation regulated by hydraulic structures, providing an effective and eco-friendly strategy for ecological restoration.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Qihao Nie
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shunqing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
2
|
Zhang JX, Wei TT, Min D, Lv JL, Liu DF, Chen JJ, Yu YY, Yu HQ. Deciphering unique enzymatic pathways in sulfonamide biotransformation by direct ammonia oxidizer Alcaligenes ammonioxydans HO-1. WATER RESEARCH 2025; 273:123045. [PMID: 39733530 DOI: 10.1016/j.watres.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Heterotrophic nitrification, similar to autotrophic nitrification, involves key enzymes and reactive nitrogen intermediates during ammonia oxidation, which may influence antibiotic transformation. However, the interference between antibiotic transformation products from ammonia oxidation and secondary metabolites in heterotrophic nitrifiers makes antibiotic transformation pathways more complicated. In this work, we observe that the heterotrophic nitrifier Alcaligenes ammonioxydans HO-1 can effectively convert sulfonamide antibiotics. Product analysis reveals the impacts of carbon and nitrogen concentrations as well as their ratio on the biotransformation of sulfamethazine (SMZ). The dnfABC gene cluster is identified as essential for mediating SMZ conversion. In vitro enzymatic activity reconstruction further confirms that DnfA exhibits N-oxygenase activity and can catalyze the conversion of various aryl-amines into aryl-nitro compounds. The results of this work not only expand our understanding of the functions of heterotrophic nitrifiers, but also provide a theoretical basis for developing efficient biotechnologies for treating antibiotics.
Collapse
Affiliation(s)
- Jia-Xin Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Ting-Ting Wei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Jun-Lu Lv
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Yang Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Zhao J, Huang Y, Hu S, Chen Z, Chen B, Qi W, Wang L, Liu H. Impact of adaptation time on lincomycin removal in riverbank filtration: A long-term sand column study. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136950. [PMID: 39731892 DOI: 10.1016/j.jhazmat.2024.136950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties. Additionally, microbial community shifts after 400 d of lincomycin exposure were studied to understand the underlying mechanisms. We found that the removal efficiencies of 24 OMPs, including lincomycin and fluconazole, improved by 3-77 % over 82 d while being positively correlated with the presence of tertiary amides and secondary sulfonamides. Lincomycin removal efficiency rose from 20 % to 95 % over 68 days and stayed high. We identified eight potential degradation products of lincomycin, occurring primarily via hydroxylation, N-demethylation, and amide hydrolysis. Additionally, lincomycin notably increased the abundances of specific antibiotic-resistant bacteria (e.g., Thiobacillus, 8.3-fold) and ammonia-oxidizing archaea (e.g., Nitrososphaera, 46.8-fold). The β-lactam resistance gene in Thiobacillus and the amoA gene in Nitrososphaera may enhance lincomycin's removal by promoting its hydrolysis and hydroxylation. Overall, this study provides insights into OMP biodegradation mechanisms and the impact of ng/L levels of lincomycin on microbial communities.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yangrui Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhanyan Chen
- Kweichow Moutai Distillery Co., Ltd, Zunyi 564501, China
| | - Bi Chen
- Kweichow Moutai Distillery Co., Ltd, Zunyi 564501, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Li Wang
- Kweichow Moutai Distillery Co., Ltd, Zunyi 564501, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Seller-Brison C, Brison A, Yu Y, Robinson SL, Fenner K. Adaptation towards catabolic biodegradation of trace organic contaminants in activated sludge. WATER RESEARCH 2024; 266:122431. [PMID: 39298898 DOI: 10.1016/j.watres.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Trace organic contaminants (TrOCs) are omnipresent in wastewater treatment plants (WWTPs), yet, their removal during wastewater treatment is oftentimes incomplete and underlying biotransformation mechanisms are not fully understood. In this study, we elucidate how different factors, including pre-exposure levels and duration, influence microbial adaptation towards catabolic TrOC biodegradation and its potential role in biological wastewater treatment. Four sequencing batch reactors (SBRs) were operated in parallel in three succeeding phases, adding and removing a selection of 26 TrOCs at different concentration levels. After each phase of SBR operation, a series of batch experiments was conducted to monitor biotransformation kinetics of those same TrOCs across various spike concentrations. For half of our test TrOCs, we detected increased biotransformation in sludge pre-exposed to TrOC concentrations ≥5 µg L-1 over a 30-day period, with most significant differences observed for the insect repellent DEET and the artificial sweetener saccharin. Accordingly, 16S rRNA amplicon sequencing revealed enrichment of taxa that have previously been linked to catabolic biodegradation of several test TrOCs, e.g., Bosea sp. and Shinella sp. for acesulfame degradation, and Pseudomonas sp. for caffeine, cyclamate, DEET, metformin, paracetamol, and isoproturon degradation. We further conducted shotgun metagenomics to query for gene products previously reported to be involved in the TrOCs' biodegradation pathways. In the future, directed microbial adaptation may be a solution to improve bioremediation of TrOCs in contaminated environments or in WWTPs.
Collapse
Affiliation(s)
- Carolin Seller-Brison
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
| | - Antoine Brison
- Department of Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Yaochun Yu
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland; Department of Chemistry, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
5
|
Martin JD, Tisler S, Scheel M, Svendsen S, Anwar MZ, Zervas A, Ekelund F, Bester K, Hansen LH, Jacobsen CS, Ellegaard-Jensen L. Total RNA analysis of the active microbiome on moving bed biofilm reactor carriers under incrementally increasing micropollutant concentrations. FEMS Microbiol Ecol 2024; 100:fiae098. [PMID: 38986504 PMCID: PMC11385203 DOI: 10.1093/femsec/fiae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Micropollutants are increasingly prevalent in the aquatic environment. A major part of these originates from wastewater treatment plants since traditional treatment technologies do not remove micropollutants sufficiently. Moving bed biofilm reactors (MBBRs), however, have been shown to aid in micropollutant removal when applied to conventional wastewater treatment as a polishing step. Here, we used Total RNA sequencing to investigate both the active microbial community and functional dynamics of MBBR biofilms when these were exposed to increasing micropollutant concentrations over time. Concurrently, we conducted batch culture experiments using biofilm carriers from the MBBRs to assess micropollutant degradation potential. Our study showed that biofilm eukaryotes, in particular protozoa, were negatively influenced by micropollutant exposure, in contrast to prokaryotes that increased in relative abundance. Further, we found several functional genes that were differentially expressed between the MBBR with added micropollutants and the control. These include genes involved in aromatic and xenobiotic compound degradation. Moreover, the biofilm carrier batch experiment showed vastly different alterations in benzotriazole and diclofenac degradation following the increased micropollutant concentrations in the MBBR. Ultimately, this study provides essential insights into the microbial community and functional dynamics of MBBRs and how an increased load of micropollutants influences these dynamics.
Collapse
Affiliation(s)
- Joseph Donald Martin
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark, Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Selina Tisler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Maria Scheel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Sif Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- The Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, 8888 University Dr. W, Burnaby, BC V5A 1S6, Canada
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Flemming Ekelund
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark, Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
6
|
Jin D, Zhang X, Zhang X, Zhou L, Zhu Z, Deogratias UK, Wu Z, Zhang K, Ji X, Ju T, Zhu X, Gao B, Ji L, Zhao R, Ruth G, Wu P. A critical review of comammox and synergistic nitrogen removal coupling anammox: Mechanisms and regulatory strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174855. [PMID: 39034010 DOI: 10.1016/j.scitotenv.2024.174855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Nitrification is highly crucial for both anammox systems and the global nitrogen cycle. The discovery of complete ammonia oxidation (comammox) challenges the inherent concept of nitrification as a two-step process. Its wide distribution, adaptability to low substrate environments, low sludge production, and low greenhouse gas emissions may make it a promising new nitrogen removal treatment process. Meanwhile, anammox technology is considered the most suitable process for future wastewater treatment. The diverse metabolic capabilities and similar ecological niches of comammox bacteria and anammox bacteria are expected to achieve synergistic nitrogen removal within a single system. However, previous studies have overlooked the existence of comammox, and it is necessary to re-evaluate the conclusions drawn. This paper outlined the ecophysiological characteristics of comammox bacteria and summarized the environmental factors affecting their growth. Furthermore, it focused on the enrichment, regulatory strategies, and nitrogen removal mechanisms of comammox and anammox, with a comparative analysis of hydroxylamine, a particular intermediate product. Overall, this is the first critical overview of the conclusions drawn from the last few years of research on comammox-anammox, highlighting possible next steps for research.
