1
|
Ju Z, Li X, Li X, Liang C, Xu Z, Chen H, Xiong D. Stranded heavy fuel oil exposure causes deformities, cardiac dysfunction, and oxidative stress in marine medaka Oryzias melastigma using an oiled-gravel-column system. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:29. [PMID: 39695067 DOI: 10.1007/s10695-024-01437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Heavy fuel oil (HFO) stranded on the coastline poses a potential threat to the health of marine fish after an oil spill. In this study, an oiled-gravel-column (OGC) system was established to investigate the toxic effects of stranded HFO on marine medaka Oryzias melastigma. HFO 380# (sulfur content 2.9%) was chosen as one type of high sulfur fuel oil for acute toxicity tests. The marine medaka larvae were exposed to the OGC system effluents with oil loading rates of 0 (control), 400, 800, 1600, and 3200 µg HFO/g gravel for 144 h, respectively. Results showed that a prevalence of blue sac disease signs presented teratogenic effects, including decreased circulation, ventricular stretch, cardiac hemorrhage, and pericardial edema. Moreover, the treatments (800, 1600, and 3200 µg oil/g gravel) induced severe cardiotoxicity, characterized by significant bradycardia and reduced stroke volume with an overt decrease in cardiac output. Additionally, the antioxidant enzyme activities, including catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST) were significantly upregulated at 800-3200 µg oil/g gravel except for a marked inhibition of CAT activity at 3200 µg oil/g gravel. Furthermore, significantly elevated protein carbonyl (PCO) levels were detected, suggesting that the organisms suffered severe protein oxidative damage subjected to the exposure. Overall, stranded HFO 380# exposure activated the antioxidant defense system (up-regulated POD and GST activities) of marine medaka and disrupted CAT activity, which could result in an oxidative stress state (elevated PCO levels) and might further contribute to cardiac dysfunction, deformities, and mortality.
Collapse
Affiliation(s)
- Zhonglei Ju
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Xin Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Cen Liang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Zhu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Huishu Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
2
|
Parrott JL, Schock DM, Vander Meulen IJ, Mundy L, Pauli B, Peru K, Headley JV. Disrupted development in fathead minnow embryos exposed to wetland waters from the Athabasca Oil Sands Region, Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177407. [PMID: 39515383 DOI: 10.1016/j.scitotenv.2024.177407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
To assess aquatic toxicity of natural wetlands in the Athabasca oil sands region (AOSR) of northern Alberta, fifteen collected water samples were tested for their ability to affect survival and development of fathead minnow embryos. Wetland waters were also assessed for toxicants from natural oil sands bitumen deposits (Na, Cl, metals, naphthenic acids (NAs), naphthenic acid fraction compounds (NAFCs), polycyclic aromatic hydrocarbons (PAHs), and alkylated PAHs). Water samples from four wetlands caused toxicity to fish embryos. The most potent wetland water, HAT-S5, caused significantly decreased hatch success, decreased time-to-hatch, decreased embryonic heart rate and increased deformities (60 % vs controls 2 %). Exposure to wetland waters from Saline Lake (where conductivity was 2320 μS/cm and Na was high) resulted in fish with increased deformities (58 % vs controls 2 %) that were not the results of high conductivity alone. Two other wetland waters (Gateway Bridge and Crane Lake) also disrupted development in fathead minnow embryos. These combined findings suggest that for natural wetland waters causing effects in fish embryos, toxicants other than salinity/conductivity/ions were responsible for the observed effects. The general water chemistry of most wetlands was unremarkable. However, the most potent wetland, HATS5-wtl is a naturally occurring wetland with possible connections to ground water that makes contact with bitumen. The assessment of the toxicity and chemicals present in natural wetlands provides background data for future studies and for design of restoration wetlands for oil sands mining-disturbed landscapes.
Collapse
Affiliation(s)
- Joanne L Parrott
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada.
| | - Danna M Schock
- Palustris Environmental, Athabasca, Alberta T9S 1H8, Canada
| | - Ian J Vander Meulen
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Lukas Mundy
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Bruce Pauli
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Kerry Peru
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - John V Headley
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
3
|
Zhang H, Cui L, Si P, Zhou Y, Zhang Y, Zhang Y, Kong Q. Environmentally relevant concentrations of naphthenic acids initiate intestinal injury and gut microbiota dysbiosis in marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106996. [PMID: 38852546 DOI: 10.1016/j.aquatox.2024.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Naphthenic acids (NAs) are important pollutants in marine crude oils and have obvious toxic effects on marine organisms. However, the effects of NAs on the intestine are largely unknown. Thus, we evaluated the effects of NAs exposure in the intestines of marine medaka. Fish were experimentally exposed to NAs (0.5 mg/L, 5 mg/L, and 10 mg/L) for 96 h and monitored for changes in intestinal histology, markers of oxidative stress, and intestinal microbiome responses. Significant mucosal damage, inflammation, and oxidative stress were observed in the intestines of marine medaka after exposure to NAs. In addition, significant changes in the gut microbiota were observed. Specifically, the relative abundance of Proteobacteria decreased, while that of Verrucomicrobiota increased in the high-concentration exposure group. In addition, nutrient synthesis and metabolism in the gut were affected. The results of this study contribute to a better understanding of the ecological risk of different concentrations of NAs to marine organisms. CAPSULE ABSTRACT: Changes in the gut microbial community of marine medaka (Oryzias melastigma) caused by naphthenic acids in the marine environment were investigated through the assessment of gut inflammatory factors and comprehensive analysis using 16S rDNA high-throughput sequencing. The results indicated the induction of intestinal inflammation and changes in the structural composition of the intestinal flora.
