1
|
Bugher NA, Xiong B, Gentles RI, Glist LD, Siegel HG, Johnson NP, Clark CJ, Deziel NC, Saiers JE, Plata DL. Domestic groundwater wells in Appalachia show evidence of low-dose, complex mixtures of legacy pollutants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2250-2263. [PMID: 39501836 DOI: 10.1039/d4em00364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Lack of water quality data for private drinking water sources prevents robust evaluation of exposure risk for communities co-located with historically contaminated sites and ongoing industrial activity. Areas of the Appalachian region of the United States (i.e., Pennsylvania, Ohio and West Virginia) contain extensive hydraulic fracturing activity, as well as other extractive and industrial technologies, in close proximity to communities reliant on private drinking water sources, creating concern over potential groundwater contamination. In this study, we characterized volatile organic compound (VOC) occurrence at 307 private groundwater well sites within Pennsylvania, Ohio, and West Virginia. The majority (97%) of water samples contained at least one VOC, while the average number of VOCs detected at a given site was 5 ± 3. The majority of individual VOC concentrations fell below applicable U.S. Environmental Protection Agency (EPA) Maximum Contamination Levels (MCLs), except for chloroform (MCL of 80 μg L-1; n = 1 at 98 μg L-1), 1,2-dibromoethane (MCL of 0.05 μg L-1; n = 3 ranging from 0.05 to 0.35 μg L-1), and 1,2-dibromo-3-chloropropane (MCL of 0.2 μg L-1; n = 7 ranging from 0.20 to 0.58 μg L-1). To evaluate well susceptibility to VOCs from industrial activity, distance to hydraulic fracturing site was used to assess correlations with contaminant occurrences. Proximity to closest hydraulic fracturing well-site revealed no statistically significant linear relationships with either individual VOC concentrations, or frequency of VOC detections. Evaluation of other known industrial contamination sites (e.g., US EPA Superfund sites) revealed elevated levels of three VOCs (chloroform, toluene, benzene) in groundwaters within 10 km of those Superfund sites in West Virginia and Ohio, illuminating possible point source influence. Lack of correlation between VOC concentrations and proximity to specific point sources indicates complex geochemical processes governing trace VOC contamination of private drinking water sources. While individual concentrations of VOCs fell well below recommended human health levels, the low dose exposure to multiple VOCs occurring in drinking supplies for Appalachian communities was noted, highlighting the importance of groundwater well monitoring.
Collapse
Affiliation(s)
- Nicolette A Bugher
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| | - Boya Xiong
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
- University of Minnesota, Department of Civil, Environmental, and Geo-Engineering, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
| | - Runako I Gentles
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| | - Lukas D Glist
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| | - Helen G Siegel
- Yale School of the Environment, Environmental Science Center, 21 Sachem Street, New Haven, Connecticut 06511, USA
| | - Nicholaus P Johnson
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, Connecticut 06510, USA
| | - Cassandra J Clark
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, Connecticut 06510, USA
| | - Nicole C Deziel
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, Connecticut 06510, USA
| | - James E Saiers
- Yale School of the Environment, Environmental Science Center, 21 Sachem Street, New Haven, Connecticut 06511, USA
| | - Desiree L Plata
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
2
|
Li B, Guo H, Chen Z, Xu Q, Xia D, Lv J, Yu H. Metabolism mechanisms of biogenic methane production by synergistic biodegradation of lignite and guar gum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174085. [PMID: 38908596 DOI: 10.1016/j.scitotenv.2024.174085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Coalbed methane (CBM) presents a promising energy source for addressing global energy shortages. Nonetheless, challenges such as low gas production from individual wells and difficulties in breaking gels at low temperatures during extraction hinder its efficient utilization. Addressing this, we explored native microorganisms within coal seams to degrade guar gum, thereby enhancing CBM production. However, the underlying mechanisms of biogenic methane production by synergistic biodegradation of lignite and guar gum remain unclear. Research results showed that the combined effect of lignite and guar gum enhanced the production, yield rate and concentration of biomethane. When the added guar gum content was 0.8 % (w/w), methane production of lignite and guar gum reached its maximum at 561.9 mL, which was 11.8 times that of single lignite (47.3 mL). Additionally, guar gum addition provided aromatic and tryptophan proteins and promoted the effective utilization of CC/CH and OCO groups on the coal surface. Moreover, the cooperation of lignite and guar gum accelerated the transformation of volatile fatty acids into methane and mitigated volatile fatty acid inhibition. Dominant bacteria such as Sphaerochaeta, Macellibacteroides and Petrimonas improved the efficiency of hydrolysis and acidification. Electroactive microorganisms such as Sphaerochaeta and Methanobacterium have been selectively enriched, enabling the establishment of direct interspecies electron transfer pathways. This study offers valuable insights for increasing the production of biogenic CBM and advancing the engineering application of microbial degradation of guar gum fracturing fluid. Future research will focus on exploring the methanogenic capabilities of lignite and guar gum in in-situ environments, as well as elucidating the specific metabolic pathways involved in their co-degradation.