Collapse
Affiliation(s)
- Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ufoymungu Kisa Deogratias
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xurui Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Bo Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Luomiao Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Guerra Ruth
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| |
Collapse
|
7
|
Yu Y, Trottmann NF, Schärer MR, Fenner K, Robinson SL. Substrate promiscuity of xenobiotic-transforming hydrolases from stream biofilms impacted by treated wastewater. WATER RESEARCH 2024; 256:121593. [PMID: 38631239 DOI: 10.1016/j.watres.2024.121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Organic contaminants enter aquatic ecosystems from various sources, including wastewater treatment plant effluent. Freshwater biofilms play a major role in the removal of organic contaminants from receiving water bodies, but knowledge of the molecular mechanisms driving contaminant biotransformations in complex stream biofilm (periphyton) communities remains limited. Previously, we demonstrated that biofilms in experimental flume systems grown at higher ratios of treated wastewater (WW) to stream water displayed an increased biotransformation potential for a number of organic contaminants. We identified a positive correlation between WW percentage and biofilm biotransformation rates for the widely-used insect repellent, N,N-diethyl-meta-toluamide (DEET) and a number of other wastewater-borne contaminants with hydrolyzable moieties. Here, we conducted deep shotgun sequencing of flume biofilms and identified a positive correlation between WW percentage and metagenomic read abundances of DEET hydrolase (DH) homologs. To test the causality of this association, we constructed a targeted metagenomic library of DH homologs from flume biofilms. We screened our complete metagenomic library for activity with four different substrates, including DEET, and a subset thereof with 183 WW-related organic compounds. The majority of active hydrolases in the metagenomic library preferred aliphatic and aromatic ester substrates while, remarkably, only a single reference enzyme was capable of DEET hydrolysis. Of the 626 total enzyme-substrate combinations tested, approximately 5% were active enzyme-substrate pairs. Metagenomic DH family homologs revealed a broad substrate promiscuity spanning 22 different compounds when summed across all enzymes tested. We biochemically characterized the most promiscuous and active enzymes identified based on metagenomic analysis from uncultivated Rhodospirillaceae and Planctomycetaceae. In addition to characterizing new DH family enzymes, we exemplified a framework for linking metagenome-guided hypothesis generation with experimental validation. Overall, this study expands the scope of known enzymatic contaminant biotransformations for metagenomic hydrolases from WW-receiving stream biofilm communities.
Collapse
Affiliation(s)
- Yaochun Yu
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Niklas Ferenc Trottmann
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Milo R Schärer
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Serina L Robinson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
| |
Collapse
|
8
|
Guo Z, Ma XS, Ni SQ. Journey of the swift nitrogen transformation: Unveiling comammox from discovery to deep understanding. CHEMOSPHERE 2024; 358:142093. [PMID: 38679176 DOI: 10.1016/j.chemosphere.2024.142093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
COMplete AMMonia OXidizer (comammox) refers to microorganisms that have the function of oxidizing NH4+ to NO3- alone. The discovery of comammox overturned the two-step theory of nitrification in the past century and triggered many important scientific questions about the nitrogen cycle in nature. This comprehensive review delves into the origin and discovery of comammox, providing a detailed account of its detection primers, clades metabolic variations, and environmental factors. An in-depth analysis of the ecological niche differentiation among ammonia oxidizers was also discussed. The intricate role of comammox in anammox systems and the relationship between comammox and nitrogen compound emissions are also discussed. Finally, the relationship between comammox and anammox is displayed, and the future research direction of comammox is prospected. This review reveals the metabolic characteristics and distribution patterns of comammox in ecosystems, providing new perspectives for understanding nitrogen cycling and microbial ecology. Additionally, it offers insights into the potential application value and prospects of comammox.
Collapse
Affiliation(s)
- Zheng Guo
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Xue Song Ma
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China.
| |
Collapse
|
9
|
Ren Z, Li D, Zhang Z, Sun W, Liu G. Enhancing the relative abundance of comammox nitrospira in ammonia oxidizer community decreases N 2O emission in nitrification exponentially. CHEMOSPHERE 2024; 356:141883. [PMID: 38583528 DOI: 10.1016/j.chemosphere.2024.141883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Comammox Nitrospira and canonical ammonia-oxidizing bacteria (cAOB) generally coexist in activated sludge. In present study, the effect of comammox Nitrospira on N2O production during nitrification of activated sludge was investigated. Comammox Nitrospira and cAOB were separately enriched in two nitrifying reactors, with respective relative abundance of approximately 98% in ammonia oxidizer community. The N2O emission factor (EF) of nitrification in comammox Nitrospira dominated reactor was 0.35%, consistently lower than that (2.2%) in cAOB dominated reactor. When increasing the relative abundance of comammox Nitrospira in ammonia oxidizer community, the N2O EF of nitrification decreased exponentially, which suggested that comammox Nitrospira not only decreased N2O production directly but also might have reduced N2O yield by cAOB. When cAOB dominated the ammonia oxidizer community of sludge, decreasing pH to 6.3, lowering DO to less than 0.5 mg/L, and increasing nitrite concentration enhanced N2O EF dramatically. When comammox Nitrospira became the dominant ammonia oxidizer, however, the N2O EF correlated to nitrite insignificantly and a low DO of 0.2 mg/L and weakly acidic pH (6.3) decreased N2O EF by approximately 70% and 60%, respectively. These results imply that enhancing the relative abundance of comammox Nitrospira in sludge is an effective way to reducing N2O emissions and can also offset the promoting effects of acidic pH, low DO, and high nitrite concentration on N2O production during nitrification.
Collapse
Affiliation(s)
- Zhichang Ren
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Deyong Li
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhuang Zhang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Guoqiang Liu
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
10
|
Li M, Luan Y, Qin Z, Lu D. Startup of a large height-diameter ratio bioreactor by alternate feeding: performance of partial nitrification and enrichment of ammonia-oxidizing bacteria (AOB). ENVIRONMENTAL TECHNOLOGY 2024; 45:2171-2179. [PMID: 36602056 DOI: 10.1080/09593330.2023.2165458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In order to solve the complicated control of dissolved oxygen (DO) for partial nitrification in bioreactors treating high NH 4 + - N wastewater, a large height-diameter ratio anammox pre-reactor system was developed. And in this reactor, NO 2 - - N accumulation rate can reach 85.76% by alternate feeding with high NH 4 + - N wastewater (150 mg NH 4 + - N / L ) and low NH 4 + - N wastewater (50 mg c) with low DO (0.19 mg/L-0.62 mg/L). Based on 16S rRNA identification technology, it was found that Nitrosomonas had a significant effect on NH 4 + - N oxidization in this study. And when the reactor treated higher concentration wastewater (250 mg NH 4 + - N / L ), the growth rate of Nitrosomonas was higher than that of Nitrospira (nitrite-oxidizing bacteria, NOB), which was conducive to improving the NO 2 - - N accumulation rate and realizing partial nitrification stably. It was also found that the material exchange frequency of the microbial flora during alternate feeding with different NH 4 + - N concentration wastewaters was higher than that during feeding with higher NH 4 + - N concentration wastewater (250 mg/L) by Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolism pathways analysis. This study can provide valuable insights and lay the foundation for building anammox pre-reactors.
