1
|
Li X, Hu S, Yu Z, He F, Zhao X, Liu R. New Evidence for the Mechanisms of Nanoplastics Amplifying Cadmium Cytotoxicity: Trojan Horse Effect, Inflammatory Response, and Calcium Imbalance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9471-9485. [PMID: 40350783 DOI: 10.1021/acs.est.5c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Nanoplastics (NPs) are emerging pollutants worldwide. Particularly worrisome is that although studies have reported that NPs can amplify the biotoxicity of environmental pollutants, the specific mechanism remains unclear. Here, we found that NPs, even without significant toxicity (cell survival: 99.11%), amplified the hepatocyte toxicity of Cd2+. Mechanistically, higher Cd2+ uptake (Δ = 23.80%) combined with crucial intracellular desorption behavior of Cd2+ loaded in NPs (desorption rate: 82.70%) were identified as prerequisites for NPs amplifying Cd2+ cytotoxicity. As for toxigenic pathways, the inflammatory response and calcium (Ca) signaling pathway were identified as the primary molecular events leading to the amplification of Cd2+ cytotoxicity. Further phenotypic monitoring revealed that NPs synergized with Cd2+ to induce more severe pyroptosis and apoptosis by activating the inflammatory caspase-1-dependent and Ca2+-mitochondrial-caspase-3 pathways to a greater extent, respectively. This study reveals and proves for the first time the "Trojan horse" effects of NPs, thus elucidating the actual mechanisms by which NPs act as toxicity amplifiers of pollutants, providing significant insights into accurate risk assessment of NPs in composite pollution.
Collapse
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Zelian Yu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Falin He
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Chen M, He L, Wang D, Xie L, Zhang Y, Xu N, Jiang J, Li B. Facilitated transport of cadmium by biochar colloids aged with ultraviolet-irradiation in saturated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178693. [PMID: 39892240 DOI: 10.1016/j.scitotenv.2025.178693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Little is known about the transport of heavy metals such as cadmium (Cd(II)) with aged biochar colloids in natural soils. Herein, we investigated the cotransport behaviors of Cd(II) with ultraviolet-irradiation aged biochar colloids pyrolyzed at 400 °C (ABC400) and 700 °C (ABC700) in saturated paddy soils. Pristine biochar colloids were included for comparison. Our results showed that Cd(II) transport was significantly facilitated by pristine and aged biochar colloids in saturated paddy soils, compared to the negligible breakthrough of Cd(II) without biochar colloids. This is likely because biochar colloids acted as vehicles carrying adsorbed Cd(II) during cotransport. Compared with pristine biochar colloids, the aged biochar colloids (especially ABC400) exhibited a greater enhancement effect, with 1.4-3.7 times Cd(II) transport in soils, likely due to stronger sorption affinity and higher mobility of aged biochar colloids towards Cd(II). Synergistic transport of aged biochar colloids with Cd(II) was relatively lower in the red soil than that in the huangni soil, probably related to the higher content of iron oxides, larger specific surface area, and lower content of soil organic matter in the red soil. A two-site kinetic retention model was employed to successfully simulate the cotransport of aged biochar colloids with Cd(II) in paddy soils. Our findings illustrate that light irradiation could accelerate the mobility of biochar colloids, as well as their synergistic carrier of Cd(II). This could trigger the potential cotransport risks when biochar is applied for field remediation of Cd-contaminated soils over a long period of time.