Collapse
Affiliation(s)
- Bing Li
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; School of Life Science and Bioengineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China.
| | - Zhenhong Chen
- Research Institute of Petroleum Exploration & Development, Beijing 100083, China.
| | - Qiang Xu
- General Prospecting Institute of China National Administration of Coal Geology, Beijing 100039,China
| | - Daping Xia
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jinghui Lv
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hongfei Yu
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
3
|
Li B, Guo H, Deng Z, Chen L, Ji C, Xu X, Zhang Y, Cheng S, Wang Z. Investigating functional mechanisms in the Co-biodegradation of lignite and guar gum under the influence of salinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121860. [PMID: 39025008 DOI: 10.1016/j.jenvman.2024.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The biodegradation of guar gum by microorganisms sourced from coalbeds can result in low-temperature gel breaking, thereby reducing reservoir damage. However, limited attention has been given to the influence of salinity on the synergistic biodegradation of coal and guar gum. In this study, biodegradation experiments of guar gum and lignite were conducted under varying salinity conditions. The primary objective was to investigate the controlling effects and mechanisms of salinity on the synergistic biodegradation of lignite and guar gum. The findings revealed that salinity had an inhibitory effect on the biomethane production from the co-degradation of lignite and guar gum. The biomethane production declined with increasing salinity levels, decreasing from 120.9 mL to 47.3 mL. Even under 20 g/L salt stress conditions, bacteria in coalbeds could effectively break the gel and the viscosity decreased to levels below 5 mPa s. As salinity increased, the removal rate of soluble chemical oxygen demand (SCOD) decreased from 55.63% to 31.17%, and volatile fatty acids (VFAs) accumulated in the digestion system. High salt environment reduces the intensity of each fluorescence peak. Alterations in salinity led to changes in microbial community structure and diversity. Under salt stress, there was an increased relative abundance of Proteiniphilum and Methanobacterium, ensuring the continuity of anaerobic digestion. Hydrogentrophic methanogens exhibited higher salt tolerance compared to acetoclastic methanogens. These findings provide experimental evidence supporting the use of guar gum fracturing fluid in coalbeds with varying salinity levels.
Collapse
Affiliation(s)
- Bing Li
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; School of Life Science and Bioengineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, 454000, China.
| | - Ze Deng
- Research Institute of Petroleum Exploration & Development, Beijing, 100083, China.
| | - Linyong Chen
- State Key Laboratory of Coal and CBM Co-Mining, Jincheng, 048012, China.
| | - Changjiang Ji
- State Key Laboratory of Coal and CBM Co-Mining, Jincheng, 048012, China.
| | - Xiaokai Xu
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yawei Zhang
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Song Cheng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Zhenzhi Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
4
|
Keyes P, Halimah N, Xiong B. Deciphering polymer degradation chemistry via integrating new database construction into suspect screening analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1184-1197. [PMID: 38804611 DOI: 10.1039/d4em00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Water-soluble synthetic polymers and their environmental degradation products are overlooked but important industrial pollutants in wastewater. However, the detection of degradation products is limited to bulk solution chemistry and molecular-level analysis remains unreachable. In this work, we assessed the feasibility of current suspect screening and nontarget workflow using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to elucidate molecular level information about polyacrylamide (PAM) and its degraded products by free radicals. Radical chain scission of PAM (10 kDa) using heat-activated persulfate was conducted to simulate hydraulic fracturing conditions in the deep subsurface. We found that the current workflows in the commercial software generated predicted formulae with low accuracy, due to limited capability of peak picking and formula prediction for high mass and charge features. By modeling literature-reported degradation pathways, we constructed a degradation product database of over 463 000 unique formulae, which improved the accuracy of the predicted formula. For the matched features, the ratio of aldehyde/ketone terminating molecule abundance was found to increase over 24 h degradation time, suggesting increasing content of aldehydes by radical-induced oxidative chain scission of PAM. This is contradictory to previously proposed ratios of carbon-centered radical position on polymer backbone initiated by hydroxyl radicals. Using in silico fragmentation of MS1 features, we identified 11 structures with confidence levels 2b and 3 using their MS2 information. This is the first attempt to resolve complex polymer degradation chemistry using HRMS that can advance our ability to detect water-soluble polymer pollutants and their transformation products in environmental samples.