Collapse
Affiliation(s)
- Ming Li
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Yongqing Luan
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
| | - Zhe Qin
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
| | - Da Lu
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
11
|
Chen J, Zhang J, Wang C, Wang P, Gao H, Zhang B, Feng B. Nitrate input inhibited the biodegradation of erythromycin through affecting bacterial network modules and keystone species in lake sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120530. [PMID: 38452622 DOI: 10.1016/j.jenvman.2024.120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic contamination and excessive nitrate loads are generally concurrent in aquatic ecosystems. However, little is known about the effects of nitrate input on the biodegradation of antibiotics. In this study, the effects of nitrate input on microbial degradation of erythromycin, a typical macrolide antibiotic widely detected in lake sediments, were investigated. The results showed that the nitrate input significantly inhibited the erythromycin removal and such an inhibitory effect was strengthened with the increased input dosages. Nitrate input significantly increased sediment nitrite concentration, indicating enhanced denitrification under high nitrate pressure. Bacterial network module and keystone species analysis showed that nitrate input enriched the keystone species involved in denitrification (e.g., Simplicispira and Denitratisoma). In contrast, some potential erythromycin-degrading bacteria (e.g., Desulfatiglandales, Pseudomonadales, Nitrospira) were inhibited by nitrate input. The variations in dominant bacterial groups implied competition between denitrification and erythromycin degradation in response to nitrate input. Based on the partial least squares path modeling analysis, keystone species (total effect: 0.419) and bacterial module (total effect: 0.403) showed strong association with erythromycin removal percentage. This indicated that the inhibitory effect of nitrate input on erythromycin degradation was mainly explained by bacterial network modules and keystone species. These findings will help us to assess the bioremediation potential of antibiotic-contaminated sediments suffering from excessive nitrogen discharge concurrently.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
12
|
Nguyen Quoc B, Peng B, De Clippeleir H, Winkler MKH. Case study: Bioaugmenting the comammox dominated biomass from B-stage to enhance nitrification in A-stage at Blue Plains AWWTP. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11005. [PMID: 38407520 DOI: 10.1002/wer.11005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
A comprehensive case study was undertaken at the Blue Plains wastewater treatment plant (WWTP) to explore the bioaugmentation technique of introducing nitrifying sludge into the non-nitrifying stage over the course of two operational years. This innovative approach involved the return of waste activated sludge (WAS) from the biological nutrient removal (BNR) system to enhance the nitrification in the high carbon removal rate system. The complete ammonia oxidizer (comammox) Nitrospira Nitrosa was identified as the main nitrifier in the system. Bioaugmentation was shown to be successful as nitrifiers returned from BNR were able to increase the nitrifying activity of the high carbon removal rate system. There was a positive correlation between returned sludge from the BNR stage and the specific total kjeldahl nitrogen (TKN) removal rate in A stage. The bioaugmentation process resulted in a remarkable threefold increase in the specific TKN removal rate within the A stage. Result suggested that recycling of WAS is a simple technique to bio-augment a low SRT system with nitrifiers and add ammonia oxidation to a previously non-nitrifying stage. The results from this case study hold the potential for applicable implications for other WWTPs that have a similar operational scheme to Blue Plains, allowing them to reuse WAS from the B stage, previously considered waste, to enhance nitrification and thus improving overall nitrogen removal performance. PRACTITIONER POINTS: Comammox identifying as main nitrifier in the B stage. Comammox enriched sludge from B stage successfully bio-augmented the East side of A stage up to threefold. Bioaugmentation of comammox in the West side of A stage was potentially inhibited by the gravity thickened overflow. Sludge returned from B stage to A stage can improve nitrification with a very minor retrofits and short startup times.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Bo Peng
- DC Water and Sewer Authority, Washington, District of Columbia, USA
| | | | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Han P, Rios-Miguel AB, Tang X, Yu Y, Zhou LJ, Hou L, Liu M, Sun D, Jetten MSM, Welte CU, Men Y, Lücker S. Benzimidazole fungicide biotransformation by comammox Nitrospira bacteria: Transformation pathways and associated proteomic responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130558. [PMID: 36495641 DOI: 10.1016/j.jhazmat.2022.130558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e., benzimidazole, albendazole, carbendazim, fuberidazole, and thiabendazole). Ammonia-oxidizing bacteria and archaea, as well as the canonical nitrite-oxidizing Nitrospira exhibited no or minor biotransformation activity towards all the five benzimidazole fungicides. In contrast, the investigated comammox bacteria actively transformed all the five benzimidazole fungicides, except for thiabendazole. The identified transformation products indicated hydroxylation, S-oxidation, and glycosylation as the major biotransformation pathways of benzimidazole fungicides. We speculated that these reactions were catalyzed by comammox-specific ammonia monooxygenase, cytochrome P450 monooxygenases, and glycosylases, respectively. Interestingly, the exposure to albendazole enhanced the expression of the antibiotic resistance gene acrB of Nitrospira inopinata, suggesting that some benzimidazole fungicides could act as environmental stressors that trigger cellular defense mechanisms. Altogether, this study demonstrated the distinct substrate specificity of comammox bacteria towards benzimidazole fungicides and implies their significant roles in the biotransformation of these fungicides in nitrifying environments.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Ana B Rios-Miguel
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| |
Collapse
|
14
|
Su Q, Huang S, Zhang H, Wei Z, Ng HY. Abiotic transformations of sulfamethoxazole by hydroxylamine, nitrite and nitric oxide during wastewater treatment: Kinetics, mechanisms and pH effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130328. [PMID: 36402107 DOI: 10.1016/j.jhazmat.2022.130328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Hydroxylamine (NH2OH), nitrite (NO2-) and nitric oxide (NO), intermediates enzymatically formed during biological nitrogen removal processes, can engage in chemical (abiotic) transformations of antibiotics. This study determined the kinetics, mechanisms and pathways of abiotic transformations of the antibiotic sulfamethoxazole (SMX) by NH2OH, NO2- and NO in a series of batch tests under different pH and oxygen conditions. While NH2OH was not able to directly transform SMX, NO2- (with HNO2 as the actual reactant) and NO can chemically transform SMX primarily through hydroxylation, nitration, deamination, nitrosation, cleavage of S-N, N-C and C-S bonds, and coupling reactions. There were substantial overlaps in transformation product formations during abiotic transformations by HNO2- and NO. The second order rate constants of SMX with NO2- and NO were determined in the range of 1.5 × 10-1 - 4.8 × 103 M-1 s-1 and 1.0 × 102 - 3.1 × 104 M-1 s-1, respectively, under varying pH (4 - 9) and anoxic or oxic conditions. Acidic pH significantly enhanced abiotic transformation kinetics, and facilitated nitration, nitrosation, and cleavage of S-N and N-C bonds. The findings advance our understanding of the fate of antibiotics during biological nitrogen removal, and highlight the role of enzymatically formed reactive nitrogen species in the antibiotic degradation.
Collapse
Affiliation(s)
- Qingxian Su
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
15
|
Costa RM, Matos E Chaib VR, Domingues AG, Rubio KTS, Martucci MEP. Untargeted Metabolomics Reveals Lipid Impairment in the Liver of Adult Zebrafish (Danio rerio) Exposed to Carbendazim. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:437-448. [PMID: 36484755 DOI: 10.1002/etc.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Carbendazim is a systemic fungicide used in several countries, particularly in Brazil. However, studies suggest that it is related to the promotion of tumors, endocrine disruption, and toxicity to organisms, among other effects. As a result, carbendazim is not allowed in the United States, Australia, and some European Union countries. Therefore, further studies are necessary to evaluate its effects, and zebrafish is a model routinely used to provide relevant information regarding the acute and long-term effects of xenobiotics. In this way, zebrafish water tank samples (water samples from aquari containing zebrafish) and liver samples from animals exposed to carbendazim at a concentration of 120 μg/L were analyzed by liquid chromatography coupled to high-resolution mass spectrometry, followed by multivariate and univariate statistical analyses, using the metabolomics approach. Our results suggest impairment of lipid metabolism with a consequent increase in intrahepatic lipids and endocrine disruption. Furthermore, the results suggest two endogenous metabolites as potential biomarkers to determine carbendazim exposure. Finally, the present study showed that it is possible to use zebrafish water tank samples to assess the dysregulation of endogenous metabolites to understand biological effects. Environ Toxicol Chem 2023;42:437-448. © 2022 SETAC.
Collapse
Affiliation(s)
- Raíssa M Costa
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Victória R Matos E Chaib
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Anderson G Domingues
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Karina T S Rubio
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Elvira Poleti Martucci
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
16
|
Sauter D, Steuer A, Wasmund K, Hausmann B, Szewzyk U, Sperlich A, Gnirss R, Cooper M, Wintgens T. Microbial communities and processes in biofilters for post-treatment of ozonated wastewater treatment plant effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159265. [PMID: 36206900 DOI: 10.1016/j.scitotenv.2022.159265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Ozonation is an established solution for organic micropollutant (OMP) abatement in tertiary wastewater treatment. Biofiltration is the most common process for the biological post-treatment step, which is generally required to remove undesired oxidation products from the reaction of ozone with water matrix compounds. This study comparatively investigates the effect of filter media on the removal of organic contaminants and on biofilm properties for biologically activated carbon (BAC) and anthracite biofilters. Biofilms were analysed in two pilot-scale filters that have been operated for >50,000 bed volumes as post-treatment for ozonated wastewater treatment plant effluent. In parallel, the removal performance of bulk organics and OMP, including differentiation of adsorption and biotransformation through sodium azide inhibition, were carried out in bench-scale filter columns filled with material from the pilot filters. The use of BAC instead of anthracite resulted in an improved removal of organic bulk parameters, dissolved oxygen, and OMP. The OMP removal observed in the BAC filter but not in the anthracite filter was based on adsorption for most of the investigated compounds. For valsartan, however, biotransformation was found to be the dominant pathway, indicating that conditions for biotransformation of certain OMP are better on BAC than on anthracite. Adenosine triphosphate analyses in the media-attached biofilms of the pilot filters showed that biomass concentrations in the BAC filter were significantly higher than in the anthracite filter. The microbial communities (16S rRNA gene sequencing) appeared to be similar with respect to the types of organisms occurring on both filter materials. Alpha diversity also exhibited little variation between filter media. Beta diversity analysis, however, revealed that filter media and bed depth substantially influenced the biofilm composition. In practice, the impact of filter media on biofilm properties and biotransformation processes should be considered for the design of biofilters.
