1
|
Butt SA, Barraza F, Devito K, Frost L, Javed MB, Noernberg T, Oleksandrenko A, Shotyk W. Spatio-temporal variations in dissolved trace elements in peat bog porewaters impacted by dust inputs from open-pit mining activities in the Athabasca Bituminous Sands (ABS) region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123470. [PMID: 38307240 DOI: 10.1016/j.envpol.2024.123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Considerable volumes of dust are generated from open-pit bitumen mining operations in northern Alberta, Canada. The reactive mineral phases of these dust particles can potentially dissolve in acidic (pH < 4) bog waters. Their dissolution could release trace elements (TEs), which could eventually alter these bog ecosystems. The impact of dust dissolution on the abundance of TEs in the dissolved (<0.45 μm) fraction of porewaters from excavated pits (30-40 cm deep) in the ombrogenic zone of five peatlands was evaluated. Porewaters were collected from four bogs situated within 70 km of mines and upgraders in the Athabasca Bituminous Sands (ABS) region, Alberta, Canada, and from a reference bog situated 264 km away. Over two consecutive years, the dissolved concentrations of some conservative (Al, Th, Y) and mobile lithophile elements (Fe, Li, Mn, Sr), as well as the metals enriched in bitumen (V, Ni, Mo), all increased with proximity to the mining area, in the ABS region. These trends reflect the observed increase in dust deposition with proximity to the mining area from independent studies of snow, lichens, and Sphagnum moss. Contrarily, the impact of dust dissolution on the concentration of potentially toxic TEs (As, Cd, Pb, Sb, and Tl) was negligible. Thus, the elements which are more abundant in the porewaters near industry are either ecologically benign (e.g. Li and Sr) or essential micronutrients (e.g. Fe, Mn, Ni, and Mo). Manganese was the only element which was enriched by more than 10x at all sites near the mining area, compared to its concentration at the reference site. The enrichments of all other elements were <10x, indicating that anthropogenic dust emissions from mining areas have had only a modest effect on the TEs abundance in peat porewaters.
Collapse
Affiliation(s)
- Sundas Arooj Butt
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Fiorella Barraza
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Kevin Devito
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Lukas Frost
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Muhammad Babar Javed
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada; Hatfield Consultants, Fort McMurray, AB, Canada
| | - Tommy Noernberg
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | | | - William Shotyk
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Al Mamun A, Zhang L, Yang F, Cheng I, Qiu X. Atmospheric deposition mapping of particulate elements in the Canadian Athabasca oil sands region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121868. [PMID: 37244528 DOI: 10.1016/j.envpol.2023.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
This study used a deposition modeling framework to generate gridded dry, wet, and total (dry + wet) deposition fluxes of 27 particulate elements over the Canadian Athabasca oil sands region and its surrounding areas for the years 2016-2017. The framework employed the element concentrations from the CALPUFF dispersion model outputs that were bias-corrected against measured concentrations, modeled dry deposition velocities, precipitation analysis data, and literature values of element-specific fine mode fractions and scavenging ratios by rain and snow. The annual total deposition (mg/m2/year) of all elements (EM) across the domain ranged from 4.49 to 5450 and the mean and median deposition were 60.9 and 31.0, respectively. Total EM deposition decreased rapidly within a short distance from the oil sands mining area. Annual mean total deposition (mg/m2/year) of EM was 717 in Zone 1 (within 30 km from a reference point, representing the center of the oil sands mining area), 115 in Zone 2 (30-100 km from the reference point), and 35.4 in Zone 3 (beyond 100 km from the reference point). The deposition of individual elements was primarily governed by their respective concentrations and among all elements the annual mean total deposition (μg/m2/year) over the domain varied five orders of magnitude ranging from 0.758 (Ag) to 20,000 (Si). Annual mean dry and wet deposition (mg/m2/year) of EM over the domain were 15.7 and 45.2, respectively. Aside from S, which has relatively lower precipitation scavenging efficiencies, wet deposition was the dominant deposition type in the region contributing from 51% (Pb) to 86% (Ca) of the respective total deposition. Total EM deposition over the domain in the warm season (66.2 mg/m2/year) was slightly higher than that in the cold season (55.6 mg/m2/year). Deposition of individual elements in Zone 1 were generally lower than their deposition at other sites across North America.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada.