Collapse
Affiliation(s)
- Phoebe Keyes
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| | - Noor Halimah
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| | - Boya Xiong
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| |
Collapse
|
5
|
Deziel NC, Clark CJ, Casey JA, Bell ML, Plata DL, Saiers JE. Assessing Exposure to Unconventional Oil and Gas Development: Strengths, Challenges, and Implications for Epidemiologic Research. Curr Environ Health Rep 2022; 9:436-450. [PMID: 35522388 PMCID: PMC9363472 DOI: 10.1007/s40572-022-00358-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Epidemiologic studies have observed elevated health risks in populations living near unconventional oil and gas development (UOGD). In this narrative review, we discuss strengths and limitations of UOG exposure assessment approaches used in or available for epidemiologic studies, emphasizing studies of children's health outcomes. RECENT FINDINGS Exposure assessment challenges include (1) numerous potential stressors with distinct spatiotemporal patterns, (2) critical exposure windows that cover long periods and occur in the past, and (3) limited existing monitoring data coupled with the resource-intensiveness of collecting new exposure measurements to capture spatiotemporal variation. All epidemiologic studies used proximity-based models for exposure assessment as opposed to surveys, biomonitoring, or environmental measurements. Nearly all studies used aggregate (rather than pathway-specific) models, which are useful surrogates for the complex mix of potential hazards. Simple and less-specific exposure assessment approaches have benefits in terms of scalability, interpretability, and relevance to specific policy initiatives such as set-back distances. More detailed and specific models and metrics, including dispersion methods and stressor-specific models, could reduce exposure misclassification, illuminate underlying exposure pathways, and inform emission control and exposure mitigation strategies. While less practical in a large population, collection of multi-media environmental and biological exposure measurements would be feasible in cohort subsets. Such assessments are well-suited to provide insights into the presence and magnitude of exposures to UOG-related stressors in relation to spatial surrogates and to better elucidate the plausibility of observed effects in both children and adults.
Collapse
Affiliation(s)
- Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY 10032 USA
| | - Michelle L. Bell
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| | - Desiree L. Plata
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, MA 02139 USA
| | - James E. Saiers
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| |
Collapse
|
6
|
Jin B, Han M, Huang C, Arp HPH, Zhang G. Towards improved characterization of the fate and impact of hydraulic fracturing chemicals to better secure regional water quality. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:497-503. [PMID: 35404376 DOI: 10.1039/d2em00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydraulic fracturing (HF) of shale and other permeable rock formations to extract gas and oil is a water-intensive process that returns a significant amount of flowback and produced water (FPW). Due to the complex chemical composition of HF fluids and FPW, this process has led to public concern on the impacts of FPW disposal, spillage and spreading to regional freshwater resources, in particular to shallow groundwater aquifers. To address this, a better understanding of the chemical composition of HF fluid and FPW is needed, as well as the environmental fate properties of the chemical constituents, such as their persistence, mobility and toxicity (PMT) properties. Such research would support risk-based management strategies for the protection of regional water quality, including both the phase-out of problematic chemicals and better hydraulic safeguards against FPW contamination. This article presents recent strategies to advance the assessment and analysis of HF and FPW associated organic chemicals.
Collapse
Affiliation(s)
- Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Min Han
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Chen Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway.