Collapse
Affiliation(s)
- Daniel Sauter
- Berliner Wasserbetriebe, Neue Juedenstr. 1, 10179 Berlin, Germany
| | - Andrea Steuer
- Chair of Environmental Microbiology, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; School of Biological Science, University of Portsmouth, King Henry Building, King Henry I St, PO12DY Portsmouth, UK
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | | | - Regina Gnirss
- Berliner Wasserbetriebe, Neue Juedenstr. 1, 10179 Berlin, Germany
| | - Myriel Cooper
- Chair of Environmental Microbiology, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Thomas Wintgens
- RWTH Aachen University, Institut für Siedlungswasserwirtschaft, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany; School of Life Sciences, Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 40, 4132 Muttenz, Switzerland.
| |
Collapse
|
17
|
Zhao J, Fang S, Liu G, Qi W, Bai Y, Liu H, Qu J. Role of ammonia-oxidizing microorganisms in the removal of organic micropollutants during simulated riverbank filtration. WATER RESEARCH 2022; 226:119250. [PMID: 36274354 DOI: 10.1016/j.watres.2022.119250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biodegradation plays an important role in the removal of organic micropollutants (OMPs) during riverbank filtration (RBF) for drinking water production. The ability of ammonia-oxidizing microorganisms (AOM) to remove OMPs has attracted increasing attention. However, the distribution of AOM in RBF and its role in the degradation of OMPs remains unknown. In this study, the behavior of 128 selected OMPs and the distribution of AOM and their roles in the degradation of OMPs in RBF were explored by column and batch experiments simulating the first meter of the riverbank. The results showed that the selected OMPs were effectively removed (82/128 OMPs, >70% removal) primarily by biodegradation and partly by adsorption. Inefficiently removed OMPs tended to have low molecular weights, low log P, and contain secondary amides, secondary sulfonamides, secondary ketimines, and benzyls. In terms of the microbial communities, the relative abundance of AOM increased from 0.1%-0.2% (inlet-sand) to 5.3%-5.9% (outlet-sand), which was dominated by ammonia-oxidizing archaea whose relative abundance increased from 23%-72% (inlet-sand) to 97% (outlet-sand). Comammox accounted for 23%-64% in the inlet-sand and 1% in the outlet-sand. The abundances of AOM amoA genes kept stable in the inlet-sand of control columns, while decreased by 78% in the treatment columns, suggesting the inhibition effect of allylthiourea (ATU) on AOM. It is observed that AOM played an important role in the degradation of OMPs, where its inhibition led to the corresponding inhibition of 32 OMPs (5/32 were completely suppressed). In particular, OMPs with low molecular weights and containing primary amides, secondary amides, benzyls, and secondary sulfonamides were more likely to be removed by AOM. This study reveals the vital role of AOM in the removal of OMPs, deepens our understanding of the degradation of OMPs in RBF, and offers valuable insights into the physiochemical properties of OMPs and their AOM co-metabolic potential.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Bosworth LB, Wrighton KC, Sedlak DL, Sharp JO. Pharmaceutical Biotransformation is Influenced by Photosynthesis and Microbial Nitrogen Cycling in a Benthic Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14462-14477. [PMID: 36197061 DOI: 10.1021/acs.est.2c03566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lily B Bosworth
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
19
|
Zhou X, Arslan M, Liu Z, Li D, Xi H, Feng Y, Li S, Wei J, Rong X, Liang Z, Wang X, Wu Z, Gamal El-Din M. Low carbon-to-nitrogen ratio digestate from high-rate anaerobic baffled reactor facilitates heterotrophic/autotrophic nitrifiers involved in nitrogen removal. BIORESOURCE TECHNOLOGY 2022; 359:127346. [PMID: 35605776 DOI: 10.1016/j.biortech.2022.127346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, baffled anaerobic-aerobic reactors (AOBRs) with modified basalt fiber (MBF) carriers and felt were used to treat domestic wastewater (DWW). The influent was first treated in anaerobic compartments, with the NH4+-N containing digestate refluxed into aerobic compartment for nitrification. The nitrified liquid was channeled to the anaerobic compartments for further denitrification. Under optimal conditions, AOBR with MBF carriers could remove 91% chemical oxygen demand (COD) and 81% total nitrogen (TN), with biomass production increased by 7.6%, 4.5% and 8.7% in three successive anaerobic compartments compared to the control. Biological viability analysis showed that live cells outnumbered dead cells in bio-nests. Metagenomics analysis showed that multiple metabolic pathways accounted for nitrogen conversion in anaerobic and aerobic compartments. More importantly, low COD/TN ratio digestate facilitated heterotrophic nitrification-aerobic denitrification (HN-AD) species growth in aerobic compartment. This study provides a promising strategy to source treatment of DWW from urban communities.
Collapse
Affiliation(s)
- Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhigang Liu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Haipeng Xi
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| | - Shanwei Li
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xinshan Rong
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhishui Liang
- School of Civil Engineering, Southeast University, No. 2 Sipailou, Nanjing, Jiangsu 210096, China
| | - Xiaochun Wang
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
20
|
Zhu G, Wang X, Wang S, Yu L, Armanbek G, Yu J, Jiang L, Yuan D, Guo Z, Zhang H, Zheng L, Schwark L, Jetten MSM, Yadav AK, Zhu YG. Towards a more labor-saving way in microbial ammonium oxidation: A review on complete ammonia oxidization (comammox). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154590. [PMID: 35306060 DOI: 10.1016/j.scitotenv.2022.154590] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In the Anthropocene, nitrogen pollution is becoming an increasing challenge for both mankind and the Earth system. Microbial nitrogen cycling begins with aerobic nitrification, which is also the key rate-limiting step. For over a century, it has been accepted that nitrification occurs sequentially involving ammonia oxidation, which produces nitrite followed by nitrite oxidation, generating nitrate. This perception was changed by the discovery of comammox Nitrospira bacteria and their metabolic pathway. In addition, this also provided us with new knowledge concerning the complex nitrogen cycle network. In the comammox process, ammonia can be completely oxidized to nitrate in one cell via the subsequent activity of the enzyme complexes, ammonia monooxygenase, hydroxylamine dehydrogenase, and nitrite oxidodreductase. Over the past five years, research on comammox made great progress. However, there still exist a lot of questions, including how much does comammox contribute to nitrification? How large is the diversity and are there new strains to be discovered? Do comammox bacteria produce the greenhouse gas N2O, and how or to which extent may they contribute to global climate change? The above four aspects are of great significance on the farmland nitrogen management, aquatic environment restoration, and mitigation of global climate change. As large number of comammox bacteria and pathways have been detected in various terrestrial and aquatic ecosystems, indicating that the comammox process may exert an important role in the global nitrogen cycle.
Collapse
Affiliation(s)
- Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaomin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longbin Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gawhar Armanbek
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liping Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhongrui Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hanrui Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lorenz Schwark
- Institute for Geosciences, University of Kiel, 24118 Kiel, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University Nijmegen, 36525 AJ Nijmegen, the Netherlands
| | - Asheesh Kumar Yadav
- Department of Environment and Sustainability, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Al-Ajeel S, Spasov E, Sauder LA, McKnight MM, Neufeld JD. Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems. WATER RESEARCH X 2022; 15:100131. [PMID: 35402889 PMCID: PMC8990171 DOI: 10.1016/j.wroa.2022.100131] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Nitrification, the oxidation of ammonia to nitrate via nitrite, is important for many engineered water treatment systems. The sequential steps of this respiratory process are carried out by distinct microbial guilds, including ammonia-oxidizing bacteria (AOB) and archaea (AOA), nitrite-oxidizing bacteria (NOB), and newly discovered members of the genus Nitrospira that conduct complete ammonia oxidation (comammox). Even though all of these nitrifiers have been identified within water treatment systems, their relative contributions to nitrogen cycling are poorly understood. Although AOA contribute to nitrification in many wastewater treatment plants, they are generally outnumbered by AOB. In contrast, AOA and comammox Nitrospira typically dominate relatively low ammonia environments such as drinking water treatment, tertiary wastewater treatment systems, and aquaculture/aquarium filtration. Studies that focus on the abundance of ammonia oxidizers may misconstrue the actual role that distinct nitrifying guilds play in a system. Understanding which ammonia oxidizers are active is useful for further optimization of engineered systems that rely on nitrifiers for ammonia removal. This review highlights known distributions of AOA and comammox Nitrospira in engineered water treatment systems and suggests future research directions that will help assess their contributions to nitrification and identify factors that influence their distributions and activity.