| | - Fuquan Yang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada; SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario, N1G 5L3, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Xin Qiu
- SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario, N1G 5L3, Canada
| |
Collapse
|
3
|
Soerensen AL, Feinberg A, Schartup AT. Selenium concentration in herring from the Baltic Sea tracks decadal and spatial trends in external sources. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1319-1329. [PMID: 35212334 PMCID: PMC9491286 DOI: 10.1039/d1em00418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) has a narrow range between nutritionally optimal and toxic concentrations for many organisms, including fish and humans. However, the degree to which humans are affecting Se concentrations in coastal food webs with diffuse Se sources is not well described. Here we examine large-scale drivers of spatio-temporal variability in Se concentration in herring from the Baltic Sea (coastal sea) to explore the anthropogenic impact on a species from the pelagic food web. We analyze data from three herring muscle time series covering three decades (1979-2010) and herring liver time series from 20 stations across the Baltic Sea covering a fourth decade (2009-2019). We find a 0.7-2.0% per annum (n = 26-30) Se decline in herring muscle samples from 0.34 ± 0.02 μg g-1 ww in 1979-1981 to 0.18 ± 0.03 μg g-1 ww in 2008-2010. This decrease continues in the liver samples during the fourth decade (6 of 20 stations show significant decrease). We also find increasing North-South and East-West gradients in herring Se concentrations. Using our observations, modelled Se deposition (spatio-temporal information) and estimated Se river discharge (spatial information), we show that the spatial variability in herring Se tracks the variability in external source loads. Further, between 1979 and 2010 we report a ∼5% per annum decline in direct Se deposition and a more gradual, 0.7-2.0% per annum, decline in herring Se concentrations. The slower rate of decrease for herring can be explained by stable or only slowly decreasing riverine inputs of Se to the Baltic Sea as well as recycling of Se within the coastal system. Both processes can reduce the effect of the trend predicted from direct Se deposition. We show that changing atmospheric emissions of Se may influence Se concentrations of a pelagic fish species in a coastal area through direct deposition and riverine inputs from the terrestrial landscape.
Collapse
Affiliation(s)
- Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden.
| | - Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amina T Schartup
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Shotyk W. Environmental significance of trace elements in the Athabasca Bituminous Sands: facts and misconceptions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1279-1302. [PMID: 35816113 DOI: 10.1039/d2em00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bituminous sands of Alberta, Canada, represent the second largest reserves of hydrocarbons on earth. Open pit bitumen mining and upgrading of the Athabasca Bituminous Sands (ABS), the largest of the deposits, began in 1967. Concerns about fugitive release of trace elements (TEs) to the environment began with studies of V, as this is the most abundant trace metal in bitumen. Recent studies, however, have extended to Ag, As, Be, Cd, Cr, Cu, Pb, Sb, and Tl, and this has led to considerable confusion about which TEs are relevant to ecosystem health. While V along with Ni, Mo, Se and Re are enriched in bitumen, Ag, As, Be, Cd, Cr, Cu, Pb, Sb and Tl are found almost exclusively in the mineral (i.e. sand) fraction of the ABS, with limited opportunity to become bioaccessible, much less bioavailable. Here, a summary is given of ten misunderstandings that have arisen regarding TEs in the environment of the ABS region. To help illustrate the significance of the misconceptions that have arisen regarding (a) air and (b) water resources, published and unpublished TE data obtained from the metal-free, ultraclean SWAMP lab is presented for: (a) snow, moss, and peat cores from bogs, and (b) the dissolved, particulate, and colloidal fractions of water from the Athabasca River (AR), as well as pristine groundwater. Natural enrichments of Ni in plants such as Rat Root (Acorus calamus) and pine (Pinus banksiana), Tl in fish (Percopsis omiscomaycus) and Cd in cranberries (Vaccinium oxycoccus), Labrador Tea (Rhododendron groenlandicum) and beaver (Castor canadensis), are also presented.