Collapse
Affiliation(s)
- Ming Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Lei He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dengjun Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Limei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yue Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bowen Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
3
|
Wang X, Dong Z, Zhao Q, Li C, Fan WH. Alleviative effects of C 60 fullerene nanoparticles on arsenate transformation and toxicity to Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174765. [PMID: 39004362 DOI: 10.1016/j.scitotenv.2024.174765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/19/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Widely-used C60 fullerene nanoparticles (C60) result in their release into the aquatic environment, which may affect the distribution and toxicity of pollutants such as arsenic (As), to aquatic organism. In this study, arsenate (As(V)) accumulation, speciation and subcellular distribution was determined in Danio rerio (zebrafish) intestine, head and muscle tissues in the presence of C60. Meanwhile we compared how single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO) and graphene (GN) nanoparticles alter the behaviors of As(V). Results showed that C60 significantly inhibited As accumulation and toxicity in D. rerio, due to a decrease in total As and monomethylarsonic acid (MMA) and As(V) species concentrations, a lower relative distribution in the metal-sensitive fraction (MSF). It was attributed that C60 may coat As(V) ion channels and consequently, affect the secretion of digestive enzymes in the gut, favoring As excretion and inhibiting As methylation. Similarly, MWCNTs reduced the species concentration of MMA and As(V) in the intestines, low GSH (glutathione) contents in the intestine. Due to the disparity of other carbon-based nanomaterial morphologies, SWCNTs, GO and GN exhibited the various effects on the toxicity of As(V). In addition, the possible pathway of arsenobetaine (AsB) biosynthesis included migration from the intestine to muscle in D. rerio, with the precursor of AsB likely to be 2-dimethylarsinylacetic acid (DMAA). The results of this study suggest that C60 is beneficial for controlling As(V) pollution and reducing the impact of As(V) biogeochemical cycles throughout the ecosystem.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Environment and Economy, Henan Finance University, Zhengzhou 450046, PR China; School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Qing Zhao
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Chengwei Li
- College of Environment and Economy, Henan Finance University, Zhengzhou 450046, PR China
| | - Wen-Hong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China.
| |
Collapse
|
4
|
Chen C, Zhang J, Zhang G, Wang D, Wang J, Cai D, Wu Z. A primary battery for efficient cadmium contamination remediation and electricity generation. FUNDAMENTAL RESEARCH 2024; 4:868-881. [PMID: 39156573 PMCID: PMC11330106 DOI: 10.1016/j.fmre.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 03/06/2023] [Indexed: 08/20/2024] Open
Abstract
In this work, two kinds of primary batteries, both of which included a Zn anode, C rod cathode, copper wire and electrolyte composed of Cd2+-contaminated water or soil, were constructed in the first attempt to both remove Cd2+ and generate electricity. Unlike traditional technologies such as electrokinetic remediation with high energy consumption, this technology could realize Cd2+ migration to aggregation and solidification and generate energy at the same time through simultaneous galvanic reactions. The passive surface of Zn and C was proven via electrochemical measurements to be porous to maintain the relatively active galvanic reactions for continuous Cd2+ precipitation. Cd2+ RE (removal efficiency) and electricity generation were investigated under different conditions, based on which two empirical models were established to predict them successfully. In soil, KCl was added to desorb Cd2+ from soil colloids to promote Cd2+ removal. These systems were also proven to remove Cd2+ efficiently when their effects on plants, zebrafish, and the soil bacterial community were tested. LEDs could be lit for days by utilizing the electricity produced herein. This work provides a novel, green, and low-cost route to remediate Cd2+ contamination and generate electricity simultaneously, which is of extensive practical significance in the environmental and energy fields.
Collapse
Affiliation(s)
- Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Guilong Zhang
- School of Pharmacy, Binzhou Medical University, Yanta 264003, China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
5
|
Shen R, Hussain K, Liu N, Li J, Yu J, Zhao J, Li W, Yang S. Ecotoxicity of Cadmium along the Soil-Cotton Plant-Cotton Bollworm System: Biotransfer, Trophic Accumulation, Plant Growth, Induction of Insect Detoxification Enzymes, and Immunocompetence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14326-14336. [PMID: 38870410 PMCID: PMC11212622 DOI: 10.1021/acs.jafc.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Cadmium (Cd) is a hazardous element that may jeopardize environmental safety and human health through biotransfer and trophic accumulation. Here, we tested Cd toxicity on cotton plants, cotton bollworms, and their responses. Results demonstrated that Cd accumulated in plant roots, aerial parts, insect larvae, pupae, and frass in a dose-dependent pattern. The ∼9.35 mg kg-1 of Cd in plant aerial parts, ∼3.68 in larvae, ∼6.43 in pupae, and high transfer coefficient (∼5.59) indicate significant mobility. The ∼19.61 mg kg-1 of Cd in larvae frass suggests an effective detoxification strategy, while BAFcotton (∼1.14) and BAFworm (∼0.54) indicated low bioaccumulation. Cadmium exposure resulted in compromised plant growth and yield as well as alterations in photosynthetic pigment contents, antioxidant enzyme activities, and certain life history traits of cotton bollworms. Furthermore, carboxylesterase activity and encapsulation rates of insect larvae decreased with increasing Cd concentrations, whereas acetylcholinesterase, phenol oxidase, glutathione S-transferase, and multifunctional oxidase exhibited hormesis responses.