Collapse
Affiliation(s)
- Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China.
| | - Lihua Cui
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Panpan Si
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Yumiao Zhou
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Yu Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Youru Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China; Dongying Institute, Shandong Normal University, Dongying 257092, Shandong, PR China
| |
Collapse
|
4
|
Vieira Y, Fuhr ACFP, Lütke SF, Dotto GL, Oliveira MLS, Silva LFO, Amara FB, Knani S, Alruwaili A, Jemli S. Adsorptive features of cyclohexane carboxylic naphthenic acid on a novel cross-linked polymer developed from spent coffee grounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42889-42901. [PMID: 38884933 DOI: 10.1007/s11356-024-33977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Naphthenic acids (NA) are organic compounds commonly found in crude oil and produced water, known for their recalcitrance and toxicity. This study introduces a new adsorbent, a polymer derived from spent coffee grounds (SCGs), through a straightforward cross-linking method for removing cyclohexane carboxylic acid as representative NA. The adsorption kinetics followed a pseudo-second-order model for the data (0.007 g min-1 mg-1), while the equilibrium data fitted the Sips model ( q m = 140.55 mg g-1). The process's thermodynamics indicated that the target NA's adsorption was spontaneous and exothermic. The localized sterical and energetic aspects were investigated through statistical physical modeling, which corroborated that the adsorption occurred indeed in monolayer, as suggested by the Sips model, but revealed the contribution of two energies per site (n 1 ; n 2 ). The number of molecules adsorbed per site ( n ) was highly influenced by the temperature as n 1 decreased with increasing temperature and n 2 increased. These results were experimentally demonstrated within the pH range between 4 and 6, where both C6H11COO-(aq.) and C6H11COOH(aq.) species coexisted and were adsorbed by different energy sites. The polymer produced was naturally porous and amorphous, with a low surface area of 20 to 30 m2 g-1 that presented more energetically accessible sites than other adsorbents with much higher surface areas. Thus, this study shows that the relation between surface area and high adsorption efficiency depends on the compatibility between the energetic states of the receptor sites, the speciation of the adsorbate molecules, and the temperature range studied.
Collapse
Affiliation(s)
- Yasmin Vieira
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Ana Carolina Ferreira Piazzi Fuhr
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Sabrina Frantz Lütke
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| | | | | | - Fakhreddine Ben Amara
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| | - Salah Knani
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Amani Alruwaili
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia
| |
Collapse
|
5
|
Flynn K, Le M, Hazemi M, Biales A, Bencic DC, Blackwell BR, Bush K, Flick R, Hoang JX, Martinson J, Morshead M, Rodriguez KS, Stacy E, Villeneuve DL. Comparing Transcriptomic Points of Departure to Apical Effect Concentrations For Larval Fathead Minnow Exposed to Chemicals with Four Different Modes Of Action. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:346-362. [PMID: 38743081 PMCID: PMC11305162 DOI: 10.1007/s00244-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
It is postulated that below a transcriptomic-based point of departure, adverse effects are unlikely to occur, thereby providing a chemical concentration to use in screening level hazard assessment. The present study extends previous work describing a high-throughput fathead minnow assay that can provide full transcriptomic data after exposure to a test chemical. One-day post-hatch fathead minnows were exposed to ten concentrations of three representatives of four chemical modes of action: organophosphates, ecdysone receptor agonists, plant photosystem II inhibitors, and estrogen receptor agonists for 24 h. Concentration response modeling was performed on whole body gene expression data from each exposure, using measured chemical concentrations when available. Transcriptomic points of departure in larval fathead minnow were lower than apical effect concentrations across fish species but not always lower than toxic effect concentrations in other aquatic taxa like crustaceans and insects. The point of departure was highly dependent on measured chemical concentration which were often lower than the nominal concentration. Differentially expressed genes between chemicals within modes of action were compared and often showed statistically significant overlap. In addition, reproducibility between identical exposures using a positive control chemical (CuSO4) and variability associated with the transcriptomic point of departure using in silico sampling were considered. Results extend a transcriptomic-compatible fathead minnow high-throughput assay for possible use in ecological hazard screening.
Collapse
Affiliation(s)
- Kevin Flynn
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, US EPA GLTED, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Michelle Le
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, 55804, USA
| | - Monique Hazemi
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, 55804, USA
| | - Adam Biales
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Cincinnati, OH, 45220, USA
| | - David C Bencic
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Cincinnati, OH, 45220, USA
| | - Brett R Blackwell
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Kendra Bush
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, 55804, USA
| | - Robert Flick
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Cincinnati, OH, 45220, USA
| | - John X Hoang
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, 55804, USA
| | - John Martinson
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Cincinnati, OH, 45220, USA
| | - Mackenzie Morshead
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, 55804, USA
| | - Kelvin Santana Rodriguez
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, 55804, USA
| | - Emma Stacy
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, US EPA GLTED, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, US EPA GLTED, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| |
Collapse
|
6
|
Leshuk TC, Young ZW, Wilson B, Chen ZQ, Smith DA, Lazaris G, Gopanchuk M, McLay S, Seelemann CA, Paradis T, Bekele A, Guest R, Massara H, White T, Zubot W, Letinski DJ, Redman AD, Allen DG, Gu F. A Light Touch: Solar Photocatalysis Detoxifies Oil Sands Process-Affected Waters Prior to Significant Treatment of Naphthenic Acids. ACS ES&T WATER 2024; 4:1483-1497. [PMID: 38633367 PMCID: PMC11019557 DOI: 10.1021/acsestwater.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 04/19/2024]
Abstract
Environmental reclamation of Canada's oil sands tailings ponds is among the single largest water treatment challenges globally. The toxicity of oil sands process-affected water (OSPW) has been associated with its dissolved organics, a complex mixture of naphthenic acid fraction components (NAFCs). Here, we evaluated solar treatment with buoyant photocatalysts (BPCs) as a passive advanced oxidation process (P-AOP) for OSPW remediation. Photocatalysis fully degraded naphthenic acids (NAs) and acid extractable organics (AEO) in 3 different OSPW samples. However, classical NAs and AEO, traditionally considered among the principal toxicants in OSPW, were not correlated with OSPW toxicity herein. Instead, nontarget petroleomic analysis revealed that low-polarity organosulfur compounds, composing <10% of the total AEO, apparently accounted for the majority of waters' toxicity to fish, as described by a model of tissue partitioning. These findings have implications for OSPW release, for which a less extensive but more selective treatment may be required than previously expected.