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
7
|
Ghosh B, Abdelrahim M, Ghosh D, Belhaj H. Delayed Breaker Systems To Remove Residual Polymer Damage in Hydraulically Fractured Reservoirs. ACS OMEGA 2021; 6:31646-31657. [PMID: 34869988 PMCID: PMC8638295 DOI: 10.1021/acsomega.1c04187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/01/2021] [Indexed: 06/12/2023]
Abstract
Hydraulic fracturing is a widely used technology to enhance the productivity of low-permeability reservoirs. Fracturing fluids using guar as the rheology builder leaves aside residual polymer layers over the fractured surface, resulting in a restricted matrix to fracture flow, causing reduced well productivity and injectivity. This research developed a specialized enzyme breaker and evaluated its efficiency in breaking linear and cross-linked guar-polymer gel as a function of time, temperature, and breaker concentration targeting a high-temperature carbonate reservoir. The study began with developing a high-temperature stable galacto-mannanase enzyme using the "protein-engineering" approach, followed by the optimization of fracturing fluids and breaker concentrations measuring their rheological properties. The thermal stability of the enzyme breaker vis-à-vis viscosity reduction and the degradation pattern of the linear and cross-linked gel observed from the break tests showed that the enzyme is stable and active up to 120 °C and can reduce viscosity by more than 99%. Further studies conducted using a high-temperature high-pressure HT-HP filter press for the visual inspection of polymer cake quality, filtration loss rates, and cake dissolution efficiency showed that a 6 h enzyme treatment degrades the filter cake by 94-98% compared to 60-70% degradation in 72 h of the natural degradation process. Coreflooding studies, under simulated reservoir conditions, showed the severity of postfracture damage (up to 99%), which could be restored up to 95% on enzyme treatment depending on the treatment protocol and the type of fracturing gel used.
Collapse
Affiliation(s)
- Bisweswar Ghosh
- Department
of Petroleum Engineering, Khalifa University, Abu Dhabi 2533, United Arab Emirates
| | - Mumin Abdelrahim
- Department
of Petroleum Engineering, Khalifa University, Abu Dhabi 2533, United Arab Emirates
| | - Debayan Ghosh
- Epygen
Labs, Dubai Science Park, Dubai 485018, United Arab Emirates
| | - Hadi Belhaj
- Department
of Petroleum Engineering, Khalifa University, Abu Dhabi 2533, United Arab Emirates
| |
Collapse
|
8
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| |
Collapse
|
9
|
Synthesis and performance evaluation of a new drag reducer–cationic hybrid polymeric based on polyacrylamide. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Meng Y, Zhao F, Jin X, Feng Y, Sun G, Lin J, Jia B, Li P. Performance Evaluation of Enzyme Breaker for Fracturing Applications under Simulated Reservoir Conditions. Molecules 2021; 26:molecules26113133. [PMID: 34073941 PMCID: PMC8197314 DOI: 10.3390/molecules26113133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/04/2023] Open
Abstract
Fracturing fluids are being increasingly used for viscosity development and proppant transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby maximizing fracture conductivity and minimizing residual damaging materials. In this study, the efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs. The parameters considered were the effect of the breaker on shear resistance performance and sand-suspending performance of the fracturing fluid, its damage to the reservoir after gel breaking, and its gel-breaking efficiency. The experimental results verified that mannanase II is an enzyme breaker with excellent gel-breaking performance at medium temperatures and alkaline conditions. In addition, mannanase II did not adversely affect the shear resistance performance and sand-suspending performance of the fracturing fluid during hydraulic fracturing. For the same gel-breaking result, the concentration of mannanase II used was only one fifth of other enzyme breakers (e.g., mannanase I, galactosidase, and amylase). Moreover, the amount of residue and the particle size of the residues generated were also significantly lower than those of the ammonium persulfate breaker. Finally, we also examined the viscosity-reducing capability of mannanase II under a wide range of temperatures (104–158 °F) and pH values (7–8.5) to recommend its best-use concentrations under different fracturing conditions. The mannanase has potential for applications in low-permeability oilfield development and to maximize long-term productivity from unconventional oilwells.
Collapse
Affiliation(s)
- Yuling Meng
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
| | - Fei Zhao
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
| | - Xianwei Jin
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
| | - Yun Feng
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257029, China; (Y.F.); (G.S.); (J.L.)
| | - Gangzheng Sun
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257029, China; (Y.F.); (G.S.); (J.L.)
| | - Junzhang Lin
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257029, China; (Y.F.); (G.S.); (J.L.)