Collapse
Affiliation(s)
- Ruoyao Shen
- School
of Ecology and Environment, Anhui Normal
University, Wuhu 241002, China
| | - Khateeb Hussain
- School
of Ecology and Environment, Anhui Normal
University, Wuhu 241002, China
| | - Ning Liu
- School
of Ecology and Environment, Anhui Normal
University, Wuhu 241002, China
| | - Jie Li
- School
of Ecology and Environment, Anhui Normal
University, Wuhu 241002, China
| | - Jiaming Yu
- School
of Ecology and Environment, Anhui Normal
University, Wuhu 241002, China
| | - Juan Zhao
- School
of Ecology and Environment, Anhui Normal
University, Wuhu 241002, China
| | - Wenwen Li
- School
of Ecology and Environment, Anhui Normal
University, Wuhu 241002, China
| | - Shiyong Yang
- School
of Ecology and Environment, Anhui Normal
University, Wuhu 241002, China
- Collaborative
Innovation Center for Recovery and Reconstruction of Degraded Ecosystem
in Wanjing Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| |
Collapse
|
6
|
Guo W, Zhang J, Zhang X, Ren Q, Zheng G, Zhang J, Nie G. Environmental cadmium exposure perturbs systemic iron homeostasis via hemolysis and inflammation, leading to hepatic ferroptosis in common carp (Cyprinus carpio L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116246. [PMID: 38537478 DOI: 10.1016/j.ecoenv.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Cadmium (Cd) pollution is considered a pressing challenge to eco-environment and public health worldwide. Although it has been well-documented that Cd exhibits various adverse effects on aquatic animals, it is still largely unknown whether and how Cd at environmentally relevant concentrations affects iron metabolism. Here, we studied the effects of environmental Cd exposure (5 and 50 μg/L) on iron homeostasis and possible mechanisms in common carp. The data revealed that Cd elevated serum iron, transferrin saturation and iron deposition in livers and spleens, leading to the disruption of systemic iron homeostasis. Mechanistic investigations substantiated that Cd drove hemolysis by compromising the osmotic fragility and inducing defective morphology of erythrocytes. Cd concurrently exacerbated hepatic inflammatory responses, resulting in the activation of IL6-Stat3 signaling and subsequent hepcidin transcription. Notably, Cd elicited ferroptosis through increased iron burden and oxidative stress in livers. Taken together, our findings provide evidence and mechanistic insight that environmental Cd exposure could undermine iron homeostasis via erythrotoxicity and hepatotoxicity. Further investigation and ecological risk assessment of Cd and other pollutants on metabolism-related effects is warranted, especially under the realistic exposure scenarios.