Collapse
Affiliation(s)
- Timothy
M. C. Leshuk
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Zachary W. Young
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Brad Wilson
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Stantec, Waterloo, Ontario, Canada N2L 0A4
| | - Zi Qi Chen
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Danielle A. Smith
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- P&P
Optica, Waterloo, Ontario, Canada N2 V 2C3
| | - Greg Lazaris
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Department
of Mining and Materials Engineering, McGill
University, Montreal, Quebec, Canada H3A 0C5
| | - Mary Gopanchuk
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Sean McLay
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Corin A. Seelemann
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Composite Biomaterials Systems Lab, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Theo Paradis
- Canadian
Natural Resources Ltd., Calgary, Alberta, Canada T2P 4J8
| | - Asfaw Bekele
- Imperial
Oil Ltd., Calgary, Alberta, Canada T2C 5N1
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Rodney Guest
- Suncor Energy Inc., Calgary, Alberta, Canada T2P 3E3
| | - Hafez Massara
- Suncor Energy Inc., Calgary, Alberta, Canada T2P 3E3
- Trans-Northern Pipelines Inc., Richmond Hill, Ontario, Canada L4B 3P6
| | - Todd White
- Teck Resources Ltd., Vancouver, British Columbia, Canada V6C 0B3
| | - Warren Zubot
- Syncrude Canada Ltd., Fort McMurray, Alberta, Canada T9H 0B6
| | - Daniel J. Letinski
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Aaron D. Redman
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - D. Grant Allen
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
| | - Frank Gu
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
7
|
Chen Y, Wang Y, Headley JV, Huang R. Sample preparation, analytical characterization, monitoring, risk assessment and treatment of naphthenic acids in industrial wastewater and surrounding water impacted by unconventional petroleum production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169636. [PMID: 38157903 DOI: 10.1016/j.scitotenv.2023.169636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Industrial extraction of unconventional petroleum results in notable volumes of oil sands process water (OSPW), containing elevated concentrations of naphthenic acids (NAs). The presence of NAs represents an intricate amalgamation of dissolved organic constituents, thereby presenting a notable hurdle for the domain of environmental analytical chemistry. There is growing concern about monitoring the potential seepage of OSPW NAs into nearby groundwater and river water. This review summarizes recent studies on sample preparation, characterization, monitoring, risk assessment, and treatment of NAs in industrial wastewater and surrounding water. Sample preparation approaches, such as liquid-liquid extraction, solid phase microextraction, and solid phase extraction, are crucial in isolating chemical standards, performing molecular level analysis, assessing aquatic toxicity, monitoring, and treating OSPW. Instrument techniques for NAs analysis were reviewed to cover different injection modes, ionization sources, and mass analyzers. Recent studies of transfer and transformation of NAs provide insights to differentiate between anthropogenic and natural bitumen-derived sources of NAs. In addition, related risk assessment and treatment studies were also present for elucidation of environmental implication and reclamation strategies. The synthesis of the current state of scientific knowledge presented in this review targets government regulators, academic researchers, and industrial scientists with interests spanning analytical chemistry, toxicology, and wastewater management.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yongjian Wang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - John V Headley
- Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
8
|
Gasque-Belz L, Colville C, Kurukulasuriya S, Siciliano SD, Hogan N, Weber L, Campbell P, Peters R, Hanson M, Hecker M. Characterization of molecular and apical effects of legacy-contaminated groundwater on early life stages of fathead minnows. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106734. [PMID: 37913685 DOI: 10.1016/j.aquatox.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Mechanistic toxicology approaches represent a promising alternative to traditional live animal testing; however, the often-noted uncertainties concerning the linkages between effects observed at molecular and apical levels curtails the adoption of such approaches. The objective of this study was to apply a novel transcriptomics tool, EcoToxChips, to characterize the effects of complex mixtures of contaminants in fish and to compare molecular response patterns to higher-level biological responses including swimming behavior, deformities, and mortality. Fathead minnow (FHM) embryos were exposed for seven days to increasing concentrations of groundwater collected from moderate (MIAZ) and high (HIAZ) industrial activity zones of a legacy contaminated site. There was a concentration-dependent disruption of photo-dependent swimming responses associated with avoidance behavior patterns and spinal deformities (HIAZ and MIAZ), and an induction of pericardial edema and mortality (HIAZ-10%). Parallel EcoToxChip analyses showed a shift from a majority of upregulated genes at lower concentrations to a majority of downregulated genes at higher concentrations for both treatment conditions. Many of the significantly differentially regulated genes were involved in biological pathways including induction of oxidative stress, activating of several metabolic processes and growth, cell death, and inhibition of signal transduction signaling processes. Several contaminants present in the groundwater mixtures could have contributed to an exceedance of antioxidant system capacities that possibly led to the deformities, altered swimming behaviours, and mortality observed in FHMs. Therefore, molecular response patterns could be linked to apical outcomes observed in this study. Overall, the results observed in this study demonstrate that transcriptomics approaches such as the EcoToxChip system could be supportive of risk assessment of complex contaminated sites.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