| | - Baolei Jia
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Piwu Li
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
- Correspondence: ; Tel.: +86-156-1571-5965
| |
Collapse
|
11
|
Aghababaei M, Luek JL, Ziemkiewicz PF, Mouser PJ. Toxicity of hydraulic fracturing wastewater from black shale natural-gas wells influenced by well maturity and chemical additives. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:621-632. [PMID: 33908986 DOI: 10.1039/d1em00023c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydraulic fracturing of deep shale formations generates large volumes of wastewater that must be managed through treatment, reuse, or disposal. Produced wastewater liberates formation-derived radionuclides and contains previously uncharacterized organohalides thought to be generated within the shale well, both posing unknown toxicity to human and ecological health. Here, we assess the toxicity of 42 input media and produced fluid samples collected from four wells in the Utica formation and Marcellus Shale using two distinct endpoint screening assays. Broad spectrum acute toxicity was assessed using a bioluminescence inhibition assay employing the halotolerant bacterium Aliivibrio fischeri, while predictive mammalian cytotoxicity was evaluated using a N-acetylcysteine (NAC) thiol reactivity assay. The acute toxicity and thiol reactivity of early-stage flowback was higher than later produced fluids, with levels diminishing through time as the natural gas wells matured. Acute toxicity of early stage flowback and drilling muds were on par with the positive control, 3,5-dichlorophenol (6.8 mg L-1). Differences in both acute toxicity and thiol reactivity between paired natural gas well samples were associated with specific chemical additives. Samples from wells containing a larger diversity and concentration of organic additives resulted in higher acute toxicity, while samples from a well applying a higher composition of ammonium persulfate, a strong oxidizer, showed greater thiol reactivity, predictive of higher mammalian toxicity. Both acute toxicity and thiol reactivity are consistently detected in produced waters, in some cases present up to nine months after hydraulic fracturing. These results support that specific chemical additives, the reactions generated by the additives, or the constituents liberated from the formation by the additives contribute to the toxicity of hydraulic fracturing produced waters and reinforces the need for careful consideration of early produced fluid management.
Collapse
Affiliation(s)
- Mina Aghababaei
- Department of Civil and Environmental Engineering, University of New Hampshire, USA.
| | - Jenna L Luek
- Department of Civil and Environmental Engineering, University of New Hampshire, USA.
| | - Paul F Ziemkiewicz
- West Virginia Water Research Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, USA.
| |
Collapse
|
12
|
Chen M, Rholl CA, He T, Sharma A, Parker KM. Halogen Radicals Contribute to the Halogenation and Degradation of Chemical Additives Used in Hydraulic Fracturing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1545-1554. [PMID: 33449615 DOI: 10.1021/acs.est.0c03685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In hydraulic fracturing fluids, the oxidant persulfate is used to generate sulfate radical to break down polymer-based gels. However, sulfate radical may be scavenged by high concentrations of halides in hydraulic fracturing fluids, producing halogen radicals (e.g., Cl•, Cl2•-, Br•, Br2•-, and BrCl•-). In this study, we investigated how halogen radicals alter the mechanisms and kinetics of the degradation of organic chemicals in hydraulic fracturing fluids. Using a radical scavenger (i.e., isopropanol), we determined that halogenated products of additives such as cinnamaldehyde (i.e., α-chlorocinnamaldehyde and α-bromocinnamaldehyde) and citrate (i.e., trihalomethanes) were generated via a pathway involving halogen radicals. We next investigated the impact of halogen radicals on cinnamaldehyde degradation rates. The conversion of sulfate radicals to halogen radicals may result in selective degradation of organic compounds. Surprisingly, we found that the addition of halides to convert sulfate radicals to halogen radicals did not result in selective degradation of cinnamaldehyde over other compounds (i.e., benzoate and guar), which may challenge the application of radical selectivity experiments to more complex molecules. Overall, we find that halogen radicals, known to react in advanced oxidative treatment and sunlight photochemistry, also contribute to the unintended degradation and halogenation of additives in hydraulic fracturing fluids.