Collapse
Affiliation(s)
- Wenli Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jinjin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaoqian Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangzhe Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
7
|
Li X, Zheng Y, Lu L, Eom J, Ru S, Li Y, Wang J. Trophic transfer of micro- and nanoplastics and toxicity induced by long-term exposure of nanoplastics along the rotifer (Brachionus plicatilis)-marine medaka (Oryzias melastigma) food chain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123599. [PMID: 38369093 DOI: 10.1016/j.envpol.2024.123599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are emerging pollutants in the ocean, but their transfer and toxicity along the food chains are unclear. In this study, a marine rotifer (Brachionus plicatilis)-marine medaka (Oryzias melastigma) food chain was constructed to evaluate the transfer of polystyrene MPs and NPs (70 nm, 500 nm, and 2 μm, 2000 μg/L) and toxicity of 70 nm PS-NPs (0, 20, 200, and 2000 μg/L) on marine medaka after long-term food chain exposure. The results showed that the amount of 70 nm NPs accumulated in marine medaka was 1.24 μg/mg, which was significantly higher than that of 500 nm NPs (0.87 μg/mg) and 2 μm MP (0.69 μg/mg). Long-term food chain exposure to NPs caused microflora dysbiosis, resulting in activation of toll-like receptor 4 (TLR4) pathway, which induced liver inflammation. Moreover, NPs food chain exposure increased liver and muscle tissue triglyceride and lactate content, but decreased the protein, sugar, and glycogen content. NPs food chain exposure impaired reproductive function and inhibited offspring early development, which might pose a threat to the sustainability of marine medaka population. Overall, the study revealed the transfer of MPs and NPs and the effects of NPs on marine medaka along the food chain.
Collapse
Affiliation(s)
- Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lin Lu
- School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Junho Eom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
8
|
Gao S, Zheng F, Yue L, Chen B. Chronic cadmium exposure impairs flight behavior by dampening flight muscle carbon metabolism in bumblebees. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133628. [PMID: 38301442 DOI: 10.1016/j.jhazmat.2024.133628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Cadmium pollution affects the global ecosystem because cadmium can be transferred up the food chain. The bumblebee, Bombus terrestris, is an important insect pollinator. Their foraging activity on flowers exposes them to harmful heavy metals, which damages their health and leads to massive population declines. However, the effects of chronic exposure to heavy metals on the flight performance of bumblebees have not yet been characterized. Here, we studied variation in the flight capacity of bumblebees induced by chronic cadmium exposure at field-realistic concentrations using behavioral, physiological, and molecular approaches. Chronic cadmium exposure caused a significant reduction in the duration, distance, and mean velocity of bumblebee flight. Transcriptome analysis showed that the impairment of carbon metabolism and mitochondrial dysfunction in the flight muscle were the primary causes. Physiological, biochemical, and metabolomic analyses validated disruptions in energy metabolism, and impairments in mitochondrial respiratory chain complexes activities. Histological analysis revealed muscle fiber damage and mitochondrial loss. Exogenous decanoic acid or citric acid partially restored sustained flight ability of bumblebees by mitigating muscle fiber damage and increasing energy generation. These findings provide insights into how long-term cadmium stress affects the flight ability of insects and will aid human muscle or exercise-related disease research.
Collapse
Affiliation(s)
- Shen Gao
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fei Zheng
- College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yue
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bing Chen
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
9
|
Roy R, Kempter L, Philippe A, Bollinger E, Grünling L, Sivagnanam M, Meyer F, Feckler A, Seitz F, Schulz R, Bundschuh M. Aging of nanosized titanium dioxide modulates the effects of dietary copper exposure on Daphnia magna - an assessment over two generations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116031. [PMID: 38309236 DOI: 10.1016/j.ecoenv.2024.116031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Nanosized titanium dioxide (nTiO2) is widely used in products, warranting its discharge from various sources into surface water bodies. However, nTiO2 co-occurs in surface waters with other contaminants, such as metals. Studies with nTiO2 and metals have indicated that the presence of natural organic matter (NOM) can mitigate their toxicity to aquatic organisms. In addition, "aging" of nTiO2 can affect toxicity. However, it is a research challenge, particularly when addressing sublethal responses from dietary exposure over multiple generations. We, therefore exposed the alga Desmodesmus subspicatus to nTiO2 (at concentrations of 0.0, 0.6 and 3.0 mg nTiO2/L) in nutrient medium aged for 0 or 3 days with copper (Cu) at concentrations of 0 and 116 µg Cu/L and with NOM at concentrations equivalent to 0 and 8 mg total organic carbon (TOC) per litre. Subsequently, the exposed alga was fed to Daphnia magna for 23 days over two generations and survival, reproduction and body length were assessed as endpoints of toxicity. In parallel, Cu accumulation and depuration from D. magna were measured. The results indicate that the reproduction of D. magna was the most sensitive parameter in this study, being reduced by 30% (at both parental (F0) and filial (F1) generations) and 50% (at F0 but not F1) due to the dietary Cu exposure in combination with nTiO2 for 0 and 3 days aging, respectively. There was no relationship between the effects observed on reproduction and Cu body burden in D. magna. Moreover, D. magna from the F1 generation showed an adaptive response to Cu in the treatment with 3.0 mg nTiO2/L aged for 3 days, potentially due to epigenetic inheritance. Unexpectedly, the presence of NOM hardly changed the observed effects, pointing towards the function of algal exopolymeric substances or intracellular organic matter, rendering the NOM irrelevant. Ultimately, the results indicate that the transferability of the impacts observed during the F0 to the responses in the F1 generation is challenging due to opposite effect directions. Additional mechanistic studies are needed to unravel this inconsistency in the responses between generations and to support the development of reliable effect models.