9
|
Zhang H, Si P, Kong Q, Ma J. Transcriptome reveals the toxicity and genetic response of zebrafish to naphthenic acids and benzo[a]pyrene at ambient concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114700. [PMID: 36863161 DOI: 10.1016/j.ecoenv.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/14/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Naphthenic acids (NAs) are typical contaminants in heavily crude oil. Benzo[a]pyrene (B[a]P) is also a component of crude oil, but their combined effects have not been systematically explored. In this study, zebrafish (Danio rerio) were used as the test organisms, and behavioral indicators and enzyme activities were used as toxicity indicators. Combined with the effects of environmental concentrations, the toxic effects of low concentrations of commercially available NAs (0.5 mg/LNA) and benzo[a]pyrene (0.8 μg/LBaP) at single and compound exposures (0.5 mg/LNA and 0.8 μg/LBaP) were assayed in zebrafish, and transcriptome sequencing technology was used to explore the molecular mechanism of the two compounds affecting zebrafish from the molecular biology level. Sensitive molecular markers that could indicate the presence of contaminants were screened. The results showed that (1) zebrafish in the NA and BaP exposure groups exhibited increased locomotor behavior, and the mixed exposure group exhibited inhibition of locomotor behavior. Oxidative stress biomarkers showed increased activity under single exposure and decreased activity under the mixed exposure. (2) NA stress led to changes in the activity of transporters and the intensity of energy metabolism; BaP directly stimulates the pathway of actin production. When the two compounds are combined, the excitability of neurons in the central nervous system is decreased, and the actin-related genes are down-regulated. (3) After BaP and Mix treatments, genes were enriched in the cytokine-receptor interaction and actin signal pathway, while NA increased the toxic effect on the mixed treatment group. In general, the interaction between NA and BaP has a synergistic effect on the transcription of zebrafish nerve and motor behavior-related genes, resulting in increased toxicity under combined exposure. The changes in expression of various zebrafish genes are manifested in the changes in the normal movement behavior of zebrafish and the intensification of oxidative stress in the apparent behavior and physiological indicators. CAPSULE ABSTRACT: We investigated the toxicity and genetic alterations caused by NA, B[a]P, and their mixtures in zebrafish in an aquatic environment using transcriptome sequencing technology and comprehensive behavioral analysis. These changes involved energy metabolism, the generation of muscle cells, and the nervous system.
Collapse
Affiliation(s)
- Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Panpan Si
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| | - Jinyue Ma
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| |
Collapse
|
10
|
Gutgesell RM, Jamshed L, Frank RA, Hewitt LM, Thomas PJ, Holloway AC. Naphthenic acid fraction components from oil sands process-affected water from the Athabasca Oil Sands Region impair murine osteoblast differentiation and function. J Appl Toxicol 2022; 42:2005-2015. [PMID: 35894097 PMCID: PMC9804983 DOI: 10.1002/jat.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/08/2022] [Accepted: 07/23/2022] [Indexed: 01/09/2023]
Abstract
The extraction of bitumen from surface mining in the Athabasca Oil Sands Region (AOSR) produces large quantities of oil sands process-affected water (OSPW) that needs to be stored in settling basins near extraction sites. Chemical constituents of OSPW are known to impair bone health in some organisms, which can lead to increased fracture risk and lower reproductive fitness. Naphthenic acid fraction components (NAFCs) are thought to be among the most toxic class of compounds in OSPW; however, the effect of NAFCs on osteoblast development is largely unknown. In this study, we demonstrate that NAFCs from OSPW inhibit osteoblast differentiation and deposition of extracellular matrix, which is required for bone formation. Extracellular matrix deposition was inhibited in osteoblasts exposed to 12.5-125 mg/L of NAFC for 21 days. We also show that components within NAFCs inhibit the expression of gene markers of osteoblast differentiation and function, namely, alkaline phosphatase (Alp), osteocalcin, and collagen type 1 alpha 1 (Col1a1). These effects were partially mediated by the induction of glucocorticoid receptor (GR) activity; NAFC induces the expression of the GR activity marker genes Sgk1 (12.5 mg/L) and p85a (125 mg/L) and inhibits GR protein (125 mg/L) and Opg RNA (12.5 mg/L) expression. This study provides evidence that NAFC concentrations of 12.5 mg/L and above can directly act on osteoblasts to inhibit bone formation and suggests that NAFCs contain components that can act as GR agonists, which may have further endocrine disrupting effects on exposed wildlife.