Collapse
|
22
|
Yu Y, Che S, Ren C, Jin B, Tian Z, Liu J, Men Y. Microbial Defluorination of Unsaturated Per- and Polyfluorinated Carboxylic Acids under Anaerobic and Aerobic Conditions: A Structure Specificity Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4894-4904. [PMID: 35373561 PMCID: PMC9465985 DOI: 10.1021/acs.est.1c05509] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The recently discovered microbial reductive defluorination of two C6 branched and unsaturated fluorinated carboxylic acids (FCAs) provided valuable insights into the environmental fate of per- and polyfluoroalkyl substances (PFASs) and potential bioremediation strategies. However, a systematic investigation is needed to further demonstrate the role of C═C double bonds in the biodegradability of unsaturated PFASs. Here, we examined the structure-biodegradability relationships of 13 FCAs, including nine commercially available unsaturated FCAs and four structurally similar saturated ones, in an anaerobic defluorinating enrichment and an activated sludge community. The anaerobic and aerobic transformation/defluorination pathways were elucidated. The results showed that under anaerobic conditions, the α,β-unsaturation is crucial for FCA biotransformation via reductive defluorination and/or hydrogenation pathways. With sp2 C-F bonds being substituted by C-H bonds, the reductive defluorination became less favorable than hydrogenation. Moreover, for the first time, we reported enhanced degradability and defluorination capability of specific unsaturated FCA structures with trifluoromethyl (-CF3) branches at the α/β-carbon. Such FCA structures can undergo anaerobic abiotic defluorination in the presence of reducing agents and significant aerobic microbial defluorination. Given the diverse applications and emerging concerns of fluorochemicals, this work not only advances the fundamental understanding of the fate of unsaturated PFASs in natural and engineered environments but also may provide insights into the design of readily degradable fluorinated alternatives to existing PFAS compounds.
Collapse
Affiliation(s)
- Yaochun Yu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, A235 Bourns Hall, 3401 Watkins Drive, Riverside, California 92521, United States
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shun Che
- Department
of Chemical and Environmental Engineering, University of California, Riverside, A235 Bourns Hall, 3401 Watkins Drive, Riverside, California 92521, United States
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Changxu Ren
- Department
of Chemical and Environmental Engineering, University of California, Riverside, A235 Bourns Hall, 3401 Watkins Drive, Riverside, California 92521, United States
| | - Bosen Jin
- Department
of Chemical and Environmental Engineering, University of California, Riverside, A235 Bourns Hall, 3401 Watkins Drive, Riverside, California 92521, United States
| | - Zhenyu Tian
- College
of Science, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jinyong Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, A235 Bourns Hall, 3401 Watkins Drive, Riverside, California 92521, United States
| | - Yujie Men
- Department
of Chemical and Environmental Engineering, University of California, Riverside, A235 Bourns Hall, 3401 Watkins Drive, Riverside, California 92521, United States
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Li S, Peng L, Yang C, Song S, Xu Y. Cometabolic biodegradation of antibiotics by ammonia oxidizing microorganisms during wastewater treatment processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114336. [PMID: 34953231 DOI: 10.1016/j.jenvman.2021.114336] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
Studies on antibiotic removal during wastewater treatment processes are crucial since their release into the environment could bring potential threats to human health and ecosystem. Cometabolic biodegradation of antibiotics by ammonia oxidizing microorganisms (AOMs) has received special attentions due to the enhanced removal of antibiotics during nitrification processes. However, the interactions between antibiotics and AOMs are less well-elucidated. In this review, the recent research proceedings on cometabolic biodegradation of antibiotics by AOMs were summarized. Ammonia oxidizing bacteria (AOB), ammonia oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) played significant roles in both nitrification and cometabolic biodegradation of antibiotics. Antibiotics at varying concentrations might pose inhibiting or stimulating effect on AOMs, influencing the microbial activity, community abundance and ammonia monooxygenase subunit A gene expression level. AOMs-induced cometabolic biodegradation products were analyzed as well as the corresponding pathways for each type of antibiotics. The effects of ammonium availability, initial antibiotic concentration, sludge retention time and temperature were assessed on the cometabolic biodegradation efficiencies of antibiotics. This work might provide further insights into the fate and removal of antibiotics during nitrification processes.
Collapse
Affiliation(s)
- Shengjun Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Chenguang Yang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya Hainan, 572000, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| |
Collapse
|
24
|
De Sotto R, Lee XJ, Bae S. Acute exposure effects of tetracycline, ampicillin, sulfamethoxazole, and their mixture on nutrient removal and microbial communities in the activated sludge of air-scouring and reciprocation membrane bioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114165. [PMID: 34896799 DOI: 10.1016/j.jenvman.2021.114165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The fate of antibiotics, their effects on non-target species, and the spread of antibiotic resistance in wastewater treatment systems have been of concern in recent years. Despite its importance, the effects of these antibiotics on biological nutrient removal in WWTPs have not been completely elucidated. To evaluate the effects of antimicrobial compounds on nutrient removal performance and microbiome, batch experiments were performed using activated sludge samples taken from two distinct membrane bioreactor systems (reciprocation MBR vs. air-scouring MBR). We exposed the activated sludge to 0 mg/L, 0.1 mg/L, and 1.0 mg/L of tetracycline (TET), ampicillin (AMP), sulfamethoxazole (SUL), and their mixture. The mixture of antibiotics significantly decreased ammonia removal efficiency in the reciprocation MBR (rMBR) and air-scouring MBR (AS MBR) by 5% and 12%, respectively. A significant reduction (p < 0.05) in the amoA-AOB gene was observed in AS MBR, while this gene remained unaffected in the rMBR. Interestingly, the gene abundance of amoA from comammox Nitrospira increased from 2.8 × 108 gene copies per gram sludge (0 mg/L) to 5.0 × 108 gene copies per gram sludge (1.0 mg/L) in the setup with antibiotics in the mixture. Correlation analysis of the relative abundance of prevalent taxa and antibiotic concentrations showed that the microbial communities of the AS MBR were more susceptible to TET and MXD antibiotics than the rMBR microbiome.
Collapse
Affiliation(s)
- Ryan De Sotto
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Xin Jie Lee
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Kennes-Veiga DM, Gónzalez-Gil L, Carballa M, Lema JM. Enzymatic cometabolic biotransformation of organic micropollutants in wastewater treatment plants: A review. BIORESOURCE TECHNOLOGY 2022; 344:126291. [PMID: 34752884 DOI: 10.1016/j.biortech.2021.126291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Biotransformation of trace-level organic micropollutants (OMPs) by complex microbial communities in wastewater treatment facilities is a key process for their detoxification and environmental impact reduction. Therefore, understanding the metabolic activities and mechanisms that contribute to their biotransformation is essential when developing approaches aiming to minimize their discharge. This review addresses the relevance of cometabolic processes and discusses the main enzymatic activities currently known to take part in OMPs removal under different redox environments in the compartments of wastewater treatment plants. Furthermore, the most common methodologies to decipher such enzymes are discussed, including the use of in vitro enzyme assays, enzymatic inhibitors, the analysis of transformation products and the application of several -omic techniques. Finally, perspectives on major challenges and future research requirements to improve OMPs biotransformation are proposed.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Lorena Gónzalez-Gil
- Defence University Centre, Spanish Naval Academy, Plaza de España, 36920 Marín, Spain
| | - Marta Carballa
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
26
|
Kennes-Veiga DM, Vogler B, Fenner K, Carballa M, Lema JM. Heterotrophic enzymatic biotransformations of organic micropollutants in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146564. [PMID: 33774287 DOI: 10.1016/j.scitotenv.2021.146564] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/16/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
While heterotrophic microorganisms constitute the major fraction of activated sludge biomass, the role of heterotrophs in the biotransformation of organic micropollutants (OMPs) has not been fully elucidated. Yet, such knowledge is essential, particularly when conceiving novel wastewater treatment plants based on a two-stage process including an A-stage under heterotrophic conditions and a B-stage based on anammox activity. Biotransformation of OMPs in activated sludge is thought to mostly occur cometabolically thanks to the action of low specificity enzymes involved in the metabolism of the primary substrates. For a better understanding of the process, it is important to determine such enzymatic activities and the underlying mechanisms involved in OMPs biotransformation. This task has proven to be difficult due to the lack of information about the enzymatic processes and the complexity of the biological systems present in activated sludge. In this paper, a continuous aerobic heterotrophic reactor following 20 OMPs at environmental concentrations was operated to (i) assess the potential of heterotrophs during the cometabolic biotransformation of OMPs, (ii) identify biotransformation reactions catalyzed by aerobic heterotrophs and (iii) predict possible heterotrophic enzymatic activities responsible for such biotransformations. Contradicting previous reports on the dominant role of nitrifiers in OMPs removal during activated sludge treatment, the heterotrophic population proved its capacity to biotransform the OMPs to extents equivalent to reported values in nitrifying activated sludge plants. Besides, 12 transformation products potentially formed through the activity of several enzymes present in heterotrophs, including monooxygenases, dioxygenases, hydrolases and transferases, were identified.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Bernadette Vogler
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Marta Carballa
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Juan M Lema
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
27
|
Liu S, Cai H, Wang J, Wang H, Zheng T, Chen Q, Ni J. In-situ expressions of comammox Nitrospira along the Yangtze River. WATER RESEARCH 2021; 200:117241. [PMID: 34051458 DOI: 10.1016/j.watres.2021.117241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The recent discovery of comammox Nitrospira as complete nitrifiers has significantly enriched our understanding on the nitrogen cycle, yet little is known about their metabolic transcripts in natural aquatic ecosystems. Using the genome-centric metatranscriptomics, we provided the first in-situ expression patterns of comammox Nitrospira along the Yangtze River. Our study confirmed widespread expressions of comammox Nitrospira, with the highest transcription accounting for 33.3% and 63.8% of amoA and nxrAB genes expressed in ammonia-oxidizing prokaryotes (AOPs) and Nitrospira sublineages I/II, respectively. Moreover, comammox two clades differed in nitrification, with clade A acting as the dominator to ammonia oxidation in comammox, and clade B contributing more transcripts to nitrite oxidation than to ammonia oxidation. Compared to canonical Nitrospira, comammox community had lower expressions of ammonia/nitrite transporters and nitrogen assimilatory genes, but far higher expressions in urea transport and hydrolysis, facilitating to derivation of ammonia and energy mainly through intracellular ureolytic metabolism. This suggests no need for "reciprocal-feeding" between canonical Nitrospira and AOPs in a natural river. Aerobic mixotrophy of comammox bacteria was suggested by expressions of genes coding for respiratory complexes I-V, oxidative/reductive TCA cycle, oxygen stress defenses, and transport/catabolism of simple carbohydrates and low-biosynthetic-cost amino acids. Intriguingly, significant positive correlations among expressions of ammonia monooxygenases, hydroxylamine dehydrogenase and copper-dependent nitrite reductase indicated that comammox Nitrospira had the potential of converting nitrite to nitric oxide accompanied by ammonia oxidation under low-C/N and aerobic conditions, while gene expressions in this pathway were significantly and positively associated with pH. Overall, this study illustrated novel transcriptional characteristics of comammox Nitrospira, and highlighted the necessity of reassessing their contributions to biogeochemical carbon and nitrogen cycling with perspective of in-situ meta-omics as well as culture experiments.