Collapse
Affiliation(s)
- Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany.
| | - Lucas Kempter
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Allan Philippe
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Eric Bollinger
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Lea Grünling
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | | | - Frederik Meyer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Alexander Feckler
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Frank Seitz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
10
|
Guo W, Gao B, Zhang X, Ren Q, Xie D, Liang J, Li H, Wang X, Zhang Y, Liu S, Nie G. Distinct responses from triglyceride and cholesterol metabolism in common carp (Cyprinus carpio) upon environmental cadmium exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106239. [PMID: 35863253 DOI: 10.1016/j.aquatox.2022.106239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Due to high persistence and bioavailability, Cadmium (Cd) is one of the most prevalent environmental contaminants, posing an elevating threat to the ecosystems. It has been evidenced that high-dose Cd elicits deleterious effects on aquatic organisms, but the potential toxicities of Cd at environmentally relevant concentrations remains underappreciated. In this study, we used common carp to investigate how environmental Cd exposure affects triglyceride (TG) and cholesterol metabolism and underlying mechanisms. The data indicated that Cd resulted in the shift of TG from the liver to blood and the movement of cholesterol in the opposite direction, ultimately giving rise to the storage of crude lipid in liver and muscle, especially hepatic cholesterol retention. Cholesterol, instead of TG, became the principal cause during the progression of hepatic lipid accumulation. Mechanistic investigations at transcriptional and translational levels further substantiated that Cd blocked hepatic biosynthesis of TG and enhanced TG efflux out of the liver and fatty acid β-oxidation, which collectively led to the compromised TG metabolism in the liver and accelerated TG export to the serum. Additionally, strengthened synthesis, retarded export and oxidation of cholesterol detailed the hepatic prominent cholesterol retention. Taken together, our results demonstrated that environmental exposure to Cd perturbed lipid metabolism through triggering distinct responses from hepatic TG and cholesterol homeostasis. These indicated that environmental factors (such as waterborne Cd) could be a potential contributor to the prevalence of non-alcoholic fatty-liver disease in aquaculture and more efforts should be devoted to the ecological risk assessment of pollutants under environmental scenarios.
Collapse
Affiliation(s)
- Wenli Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Beibei Gao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaoqian Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dizhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Junping Liang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Hui Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
11
|
Xiao B, Yang R, Chen P, Yang J, Sun B, Wang K, Zhang T, Zhu L. Insights into the lower trophic transfer of silver ions than silver containing nanoparticles along an aquatic food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150228. [PMID: 34798747 DOI: 10.1016/j.scitotenv.2021.150228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) released into the environment are subject to environmental transformation processes before accumulating in aquatic organisms and transferring along the food chain. Lack of understanding on how environmental transformation affects trophic transfer of AgNPs hinders accurate prediction of the environmental risks of these widely present nanomaterials. Here we discover that pristine AgNPs as well as their sulfidation products (Ag2S-NPs) and dissolution products (Ag+) tend to be accumulated in Daphnia magna and subsequently transferred to zebrafish. In D. magna, Ag+ exhibits the highest bioaccumulation potential whereas Ag2S-NPs show the lowest bioaccumulation. Surprisingly, the biomagnification factor of Ag+ along the D. magna-zebrafish food chain appears to be significantly lower relative to AgNPs and Ag2S-NPs, likely due to the limited release of Ag from D. magna to zebrafish during digestion. Moreover, AgNPs and their transformation products mainly accumulate in the internal organs, particularly intestine, of zebrafish. Adsorption of AgNPs on the surface of the intestinal cell membrane mitigates depuration of AgNPs and, at least in part, leads to the larger biomagnification factor of AgNPs, relative to their transformation products. This research highlights the necessity of considering environmental transformation processes of nanomaterials in assessing their bioavailability and risk.