Collapse
Affiliation(s)
| | - Laiba Jamshed
- Department of Obstetrics and GynecologyMcMaster UniversityHamiltonONCanada
| | - Richard A. Frank
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaBurlingtonONCanada
| | - L. Mark Hewitt
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaBurlingtonONCanada
| | - Philippe J. Thomas
- Environment and Climate Change CanadaNational Wildlife Research CentreOttawaONCanada
| | - Alison C. Holloway
- Department of Obstetrics and GynecologyMcMaster UniversityHamiltonONCanada
| |
Collapse
|
11
|
Kang S, Guo C, Xue C, Ma C, Mu H, Sun L. Toxic Effects of Two Representative Rare Earth Elements (La and Gd) on Danio rerio Based on Transcriptome Analysis. TOXICS 2022; 10:519. [PMID: 36136485 PMCID: PMC9503537 DOI: 10.3390/toxics10090519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The expanding applications of rare earth elements (REEs) in various fields have raised concerns about their biosafety. However, previous studies are insufficient to elucidate their toxic effects and mechanisms of action and whether there are uniform or predictable toxicity patterns among REEs. Herein, we investigated the toxic effects of two representative REEs (lanthanum (La) and gadolinium (Gd)) on zebrafish (Danio rerio) through toxicity experiments and transcriptome analysis. The results of the toxicity experiments showed that the two REEs have similar lethality, with half-lethal concentrations (LC50) at micromolar levels and mixed toxicity showing additive effects. Differential expression gene screening and functional group enrichment analysis showed that La and Gd might affect the growth and development of Danio rerio by interfering with some biological molecules. The two REEs showed significant effects on the metabolic pathways of exogenous or endogenous substances, including glutathione sulfotransferase and acetaldehyde dehydrogenase. Moreover, some basic biological processes, such as DNA replication, the insulin signaling pathway, and the p53 signaling pathway, were significantly enriched. Overall, the toxicity patterns of La and Gd may affect some biological processes with different intensities; however, there are many similarities in their toxicity mechanisms and modes of action. The concentrations investigated in this study were comparable to those of REE residues at highly contaminated sites, thus mimicking the ecotoxicological effects at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Shu Kang
- School of Public Management, Liaoning University, Shenyang 110016, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chenshu Ma
- School of Public Management, Liaoning University, Shenyang 110016, China
- Liaoning Economic Vocational Technological Institute, Shenyang 110016, China
| | - Huaizhong Mu
- School of Public Management, Liaoning University, Shenyang 110016, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
12
|
Zhang WS, Farmer EJ, Muhanzi D, Trudeau VL. Petroleum-derived naphthenic acids disrupt hormone-dependent sexual behaviours in male Western clawed frogs. CONSERVATION PHYSIOLOGY 2022; 10:coac030. [PMID: 35602560 PMCID: PMC9115893 DOI: 10.1093/conphys/coac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Naphthenic acids (NAs), the carboxylic acids found in petroleum, are of emerging concern as they contaminate coastlines after oil spills, leech into freshwater ecosystems of oil sands areas and have wide industrial applications. They are acutely toxic in fish and tadpoles and may be endocrine disruptors at sublethal levels. We characterized androgen-dependent courtship behaviours and their disruption by NAs in male Western clawed frogs, Silurana tropicalis. Courtship primarily consists of males producing low trills and achieving amplexus, a mating position where a male clasps a female. Adult males were exposed for 5 days to 20 mg/l NA and injected with human chorionic gonadotropin to induce calling. The duration of calling activity was significantly reduced by NA exposure. Other acoustic parameters such as dominant frequency, click rate and trill length were not affected. Vocalization and amplexus were both inhibited after NA exposure and restored after 2 weeks of recovery in clean water. To determine possible disruption at the level of the testes, the effects of NA exposure on gene expression of key players in steroidogenesis was determined. Exposure to NAs decreased srd5a on average by ~ 25%. The enzyme 5α-reductase, encoded by srd5a, converts testosterone to its more bioactive form 5α-dihydrotestosterone (DHT), so NAs may be affecting this steroidogenic step. However, the observed upregulation of lhr, star and cyp17a1 suggests that NA-exposed males may be attempting to counteract the reduced potential to produce DHT. Yet, these NA-exposed frogs have dramatically reduced calling duration, so the observed upregulation of star and cyp17a1 is decoupled from the vocalizations. Calling duration and the ability of males to amplex females is reversibly disrupted by NA exposure, implying that environmental reduction and removal of NAs may help improve habitability of contaminated ecosystems.
Collapse
Affiliation(s)
- Wo Su Zhang
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Daniella Muhanzi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
13
|
Reynolds JS, Jackson BL, Madison BN, Elvidge CK, Frank RA, Hasler CT, Headley JV, Hewitt LM, Peru KM, Yakimowski SB, Orihel DM. Fathead Minnows Exposed to Organic Compounds from Oil Sands Tailings as Embryos Have Reduced Survival, Impaired Development, and Altered Behaviors That Persist into Larval Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1319-1332. [PMID: 35188283 PMCID: PMC9322567 DOI: 10.1002/etc.5314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Our study evaluated whether exposure to naphthenic acid fraction compounds (NAFCs) extracted from oil sands process-affected waters (OSPW) has adverse effects on fish embryos that persist into later life. We exposed fathead minnow (Pimephales promelas) embryos to concentrations of NAFCs found in OSPW (2.5-54 mg/L) for 7 days (1 day postfertilization to hatch), then raised surviving larvae in outdoor mesocosms of uncontaminated lake water for 1 month. Embryos exposed to NAFCs were more likely to exhibit malformations (by up to 8-fold) and had slower heart rates (by up to 24%) compared to controls. Fish raised in uncontaminated lake water following exposure to NAFCs as embryos, were 2.5-fold less likely to survive during the larval stage than control fish. These fish also showed up to a 45% decrease in swim activity and a 36% increase in swim burst events during behavioral tests relative to controls. We conclude that exposure to NAFCs during the embryonic stage can have lasting effects on fish survival, physiology, and behavior that persist at least through the larval stage. These findings of delayed mortalities and persistent sublethal effects of embryonic NAFC exposure are relevant to informing the development of regulations on treated OSPW releases from mining operations. Environ Toxicol Chem 2022;41:1319-1332. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Barry N. Madison
- Department of BiologyQueen's UniversityKingstonOntarioCanada
- School of Environmental StudiesQueen's UniversityKingstonOntarioCanada
| | | | - Richard A. Frank
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaBurlingtonOntarioCanada
| | - Caleb T. Hasler
- Department of BiologyUniversity of WinnipegWinnipegManitobaCanada
| | - John V. Headley
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaSaskatoonSaskatchewanCanada
| | - L. Mark Hewitt
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaBurlingtonOntarioCanada
| | - Kerry M. Peru
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaSaskatoonSaskatchewanCanada
| | | | - Diane M. Orihel
- Department of BiologyQueen's UniversityKingstonOntarioCanada
- School of Environmental StudiesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
14
|
Duncan KD, Hawkes JA, Berg M, Clarijs B, Gill CG, Bergquist J, Lanekoff I, Krogh ET. Membrane Sampling Separates Naphthenic Acids from Biogenic Dissolved Organic Matter for Direct Analysis by Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3096-3105. [PMID: 35175743 PMCID: PMC8892831 DOI: 10.1021/acs.est.1c07359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Oil sands process waters can release toxic naphthenic acids (NAs) into aquatic environments. Analytical techniques for NAs are challenged by sample complexity and interference from naturally occurring dissolved organic matter (DOM). Herein, we report the use of a poly(dimethylsiloxane) (PDMS) polymer membrane for the on-line separation of NAs from DOM and use direct infusion electrospray ionization mass spectrometry to yield meaningful qualitative and quantitative information with minimal sample cleanup. We compare the composition of membrane-permeable species from natural waters fortified with a commercial NA mixture to those derived from weak anion exchange solid-phase extraction (SPE) using high-resolution mass spectrometry. The results show that SPE retains a wide range of carboxylic acids, including biogenic DOM, while permeation through PDMS was selective for petrogenic classically defined NAs (CnH2n+zO2). A series of model compounds (log Kow ∼1-7) were used to characterize the perm-selectivity and reveal the separation is based on hydrophobicity. This convenient sample cleanup method is selective for the O2 class of NAs and can be used prior to conventional analysis or as an on-line analytical strategy when coupled directly to mass spectrometry.