Collapse
Affiliation(s)
- Moshan Chen
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Carter A Rholl
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tianchen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Aditi Sharma
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
13
|
Zhang Q, Zuo M, Li G, Sha J, Zuo X. Synthesis of ammonium persulfate microcapsule with a polyaniline shell and its controlled burst release. J Appl Polym Sci 2021. [DOI: 10.1002/app.49695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qifan Zhang
- Jiangsu Key Laboratory of Advanced Functional Materials Changshu Institute of Technology Suzhou China
- School of Materials Science and Engineering, Shanghai Institute of Technology Shanghai China
| | - Mingming Zuo
- Jiangsu Key Laboratory of Advanced Functional Materials Changshu Institute of Technology Suzhou China
- Materials Science and Engineering, University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | - Guihao Li
- Jiangsu Key Laboratory of Advanced Functional Materials Changshu Institute of Technology Suzhou China
| | - Jianpeng Sha
- Jiangsu Key Laboratory of Advanced Functional Materials Changshu Institute of Technology Suzhou China
| | - Xiaobing Zuo
- Jiangsu Key Laboratory of Advanced Functional Materials Changshu Institute of Technology Suzhou China
| |
Collapse
|
14
|
Liberatore HK, Westerman DC, Allen JM, Plewa MJ, Wagner ED, McKenna AM, Weisbrod CR, McCord JP, Liberatore RJ, Burnett DB, Cizmas LH, Richardson SD. High-Resolution Mass Spectrometry Identification of Novel Surfactant-Derived Sulfur-Containing Disinfection Byproducts from Gas Extraction Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9374-9386. [PMID: 32600038 PMCID: PMC7469867 DOI: 10.1021/acs.est.0c01997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Introduction of oil and gas extraction wastewaters (OGWs) to surface water leads to elevated halide levels from geogenic bromide and iodide, as well as enhanced formation of brominated and iodinated disinfection byproducts (DBPs) when treated. OGWs contain high levels of chemical additives used to optimize extraction activities, such as surfactants, which have the potential to serve as organic DBP precursors in OGW-impacted water sources. We report the first identification of olefin sulfonate surfactant-derived DBPs from laboratory-disinfected gas extraction wastewater. Over 300 sulfur-containing DBPs, with 43 unique molecular formulas, were found by high-resolution mass spectrometry, following bench-scale chlor(am)ination. DBPs consisted of mostly brominated species, including bromohydrin sulfonates, dihalo-bromosulfonates, and bromosultone sulfonates, with chlorinated/iodinated analogues formed to a lesser extent. Disinfection of a commercial C12-olefin sulfonate surfactant mixture revealed dodecene sulfonate as a likely precursor for most detected DBPs; disulfur-containing DBPs, like bromosultone sulfonate and bromohydrin disulfonate, originated from olefin disulfonate species, present as side-products of olefin sulfonate production. Disinfection of wastewaters increased mammalian cytotoxicity several orders of magnitude, with chloraminated water being more toxic. This finding is important to OGW-impacted source waters because drinking water plants with high-bromide source waters may switch to chloramination to meet DBP regulations.
Collapse
Affiliation(s)
- Hannah K Liberatore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Danielle C Westerman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Joshua M Allen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - James P McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | | | - David B Burnett
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Leslie H Cizmas
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
15
|
Sumner AJ, Plata DL. A geospatially resolved database of hydraulic fracturing wells for chemical transformation assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:945-955. [PMID: 32037427 DOI: 10.1039/c9em00505f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydraulically fractured wells with horizontal drilling (HDHF) accounted for 69% of all oil and gas wells drilled and 670 000 of the 977 000 producing wells in 2016. However, only 238 flowback and produced water samples have been analyzed to date for specific organic chemicals. To aid the development of predictive tools, we constructed a database combining additive disclosure reports and physicochemical conditions at respective well sites with the goal of making synthesized analyses accessible. As proof-of-concept, we used this database to evaluate transformation pathways through two case studies: (1) a filter-based approach for flagging high-likelihood halogenation sites according to experimental criteria (e.g., for a model compound, cinnamaldehyde) and (2) a semi-quantitative, regionally comparative trihalomethane formation model that leverages an empirically derived equation. Study (1) highlighted 173 wells with high cinnamaldehyde halogenation likelihood based on combined criteria related to subsurface conditions and oxidant additive usage. Study (2) found that trihalomethane formation in certain wells within five specific basins may exceed regulatory limits for drinking water based on reaction-favorable subsurface conditions, albeit with wide uncertainty. While experimentation improves our understanding of subsurface reaction pathways, this database has immediate applications for informing environmental monitors and engineers about potential transformation products in residual fluids, guiding well operators' decisions to avoid unwanted transformations. In the future, we envision more robust components incorporating transformation, transport, toxicity, and other physicochemical parameters to predict subsurface interactions and flowback composition.
Collapse
Affiliation(s)
- Andrew J Sumner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|