Collapse
Affiliation(s)
- Bowen Xiao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongyan Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Pengyu Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Jing Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Binbin Sun
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Kunkun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Zheng JL, Peng LB, Xia LP, Li J, Zhu QL. Effects of continuous and intermittent cadmium exposure on HPGL axis, GH/IGF axis and circadian rhythm signaling and their consequences on reproduction in female zebrafish: Biomarkers independent of exposure regimes. CHEMOSPHERE 2021; 282:130879. [PMID: 34087554 DOI: 10.1016/j.chemosphere.2021.130879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Typical biomarkers of cadmium (Cd) pollution have well been confirmed in fish from continuous exposure pattern. However, in a natural environment, fish may be exposed to Cd intermittently. In this study, juvenile female zebrafish were exposed for 48 days to 10 μg/L Cd continuously, 20 μg/L for 1 day in every 2 days or 30 μg/L for 1 day in every 3 days. The toxic effects were evaluated using 8 various physiological and biochemical endpoints like specific growth rate (SGR), 17β-estradiol (E2) and vitellogenin (VTG) concentrations in plasma, reproductive parameters (gonadosomatic index (GSI), egg-laying amount, spawning percentage, and hatching and mortality rate of embryos). Transcription of 59 genes related to hypothalamic-pituitary-gonadal-liver (HPGL) axis, circadian rhythm signaling and insulin-like growth factor (IGF) system was examined. SGR, spawning percentage, E2 and VTG levels declined in fish exposed to 10 and 20 μg/L Cd but remained relatively stable in fish exposed to 30 μg/L Cd. Exposure to 10, 20 and 30 μg/L Cd significantly reduced GSI, hatching rate and mortality rate. Similarly, mRNA expression of 27 genes were sensitive to both continuous and intermittent Cd exposure. Among these genes, expression levels of 10 genes had more than 5-fold increase or decrease, including mRNA levels of vtg1, vtg2, vtg3, esr1, igf2a, igf2b, igfbp5b, nr1d1, gnrh3 and gnrhr4. The most sensitive molecular biomarker was vtg3 expression with 1500-3100 fold increase in the liver. The present study, for the first time, provides effective candidate biomarkers for Cd, which are independent of exposure regimes.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Li-Ping Xia
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jiji Li
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qing-Ling Zhu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
13
|
Yu H, Luo D, Dai L, Cheng F. In silico nanosafety assessment tools and their ecosystem-level integration prospect. NANOSCALE 2021; 13:8722-8739. [PMID: 33960351 DOI: 10.1039/d1nr00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineered nanomaterials (ENMs) have tremendous potential in many fields, but their applications and commercialization are difficult to widely implement due to their safety concerns. Recently, in silico nanosafety assessment has become an important and necessary tool to realize the safer-by-design strategy of ENMs and at the same time to reduce animal tests and exposure experiments. Here, in silico nanosafety assessment tools are classified into three categories according to their methodologies and objectives, including (i) data-driven prediction for acute toxicity, (ii) fate modeling for environmental pollution, and (iii) nano-biological interaction modeling for long-term biological effects. Released ENMs may cross environmental boundaries and undergo a variety of transformations in biological and environmental media. Therefore, the potential impacts of ENMs must be assessed from a multimedia perspective and with integrated approaches considering environmental and biological effects. Ecosystems with biodiversity and an abiotic environment may be used as an excellent integration platform to assess the community- and ecosystem-level nanosafety. In this review, the advances and challenges of in silico nanosafety assessment tools are carefully discussed. Furthermore, their integration at the ecosystem level may provide more comprehensive and reliable nanosafety assessment by establishing a site-specific interactive system among ENMs, abiotic environment, and biological communities.