Collapse
Affiliation(s)
- Shufeng Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China
| | - Hetong Cai
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China
| | - Jiawen Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China
| | - Haiying Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zheng
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, China
| | - Qian Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|
28
|
Zhou LJ, Han P, Zhao M, Yu Y, Sun D, Hou L, Liu M, Zhao Q, Tang X, Klümper U, Gu JD, Men Y, Wu QL. Biotransformation of lincomycin and fluoroquinolone antibiotics by the ammonia oxidizers AOA, AOB and comammox: A comparison of removal, pathways, and mechanisms. WATER RESEARCH 2021; 196:117003. [PMID: 33730544 DOI: 10.1016/j.watres.2021.117003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In this study, we evaluated the biotransformation mechanisms of lincomycin (LIN) and three fluoroquinolone antibiotics (FQs), ciprofloxacin (CFX), norfloxacin (NFX), and ofloxacin (OFX), which regularly enter aquatic environments through human activities, by different ammonia-oxidizing microorganisms (AOM). The organisms included a pure culture of the complete ammonia oxidizer (comammox) Nitrospira inopinata, an ammonia oxidizing archaeon (AOA) Nitrososphaera gargensis, and an ammonia-oxidizing bacterium (AOB) Nitrosomonas nitrosa Nm90. The removal of these antibiotics by the pure microbial cultures and the protein-normalized biotransformation rate constants indicated that LIN was significantly co-metabolically biotransformed by AOA and comammox, but not by AOB. CFX and NFX were significantly co-metabolized by AOA and AOB, but not by comammox. None of the tested cultures transformed OFX effectively. Generally, AOA showed the best biotransformation capability for LIN and FQs, followed by comammox and AOB. The transformation products and their related biotransformation mechanisms were also elucidated. i) The AOA performed hydroxylation, S-oxidation, and demethylation of LIN, as well as nitrosation and cleavage of the piperazine moiety of CFX and NFX; ii) the AOB utilized nitrosation to biotransform CFX and NFX; and iii) the comammox carried out hydroxylation, demethylation, and demethylthioation of LIN. Hydroxylamine, an intermediate of ammonia oxidation, chemically reacted with LIN and the selected FQs, with removals exceeding 90%. Collectively, these findings provide important fundamental insights into the roles of different ammonia oxidizers and their intermediates on LIN and FQ biotransformation in nitrifying environments including wastewater treatment systems.
Collapse
Affiliation(s)
- Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Mengyue Zhao
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yaochun Yu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Dongyao Sun
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Qiang Zhao
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiufeng Tang
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden 01217, Germany
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Yujie Men
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Desiante WL, Minas NS, Fenner K. Micropollutant biotransformation and bioaccumulation in natural stream biofilms. WATER RESEARCH 2021; 193:116846. [PMID: 33540344 DOI: 10.1016/j.watres.2021.116846] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 05/27/2023]
Abstract
Micropollutants are ubiquitously found in natural surface waters and pose a potential risk to aquatic organisms. Stream biofilms, consisting of bacteria, algae and other microorganisms potentially contribute to bioremediating aquatic environments by biotransforming xenobiotic substances. When investigating the potential of stream biofilms to remove micropollutants from the water column, it is important to distinguish between different fate processes, such as biotransformation, passive sorption and active bioaccumulation. However, due to the complex nature of the biofilm community and its extracellular matrix, this task is often difficult. In this study, we combined biotransformation experiments involving natural stream biofilms collected up- and downstream of wastewater treatment plant outfalls with the QuEChERS extraction method to distinguish between the different fate processes. The QuEChERS extraction proved to be a suitable method for a broad range of micropollutants (> 80% of the investigated compounds). We found that 31 out of 63 compounds were biotransformed by the biofilms, with the majority being substitution-type biotransformations, and that downstream biofilms have an increased biotransformation potential towards specific wastewater-relevant micropollutants. Overall, using the experimental and analytical strategy developed, stream biofilms were demonstrated to have a broad inherent micropollutant biotransformation potential, and to thus contribute to bioremediation and improving ecosystem health.
Collapse
Affiliation(s)
- Werner L Desiante
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Nora S Minas
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
30
|
Yan N, An M, Chu J, Cao L, Zhu G, Wu W, Wang L, Zhang Y, Rittmann BE. More rapid dechlorination of 2,4-dichlorophenol using acclimated bacteria. BIORESOURCE TECHNOLOGY 2021; 326:124738. [PMID: 33497925 DOI: 10.1016/j.biortech.2021.124738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The key step for anaerobic biodegradation of 2,4-dichlorophenol (2,4-DCP) is an initial dechlorination reaction, but Cl in the para-position is more difficult to remove than Cl in the ortho-position using normal 2,4-DCP-acclimated bacteria. In this work, a bacterial community previously acclimated to biodegrading 2,4-DCP slowly dechlorinated 4-chlorophenol (4-CP Cl only in the para-position), which limited mineralization. That community was exposed to the selective pressure of having 4-CP as its only organic substrate in order to generate a 4-CP-dechlorinating community. When the 4-CP-dechlorinating community was challenged with 2,4-DCP, 4-CP hardly accumulated, although the kinetics for 2,4-DCP biodegradation were slower. When the community acclimated to 4-CP was mixed with the community acclimated to 2,4-DCP, the 2,4-DCP removal rate remained high, and 4-CP was more rapidly biodegraded. The genera Treponema, Blvii28, Dechloromonas, Nitrospira, and Thauera were significantly more abundant in the 4-CP-dechlorinating biomass and may have played roles in 2,4-DCP dechlorination and mineralization.
Collapse
Affiliation(s)
- Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Meng An
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Junyi Chu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Lifeng Cao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Weimin Wu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Lu Wang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 85287-5701, USA
| |
Collapse
|
31
|
Su Q, Schittich AR, Jensen MM, Ng H, Smets BF. Role of Ammonia Oxidation in Organic Micropollutant Transformation during Wastewater Treatment: Insights from Molecular, Cellular, and Community Level Observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2173-2188. [PMID: 33543927 DOI: 10.1021/acs.est.0c06466] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic micropollutants (OMPs) are a threat to aquatic environments, and wastewater treatment plants may act as a source or a barrier of OMPs entering the environment. Understanding the fate of OMPs in wastewater treatment processes is needed to establish efficient OMP removal strategies. Enhanced OMP biotransformation has been documented during biological nitrogen removal and has been attributed to the cometabolic activity of ammonia-oxidizing bacteria (AOB) and, specifically, to the ammonia monooxygenase (AMO) enzyme. Yet, the exact mechanisms of OMP biotransformation are often unknown. This critical review aims to fundamentally and quantitatively evaluate the role of ammonia oxidation in OMP biotransformation during wastewater treatment processes. OMPs can be transformed by AOB via direct and indirect enzymatic reactions: AMO directly transforms OMPs primarily via hydroxylation, while biologically produced reactive nitrogen species (hydroxylamine (NH2OH), nitrite (NO2-), and nitric oxide (NO)) can chemically transform OMPs through nitration, hydroxylation, and deamination and can contribute significantly to the observed OMP transformations. OMPs containing alkyl, aliphatic hydroxyl, ether, and sulfide functional groups as well as substituted aromatic rings and aromatic primary amines can be biotransformed by AMO, while OMPs containing alkyl groups, phenols, secondary amines, and aromatic primary amines can undergo abiotic transformations mediated by reactive nitrogen species. Higher OMP biotransformation efficiencies and rates are obtained in AOB-dominant microbial communities, especially in autotrophic reactors performing nitrification or nitritation, than in non-AOB-dominant microbial communities. The biotransformations of OMPs in wastewater treatment systems can often be linked to ammonium (NH4+) removal following two central lines of evidence: (i) Similar transformation products (i.e., hydroxylated, nitrated, and desaminated TPs) are detected in wastewater treatment systems as in AOB pure cultures. (ii) Consistency in OMP biotransformation (rbio, μmol/g VSS/d) to NH4+ removal (rNH4+, mol/g VSS/d) rate ratios (rbio/rNH4+) is observed for individual OMPs across different systems with similar rNH4+ and AOB abundances. In this review, we conclude that AOB are the main drivers of OMP biotransformation during wastewater treatment processes. The importance of biologically driven abiotic OMP transformation is quantitatively assessed, and functional groups susceptible to transformations by AMO and reactive nitrogen species are systematically classified. This critical review will improve the prediction of OMP transformation and facilitate the design of efficient OMP removal strategies during wastewater treatment.