Collapse
Affiliation(s)
- Kyle D. Duncan
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Department
of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Jeffrey A. Hawkes
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Mykelti Berg
- Applied
Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Bas Clarijs
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Chris G. Gill
- Applied
Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Columbia, Canada V8W 2Y2
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jonas Bergquist
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Ingela Lanekoff
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Erik T. Krogh
- Applied
Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Columbia, Canada V8W 2Y2
| |
Collapse
|
15
|
Huang Z, Gao N, Zhang S, Xing J, Hou J. Investigating the toxically homogenous effects of three lanthanides on zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109251. [PMID: 34861418 DOI: 10.1016/j.cbpc.2021.109251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
The adverse effects of rare earth elements (REEs) have been increasingly reported in the past decades and have raised concern about their environmental toxicities. However, the available data is insufficient to elucidate the toxic effects, mechanisms, and whether the toxicity across all REEs is uniform. In this study, zebrafish were exposed to 0, 0.8, 1.6, 3.2, 6.4, 12.8 and 25.6 mg/L Ln(NO3)3•6H2O to test the acute toxicity of La(III), Ce(III), and Nd(III). LC50 of the three lanthanides was compared to the extent of the impact on gene expression. We carried out the functionally grouped network-based transcriptome analysis using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore the molecular mechanisms. The acute toxicity test showed that LC50 of La(III), Ce(III), and Nd(III) were 2.53, 2.03, and 2.76 mg/L, respectively. Consistent with acute toxicity, Ce(III) caused a little more DEGs than La(III) and Nd(III). Some biological processes such as metabolism of xenobiotics, oocyte meiosis, steroid biosynthesis, DNA replication, and p53 signaling pathway were affected following exposure of all the three lanthanides. Ce(III) also induced changes in the chemokine-mediated signaling pathway. The results indicated that the lethality is comparable, and the toxic patterns are similar across the three lanthanides. This study gives comparative research on the toxicities of three lanthanides to model organism zebrafish.
Collapse
Affiliation(s)
- Zhihui Huang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ning Gao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Siyi Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jianing Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
16
|
Yusuf A, O'Flynn D, White B, Holland L, Parle-McDermott A, Lawler J, McCloughlin T, Harold D, Huerta B, Regan F. Monitoring of emerging contaminants of concern in the aquatic environment: a review of studies showing the application of effect-based measures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5120-5143. [PMID: 34726207 DOI: 10.1039/d1ay01184g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity is increasingly a global cause of concern mainly due to widespread changes in climate conditions and increased consumptive water use driven by the exponential increase in population growth. In addition, increased pollution of fresh water sources due to rising production and consumption of pharmaceuticals and organic chemicals will further exacerbate this concern. Although surface water contamination by individual chemicals is often at very low concentration, pharmaceuticals for instance are designed to be efficacious at low concentrations, creating genuine concern for their presence in freshwater sources. Furthermore, the additive impact of multiple compounds may result in toxic or other biological effects that otherwise will not be induced by individual chemicals. Globally, different legislative frameworks have led to pre-emptive efforts which aim to ensure good water ecological status. Reports detailing the use and types of effect-based measures covering specific bioassay batteries that can identify specific mode of actions of chemical pollutants in the aquatic ecosystem to evaluate the real threat of pollutants to aquatic lives and ultimately human lives have recently emerged from monitoring networks such as the NORMAN network. In this review, we critically evaluate some studies within the last decade that have implemented effect-based monitoring of pharmaceuticals and organic chemicals in aquatic fauna, evaluating the occurrence of different chemical pollutants and the impact of these pollutants on aquatic fauna with special focus on pollutants that are contaminants of emerging concern (CEC) in urban wastewater. A critical discussion on studies that have used effect-based measures to assess biological impact of pharmaceutical/organic compound in the aquatic ecosystem and the endpoints measurements employed is presented. The application of effect-based monitoring of chemicals other than assessment of water quality status is also discussed.