Collapse
Affiliation(s)
- Hengjie Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Limin Dai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Lu J, Wang P, Tian S, Qian W, Huang Y, Wang Z, Zhu X, Cai Z. TiO 2 nanoparticles enhanced bioaccumulation and toxic performance of PAHs via trophic transfer. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124834. [PMID: 33360186 DOI: 10.1016/j.jhazmat.2020.124834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Engineering nanoparticles (NPs) could act as accumulator and carrier of co-contaminants, affecting their fate and toxicity in environments. However, the effects of NPs on the bioaccumulation and trophic transfer of co-contaminants through the food chain and the ensuing effects on higher predators are unclear. In the present study, we investigated the effects of titanium dioxide nanoparticles (nTiO2) on the trophic transfer of phenanthrene (Phe) from prey Artemia salina to predator Scophthalmus maximus. We also evaluated the ensuing toxic performance of Phe in S. maximus after been transferred from A. salina in the presence and absence of nTiO2. The presence of nTiO2 significantly (p < 0.05) increased Phe accumulation in A. salina with higher bioconcentration factor (BCF) up to 90.9 than that of 38.6 in Phe exposure along. After trophic transfer, nTiO2 (1 mg/L) also promoted the bioaccumulation of Phe (1 μg/L) in predator S. maximus from 4.17 mg/kg to 7.85 mg/kg (dry weight). However, nTiO2 did not enhance the trophic transfer of Phe from A. salina to S. maximus since the biological magnification factor (BMF) decreased from 0.13 to 0.08. Nevertheless, the nTiO2-enhanced bioaccumulation of Phe did enhance Phe toxicity performance in predator S. maximus after trophic transfer, showing significant (p < 0.05) growth inhibition and changes of nutrient status in the predator, compared to those of the control. Further physio-biochemical investigations suggested that oxidative stress and inhibition of digestive functions might explain the growth inhibition in treatment with nTiO2 + Phe. This study demonstrates the first evidence that NP-enhanced bioaccumulation and toxic performance of co-existing pollutants across trophic transfer, which poses potential risks to marine ecosystems, and ultimately human health by seafood consumption.
Collapse
Affiliation(s)
- Jing Lu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, PR China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Pu Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Shengyan Tian
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuxiong Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, PR China.
| | - Zhonghua Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|
15
|
Xiao B, Wang X, Yang J, Wang K, Zhang Y, Sun B, Zhang T, Zhu L. Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish: The mechanisms and influence of natural organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110454. [PMID: 32171962 DOI: 10.1016/j.ecoenv.2020.110454] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The wide application of silver nanoparticles (AgNPs) has inevitably led to their release into the natural aquatic environment. Natural organic matter (NOM) is ubiquitous and would influence the fate and effects of these nanoparticles in such aquatic environments. Here we demonstrate that NOM plays an important role in the bioaccumulation kinetics and tissue distribution of AgNPs in zebrafish. In the presence of humic acid and fulvic acid, the uptake rates of AgNPs decreased while the depuration rates of AgNPs increased. As a result, the bioconcentration factor (BCF) of AgNPs in the entire body of the zebrafish was reduced. AgNPs were mainly taken up by the zebrafish via oral ingestion and were greatly accumulated in the liver, intestine and gill. In the intestine, NOM effectively inhibited the AgNPs from penetrating the cell membranes into internal tissues and also suppressed the disintegration and dissolution of AgNPs in gastrointestinal fluid, thereby decreasing the absorption of Ag by zebrafish. This research underlines the significance of incorporating the effects of NOM into predictive models for accurately assessing the toxicity and ecological risks of nanoparticles in natural aquatic environments.
Collapse
Affiliation(s)
- Bowen Xiao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Xiaolei Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Jing Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Kunkun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Yinqing Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Binbin Sun
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China.
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China.
| |
Collapse
|