Collapse
Affiliation(s)
- Qingxian Su
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore, Singapore
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Anna-Ricarda Schittich
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Marlene Mark Jensen
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Howyong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore, Singapore
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
32
|
Tang K, Rosborg P, Rasmussen ES, Hambly A, Madsen M, Jensen NM, Hansen AA, Sund C, Andersen HG, Torresi E, Kragelund C, Andersen HR. Impact of intermittent feeding on polishing of micropollutants by moving bed biofilm reactors (MBBR). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123536. [PMID: 32823027 DOI: 10.1016/j.jhazmat.2020.123536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 05/25/2023]
Abstract
Moving bed biofilm reactors (MBBRs) were placed at two wastewater treatment plants, where they were constantly fed with effluent and intermittently fed with primary wastewater. Each reactor was subjected to different feast/famine periods and flow rates of primary wastewater, thus the different organic and nutrient loads (chemical oxygen demand(COD), ammonium(NH4-N)) resulted in different feast-famine conditions applied to the biomass. In batch experiments, this study investigated the effects of various feast-famine conditions on the biodegradation of micropollutants by MBBRs applied as an effluent polishing step. Rate constants of micropollutant removals were found to be positively correlated to the load of the total COD and NH4-N, indicating that higher organic loads were favourable for the growth of micropollutant degraders in these MBBRs. Rate constant of atenolol was five times higher when the biomass was fed with the highest COD and NH4-N load than it was fed with the lowest COD and NH4-N load. For diclofenac, mycophenolic acid and iohexol, their maximum rate constants were obtained with feeding of COD and NH4-N of approximately 570 mgCOD/d and 40∼60 mgNH4-N/d respectively. This also supports the concept that co-metabolism (rather competition inhibition or catabolic repression) plays an important role in micropollutants biodegradation in wastewater.
Collapse
Affiliation(s)
- Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark.
| | - Peter Rosborg
- Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Århus C, Denmark
| | - Emma S Rasmussen
- Department of Bioscoence-Microbiology, Århus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Adam Hambly
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| | | | | | - Aviaja A Hansen
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Christina Sund
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Heidi G Andersen
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Elena Torresi
- AnoxKaldnes Technology, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - Caroline Kragelund
- Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Århus C, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
33
|
Vijayan A, Vattiringal Jayadradhan RK, Pillai D, Prasannan Geetha P, Joseph V, Isaac Sarojini BS. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J Basic Microbiol 2021; 61:88-109. [PMID: 33448079 DOI: 10.1002/jobm.202000485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The global nitrogen cycle is of paramount significance as it affects important processes like primary productivity and decomposition. Nitrification, the oxidation of ammonia to nitrate via nitrite, is a key process in the nitrogen cycle. The knowledge about nitrification has been challenged during the last few decades with inventions like anaerobic ammonia oxidation, ammonia-oxidizing archaea, and recently the complete ammonia oxidation (comammox). The discovery of comammox Nitrospira has made a paradigm shift in nitrification, before which it was considered as a two-step process, mediated by chemolithoautotrophic ammonia oxidizers and nitrite oxidizers. The genome of comammox Nitrospira equipped with molecular machineries for both ammonia and nitrite oxidation. The genus Nitrospira is ubiquitous, comes under phylum Nitrospirae, which comprises six sublineages consisting of canonical nitrite oxidizers and comammox. The single-step nitrification is energetically more feasible; furthermore, the existence of diverse metabolic pathways in Nitrospira is critical for its establishment in various habitats. The present review discusses the taxonomy, ecophysiology, isolation, identification, growth, and metabolic diversity of the genus Nitrospira; compares the genomes of canonical nitrite-oxidizing Nitrospira and comammox Nitrospira, and analyses the differences of Nitrospira with other nitrifying bacteria.
Collapse
Affiliation(s)
- Ardhra Vijayan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Rejish Kumar Vattiringal Jayadradhan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.,Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Preena Prasannan Geetha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Bright Singh Isaac Sarojini
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
34
|
Wu G, Geng J, Xu K, Ren H. Removal of pharmaceuticals by ammonia oxidizers during nitrification. Appl Microbiol Biotechnol 2021; 105:909-921. [PMID: 33415368 DOI: 10.1007/s00253-020-11032-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
The adverse effect of pharmaceuticals on ecosystem and human health raises great interest for the removal of pharmaceuticals in wastewater treatment plants (WWTPs). Enhanced removal of pharmaceuticals by ammonia oxidizers (AOs) has been observed during nitrification. This review provides a comprehensive summary on the removal of pharmaceuticals by AOs-ammonia oxidizing bacteria (AOB), ammonia oxidizing archaea (AOA), and complete ammonia oxidizer (comammox) during nitrification in pure ammonia oxidizing culture and mixed microbes systems. The superior removal of pharmaceuticals by AOs in conditions with nitrifying activity compared with the conditions without nitrifying activity was proposed. The contribution of AOs on pharmaceuticals removal in pure and mixed microbe systems was discussed and activated sludge modeling was suggested as the proper measure on assessing the contribution of AOs on the removal of pharmaceuticals in mixed microbe culture. Three transformation processes and the involved reaction types of pharmaceuticals transformation during nitrification were reviewed. The present paper provides a systematical summary on pharmaceuticals removal by different AOs across pure and mixed microbes culture during nitrification, which opens up the opportunity to optimize the wastewater biological treatment systems for enhanced removal of pharmaceuticals. KEY POINTS: • The superior removal of pharmaceuticals by ammonia oxidizers (AOs) was summarized. • The removal contribution of pharmaceuticals attributed by AOs was elucidated. • The transformation processes and reaction types of pharmaceuticals were discussed.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Wang B, Li H, Liu T, Guo J. Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors. CHEMOSPHERE 2021; 263:128224. [PMID: 33297180 DOI: 10.1016/j.chemosphere.2020.128224] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 05/06/2023]
Abstract
Nitrification process has been reported to be capable of degrading various pharmaceuticals due to the cometabolism of ammonia-oxidizing bacteria (AOB). The membrane aerated biofilm reactor (MABR) is an emerging configuration in wastewater treatment with advantages of high nitrification rate and low energy consumption. However, there are very few studies investigating the degradation of antibiotics at environmentally relevant levels in nitrifying MABR systems. In this study, the removal of two widely used antibiotics, cephalexin (CFX) and sulfadiazine (SDZ), was evaluated in two independent MABRs with nitrifying biofilms. The impacts of CFX and SDZ exposure on the nitrification performance and microbial community structure within biofilms were also investigated. The results showed that nitrifying biofilms were very efficient in removing CFX (94.6%) and SDZ (75.4%) with an initial concentration of 100 μg/L when hydraulic retention time (HRT) was 4 h in the reactors. When HRT decreased from 4 h to 3 h, the removal rates of CFX and SDZ increased significantly from 23.4 ± 1.0 μg/(L·h) and 18.7 ± 1.1 μg/(L·h), respectively, to 27.7 ± 1.3 μg/(L·h) (p<0.01) and 20.8 ± 2.4 μg/(L·h) (p<0.05), while the removal efficiencies decreased to 86.0% and 61.5%, respectively. Despite the exposure to CFX and SDZ, the nitrification performance was not affected, and microbial community structure within biofilms also remained relatively stable. This study shows that nitrifying MABR process is a promising option for the efficient removal of antibiotics from domestic wastewater.