Collapse
Affiliation(s)
- Azeez Yusuf
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Dylan O'Flynn
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Blanaid White
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Anne Parle-McDermott
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Jenny Lawler
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Thomas McCloughlin
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Denise Harold
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
| | - Belinda Huerta
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Fiona Regan
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| |
Collapse
|
17
|
Transcriptome Analysis of Environmental Pseudomonas Isolates Reveals Mechanisms of Biodegradation of Naphthenic Acid Fraction Compounds (NAFCs) in Oil Sands Tailings. Microorganisms 2021; 9:microorganisms9102124. [PMID: 34683445 PMCID: PMC8540809 DOI: 10.3390/microorganisms9102124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Naphthenic acid fraction compounds (NAFCs) are highly recalcitrant constituents of oil sands tailings. Although some microorganisms in the tailings can individually and synergistically metabolize NAFCs, the biochemical mechanisms that underpin these processes are hitherto unknown. To this end, we isolated two microorganisms, Pseudomonas protegens and Pseudomonas putida, from oils sands tailings and analyzed their transcriptomes to shed light on the metabolic processes employed by them to degrade and detoxify NAFCs. We identified 1048, 521 and 1434 genes that are upregulated in P. protegens, P. putida and a 1:1 co-culture of the strains, respectively. We subsequently enumerated the biochemical activities of enriched genes and gene products to reveal the identities of the enzymes that are associated with NAFC degradation. Separately, we analyzed the NAFCs that are degraded by the two pseudomonads and their 1:1 co-culture and determined the composition of the molecules using mass spectrometry. We then compared these molecular formulas to those of the cognate substrates of the enriched enzymes to chart the metabolic network and understand the mechanisms of degradation that are employed by the microbial cultures. Not only does the consortium behave differently than the pure cultures, but our analysis also revealed the mechanisms responsible for accelerated rate of degradation of NAFCs by the co-culture. Our findings provide new directions for engineering or evolving microorganisms and their consortia for degrading NAFCs more stably and aggressively.
Collapse
|
18
|
Pomfret SM, Brua RB, Milani D, Yates AG. Metabolomic Analysis of Hexagenid Mayflies Exposed to Sublethal Concentrations of Naphthenic Acid. Front Mol Biosci 2021; 8:669082. [PMID: 34212003 PMCID: PMC8239125 DOI: 10.3389/fmolb.2021.669082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
The oil sands region in northeastern Alberta, Canada contain approximately 165 billion barrels of oil making it the third largest oil reserves in the world. However, processing of extracted bitumen generates vast amounts of toxic byproduct known as oil sands process waters. Naphthenic acids and associated sodium naphthenate salts are considered the primary toxic component of oil sands process waters. Although a significant body of work has been conducted on naphthenic acid toxicity at levels comparable to what is observed in current oil sands process waters, it is also important to understand any impacts of exposure to sublethal concentrations. We conducted a microcosm study using the mayfly Hexagenia spp. to identify sublethal impacts of naphthenic acid exposure on the survival, growth, and metabolome across a concentration gradient (0–100 μg L−1) of sodium naphthenate. Nuclear magnetic resonance-based metabolomic analyses were completed on both the polar and lipophilic extracted fractions of whole organism tissue. We observed a positive relationship between sodium naphthenate concentration and mean principal component score of the first axis of the polar metabolome indicating a shift in the metabolome with increasing naphthenic acid exposure. Eleven metabolites correlated with increased naphthenic acid concentration and included those involved in energy metabolism and apoptosis regulation. Survival and growth were both high and did not differ among concentrations, with the exception of a slight increase in mortality observed at the highest concentration. Although lethal concentrations of naphthenic acids in other studies are higher (150–56,200 μg L−1), our findings suggest that physiological changes in aquatic invertebrates may begin at substantially lower concentrations. These results have important implications for the release of naphthenic acids into surface waters in the Alberta oil sands region as an addition of even small volumes of oil sands process waters could initiate chronic effects in aquatic organisms. Results of this research will assist in the determination of appropriate discharge thresholds should oil sands process waters be considered for environmental release.
Collapse
Affiliation(s)
- Sarah M Pomfret
- StrEAMS Laboratory, Department of Geography and Canadian Rivers Institute, Western University, London, ON, Canada
| | - Robert B Brua
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Danielle Milani
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Adam G Yates
- StrEAMS Laboratory, Department of Geography and Canadian Rivers Institute, Western University, London, ON, Canada
| |
Collapse
|
19
|
OuYang MN, Liu X, Guo HM, Lu ZH, Zhou DD, Yang ZH. The different toxic effects of metalaxyl and metalaxyl-M on Tubifex tubifex. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111587. [PMID: 33396110 DOI: 10.1016/j.ecoenv.2020.111587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Metalaxyl and Metalaxyl-M are the fungicides that widely used in many countries. In this study, the environmental behaviors between metalaxyl and metalaxyl-M in Tubifex tubifex (T. tubifex) were quantitative analyzed by using a high performance liquid chromatography with photo-diode-array-detector (HPLC-DAD). Results demonstrated that there was no significant difference (p > 0.05) in the concentration of metalaxyl and metalaxyl-M in T. tubifex during the exposure process. However, the dissipation behaviors of metalaxyl and metalaxyl-M in T. tubifex were different (p < 0.05) during the non-exposure culture process. Meanwhile, the toxic effects were also evaluated by comparing the different influences of these two compounds on related physiological indicators, and functional enzyme activities. The survival rates of T. tubifex were 63.33 ± 15.28% (20 mg L-1), 63.33 ± 5.77% (200 mg L-1) treated with metalaxyl and were 50.00 ± 10.00% (20 mg L-1), 46.67 ± 11.55 (200 mg L-1) treated with metalaxyl-M at the non-exposure culture process. The autotomy rates were increased significantly compared with the initial in all treatments. Besides, the activities of CAT, SOD, and GST in T. tubifex were also inhibited by metalaxyl and metalaxyl-M treatments. Finally, the high-throughput transcriptome sequencing technology was applied to investigate the metabolic pathways of target analytes in T. tubifex, and results proved that the metabolic pathways associated with human diseases (such as viral myocarditis) were up-regulated expression for metalaxyl and metalaxyl-M treatments, and metalaxyl-M up-regulated more significantly. All the results demonstrated that metalaxyl-M had a higher toxicity than metalaxyl on T. tubifex.