Collapse
Affiliation(s)
- Bingzheng Wang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Huayu Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
36
|
Yu Y, Zhang K, Li Z, Ren C, Chen J, Lin YH, Liu J, Men Y. Microbial Cleavage of C-F Bonds in Two C 6 Per- and Polyfluorinated Compounds via Reductive Defluorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14393-14402. [PMID: 33121241 DOI: 10.1021/acs.est.0c04483] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The C-F bond is one of the strongest single bonds in nature. Although microbial reductive dehalogenation is well known for the other organohalides, no microbial reductive defluorination has been documented for perfluorinated compounds except for a single, nonreproducible study on trifluoroacetate. Here, we report on C-F bond cleavage in two C6 per- and polyfluorinated compounds via reductive defluorination by an organohalide-respiring microbial community. The reductive defluorination was demonstrated by the release of F- and the formation of the corresponding product when lactate was the electron donor, and the fluorinated compound was the sole electron acceptor. The major dechlorinating species in the seed culture, Dehalococcoides, were not responsible for the defluorination as no growth of Dehalococcoides or active expression of Dehalococcoides-reductive dehalogenases was observed. It suggests that minor phylogenetic groups in the community might be responsible for the reductive defluorination. These findings expand our fundamental knowledge of microbial reductive dehalogenation and warrant further studies on the enrichment, identification, and isolation of responsible microorganisms and enzymes. Given the wide use and emerging concerns of fluorinated organics (e.g., per- and polyfluoroalkyl substances), particularly the perfluorinated ones, the discovery of microbial defluorination under common anaerobic conditions may provide valuable insights into the environmental fate and potential bioremediation strategies of these notorious contaminants.
Collapse
Affiliation(s)
- Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kunyang Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhong Li
- Metabolomics Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jin Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Wu G, Geng J, Shi Y, Wang L, Xu K, Ren H. Comparison of diclofenac transformation in enriched nitrifying sludge and heterotrophic sludge: Transformation rate, pathway, and role exploration. WATER RESEARCH 2020; 184:116158. [PMID: 32755734 DOI: 10.1016/j.watres.2020.116158] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/09/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The adverse effects of diclofenac (DCF) on ecosystems and human health have induced increasing interest in its elimination in environment. DCF can be removed to some extent by nitrifying and heterotrophic microbes during wastewater treatment process. However, the actual roles of nitrifying and heterotrophic microbes in the transformation of DCF remain unclear. In this study, batch experiments were conducted to explore the biological transformation of DCF in enriched nitrifying sludge (NS), heterotrophic sludge (HS) and activated sludge (AS) systems. DCF was removed three times faster in enriched NS than in HS. Three transformation pathways of DCF in enriched NS, HS, and AS were proposed and compared. Hydroxylation was the crucial transformation step in the three transformation pathways. A faster hydroxylation reaction contributed to the faster removal of DCF in enriched NS. More transformation products (TPs) and reaction types (i.e. reductive dechlorination, sulphidation and methylation reactions) were observed in HS. Furthermore, some TPs that were resistant to degrade in enriched NS, such as DCF-benzoic acid, could be further transformed in HS. Accordingly, enriched NS could remove DCF more rapidly while HS could further transform some TPs resistant to degrade in enriched NS. Nitrifying and heterotrophic microbes may cooperatively and rapidly eliminate not only DCF, but also its TPs.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China.
| | - Yufei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| |
Collapse
|
38
|
Yu Z, Zhang Y, Zhang Z, Dong J, Fu J, Xu X, Zhu L. Enhancement of PPCPs removal by shaped microbial community of aerobic granular sludge under condition of low C/N ratio influent. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122583. [PMID: 32289623 DOI: 10.1016/j.jhazmat.2020.122583] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The frequent occurrence of pharmaceuticals and personal care products (PPCPs) in domestic wastewater has caused great concern. In this study, the removal of two typical pharmaceuticals (Roxithromycin, ROX; Sulfamethoxazole, SMZ) in aerobic granular sludge (AGS) reactors was investigated under condition of different C/N (carbon to nitrogen) ratios. Results showed that higher removal efficiencies of ROX and SMZ (95.2 % and 92.9 %) were achieved in the AGS reactor fed with low C/N influent. Batch experiments further revealed that the removal of ROX was influenced by the adsorption ability of the AGS while SMZ removal was mainly enhanced by biodegradation process. Analysis of extracellular polymeric substances (EPS) showed that the humic acid-like substances were enriched under low C/N condition, which was in accordance with dynamic change of microbial community. The microbes, like Thauera spp. and Xanthomonadaceae, were highly enriched in the reactor with high nitrogen loading rate and functioned as refractory organics degrader. Overall, the AGS process could achieve enhanced pharmaceuticals removal performance by the regulation of microbial community under low C/N influent, which provides insights into a feasible solution for simultaneous removal of nitrogen and trace organic pollutants in AGS reactor.
Collapse
Affiliation(s)
- Zhuodong Yu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Ye Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Dong
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Jiashen Fu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
39
|
Wang Y, Shan J, Zhao Y, Li F, Corvini PFX, Ji R. Degradation and transformation of nitrated nonylphenol isomers in activated sludge under nitrifying and heterotrophic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122438. [PMID: 32151935 DOI: 10.1016/j.jhazmat.2020.122438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/08/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Nitrated nonylphenols (2-nitro-nonylphenols, NNPs) are metabolites of the endocrine-disrupter nonylphenols (NPs). While they have been detected in the environment, their fate in activated sludge has yet to be determined. In this study, we used synthesized NNP isomers and a 14C-tracer technique to study the degradation and transformation of four NNP isomers (NNP111, NNP112, NNP38, and NNP65) in nitrifying activated sludge (NAS) and heterotrophic bacteria-enhanced activated sludge (HAS). Our results showed that the degradation of NNPs in both NAS and HAS was isomer-specific. The half-lives of the NNPs decreased in the order: NNP111 > NNP112 > NNP38 > NNP65. After 36 days of incubation, 9.48 % and 4.01 % of the 14C-NNP111 was mineralized in NAS and HAS, respectively. In addition to mineralization, five metabolites of NNPs containing hydroxyl, carbonyl, and carboxyl substituents on the alkyl chains were formed in NAS but not in HAS. The transformation of NNPs differed in NAS and HAS, mainly due to the differences in their microbial communities and the activities thereof in NAS and HAS. This is the first study of the isomer-specific fate of NNP isomers in activated sludge. Future studies should assess the toxicity, stability and potential risks of NNP metabolites in the environment.
Collapse
Affiliation(s)
- Yongfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000, Quanzhou, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China.
| | - Yingying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Fangjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Philippe F-X Corvini
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China; Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000, Quanzhou, China.
| |
Collapse
|
40
|
Cotto I, Dai Z, Huo L, Anderson CL, Vilardi KJ, Ijaz U, Khunjar W, Wilson C, De Clippeleir H, Gilmore K, Bailey E, Pinto AJ. Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. WATER RESEARCH 2020; 169:115268. [PMID: 31726394 DOI: 10.1016/j.watres.2019.115268] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The discovery of the complete ammonia oxidizing (comammox) bacteria overturns the traditional two-organism nitrification paradigm which largely underpins the design and operation of nitrogen removal during wastewater treatment. Quantifying the abundance, diversity, and activity of comammox bacteria in wastewater treatment systems is important for ensuring a clear understanding of the nitrogen biotransformations responsible for ammonia removal. To this end, we conducted a yearlong survey of 14 full-scale nitrogen removal systems including mainstream conventional and simultaneous nitrification-denitrification and side-stream partial nitrification-anammox systems with varying process configurations. Metagenomics and genome-resolved metagenomics identified comammox bacteria in mainstream conventional and simultaneous nitrification-denitrification systems, with no evidence for their presence in side-stream partial nitrification-anammox systems. Further, comammox bacterial diversity was restricted to clade A and these clade A comammox bacteria were detected in systems with long solids retention times (>10 days) and/or in the attached growth phase. Using a newly designed qPCR assay targeting the amoB gene of clade A comammox bacteria in combination with quantitation of other canonical nitrifiers, we show that long solids retention time is the key process parameter associated with the prevalence and abundance of comammox bacteria. The increase in comammox bacterial abundance was not associated with concomitant decrease in the abundance of canonical nitrifiers; however, systems with comammox bacteria showed significantly better and temporally stable ammonia removal compared to systems where they were not detected. Finally, in contrast to recent studies, we do not find any significant association of comammox bacterial prevalence and abundance with dissolved oxygen concentrations in this study.
Collapse
Affiliation(s)
- Irmarie Cotto
- Department of Civil and Environmental Engineering, Northeastern University, United States
| | - Zihan Dai
- School of Engineering, University of Glasgow, United Kingdom
| | - Linxuan Huo
- Department of Civil and Environmental Engineering, Northeastern University, United States
| | - Christopher L Anderson
- Department of Civil and Environmental Engineering, Northeastern University, United States
| | - Katherine J Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, United States
| | - Umer Ijaz
- School of Engineering, University of Glasgow, United Kingdom
| | | | | | | | - Kevin Gilmore
- Department of Civil and Environmental Engineering, Bucknell University, United States
| | | | - Ameet J Pinto
- Department of Civil and Environmental Engineering, Northeastern University, United States.
| |
Collapse
|