Collapse
Affiliation(s)
- Mei-Nan OuYang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liu
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao-Ming Guo
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi-Heng Lu
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong-Dong Zhou
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Eadie A, Vasquez IC, Liang X, Wang X, Souders CL, El Chehouri J, Hoskote R, Feswick A, Cowie AM, Loughery JR, Martyniuk CJ. Residual molecular and behavioral effects of the phenylpyrazole pesticide fipronil in larval zebrafish (Danio rerio) following a pulse embryonic exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100743. [PMID: 32977147 DOI: 10.1016/j.cbd.2020.100743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022]
Abstract
Pesticides are typically applied to crops as acute applications, and residual effects of such intermittent exposures are not often characterized in developing fish. Fipronil is an agricultural pesticide that inhibits γ-amino-butyric acid (GABA) gated chloride channels. In this study, zebrafish (Danio rerio) embryos were exposed for 48 h (starting at ~3 h post fertilization, hpf) to various concentrations of fipronil (0.02 μg/L up to 4000 μg/L). Following this acute exposure, a subset of fish was transferred to clean water for a 7-day depuration phase. We hypothesized that a pulse exposure to fipronil during critical periods of central nervous system development would adversely affect fish later in life. After a 48 hour pulse exposure, survival was reduced in embryos exposed to 2 μg fipronil/L or greater. However, there was no further mortality during the depuration phase, nor were there changes in body length nor notochord length in larvae 9 dpf (days post-fertilization) compared to controls. Additional experiments were carried out at higher concentrations over 96 h (up to 4 dpf) to also elucidate developmental effects and teratogenicity of fipronil (43.7 μg/L up to 4370 μg/L). Fipronil at these higher concentrations significantly impacted the development of zebrafish, and the following morphometric and teratogenic effects were observed in 4 dpf fish; reduced body length, yolk sac and pericardial edema, reduced midbrain length, reduced optic and otic diameter, and truncation of the lower jaw. In depurated fish, we hypothesized that there would exist residual effects of exposure at the molecular level. Transcriptome profiling was therefore conducted on 9 dpf depurated larvae exposed initially for 48 h to one dose of either 0.2 μg/L, 200 μg/L or 2000 μg/L fipronil. The expression of gene networks associated with glycogen and omega-3-fatty acid metabolism were decreased in larvae exposed to each of the three concentrations of fipronil, suggesting metabolic disruption. Moreover, transcriptomics revealed that fipronil suppressed gene networks related to light-dark adaptation, photoperiod sensing, and circadian rhythm. Based on these data, we tested fish for altered behavioral responses in a Light-Dark preference test. Larvae exposed to >200 μg fipronil/L as embryos showed fewer number of visits (20-30% less) to the dark zone compared to controls. Larvae also spent a lower amount of time in the dark zone compared to controls, suggesting that fipronil strengthened dark avoidance behavior which is indicative of anxiety. This study demonstrates that a short pulse exposure to fipronil can affect transcriptome networks for metabolism, circadian rhythm, and response to light in fish after depuration, and these molecular responses are hypothesized to be related to aberrant behavioral effects observed in the light-dark preference test.
Collapse
Affiliation(s)
- Ashley Eadie
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Isabel Cristina Vasquez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaohong Wang
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jana El Chehouri
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rohit Hoskote
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - April Feswick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Andrew M Cowie
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Jennifer R Loughery
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Christopher J Martyniuk
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada; Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Canadian Rivers Institute, Canada; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
21
|
Adamovsky O, Buerger AN, Vespalcova H, Sohag SR, Hanlon AT, Ginn PE, Craft SL, Smatana S, Budinska E, Persico M, Bisesi JH, Martyniuk CJ. Evaluation of Microbiome-Host Relationships in the Zebrafish Gastrointestinal System Reveals Adaptive Immunity Is a Target of Bis(2-ethylhexyl) Phthalate (DEHP) Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5719-5728. [PMID: 32255618 DOI: 10.1021/acs.est.0c00628] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To improve physical characteristics of plastics such as flexibility and durability, producers enrich materials with phthalates such as di-2-(ethylhexyl) phthalate (DEHP). DEHP is a high production volume chemical associated with metabolic and immune disruption in animals and humans. To reveal mechanisms implicated in phthalate-related disruption in the gastrointestinal system, male and female zebrafish were fed DEHP (3 ppm) daily for two months. At the transcriptome level, DEHP significantly upregulated gene networks in the intestine associated with helper T cells' (Th1, Th2, and Th17) specific pathways. The activation of gene networks associated with adaptive immunity was linked to the suppression of networks for tight junction, gap junctional intercellular communication, and transmembrane transporters, all of which are precursors for impaired gut integrity and performance. On a class level, DEHP exposure increased Bacteroidia and Gammaproteobacteria and decreased Verrucomicrobiae in both the male and female gastrointestinal system. Further, in males there was a relative increase in Fusobacteriia and Betaproteobacteria and a relative decrease in Saccharibacteria. Predictive algorithms revealed that the functional shift in the microbiome community, and the metabolites they produce, act to modulate intestinal adaptive immunity. This finding suggests that the gut microbiota may contribute to the adverse effects of DEHP on the host by altering metabolites sensed by both intestinal and immune Th cells. Our results suggest that the microbiome-gut-immune axis can be modified by DEHP and emphasize the value of multiomics approaches to study microbiome-host interactions following chemical perturbations.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amanda N Buerger
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Hana Vespalcova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Shahadur R Sohag
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amy T Hanlon
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Pamela E Ginn
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Serena L Craft
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Stanislav Smatana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 61266 Brno, Czech Republic
| | - Eva Budinska
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Maria Persico
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|