Collapse
Affiliation(s)
- William Shotyk
- Bocock Chair for Agriculture and the Environment, Department of Renewable Resources, University of Alberta, 348B, South Academic Building, Edmonton, Alberta T6G 2H1, Canada.
| |
Collapse
|
5
|
Du C, Guo Q, Zhang J. A review on moss nitrogen and isotope signatures evidence for atmospheric nitrogen deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150765. [PMID: 34666089 DOI: 10.1016/j.scitotenv.2021.150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Moss nitrogen (N) concentration and isotopic composition (δ15N) values can reveal a better understanding of atmospheric N deposition patterns. Here, we summarize the moss N content and δ15N signatures using data compiled from 104 papers. Based on the dataset, we summarize the models for assessing the level and reduced (NHx): oxidised compounds (NOx) ratio of atmospheric N deposition. Results showed a historical increase in N concentration and 15N depletion of specimen mosses close to anthropogenic N sources from intensive animal production and agricultural activities (NHx emission) since the 1800s. However, an increase of moss N with a less negative 15N observed in the last three decades could be due to a substantial fossil fuel combustion contributed NOx emission. Spatially, N deposition in Europe decreased due to successful control actions, but Asia has become a hotspot for NHx emission from agriculture. The present results highlight the importance of moss N and δ15N values for estimating atmospheric N deposition patterns at spatio-temporal trends.
Collapse
Affiliation(s)
- Chenjun Du
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Meharg AA, Meharg C. The Pedosphere as a Sink, Source, and Record of Anthropogenic and Natural Arsenic Atmospheric Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7757-7769. [PMID: 34048658 DOI: 10.1021/acs.est.1c00460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Anthropocene has led to global-scale contamination of the biosphere through diffuse atmospheric dispersal of arsenic. This review considers the sources arsenic to soils and its subsequent fate, identifying key knowledge gaps. There is a particular focus on soil classification and stratigraphy, as this is central to the topic under consideration. For Europe and North America, peat core chrono-sequences record massive enhancement of arsenic depositional flux from the onset of the Industrial Revolution to the late 20th century, while modern mitigation efforts have led to a sharp decline in emissions. Recent arsenic wet and dry depositional flux measurements and modern ice core records suggest that it is South America and East Asia that are now primary global-scale polluters. Natural sources of arsenic to the atmosphere are primarily from volcanic emissions, aeolian soil dust entrainment, and microbial biomethylation. However, quantifying these natural inputs to the atmosphere, and subsequent redeposition to soils, is only starting to become better defined. The pedosphere acts as both a sink and source of deposited arsenic. Soil is highly heterogeneous in the natural arsenic already present, in the chemical and biological regulation of its mobility within soil horizons, and in interaction with climatic and geomorphological settings. Mineral soils tend to be an arsenic sink, while organic soils act as both a sink and a source. It is identified here that peatlands hold a considerable amount of Anthropocene released arsenic, and that this store can be potentially remobilized under climate change scenarios. Also, increased ambient temperature seems to cause enhanced arsine release from soils, and potentially also from the oceans, leading to enhanced rates of arsenic biogeochemical cycling through the atmosphere. With respect to agriculture, rice cultivation was identified as a particular concern in Southeast Asia due to the current high arsenic deposition rates to soil, the efficiency of arsenic assimilation by rice grain, and grain yield reduction through toxicity.
Collapse
Affiliation(s)
- Andrew A Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland
| | - Caroline Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland
| |
Collapse
|
7
|
Schreiber ME, Cozzarelli IM. Arsenic release to the environment from hydrocarbon production, storage, transportation, use and waste management. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125013. [PMID: 33482508 DOI: 10.1016/j.jhazmat.2020.125013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Accepted: 12/29/2020] [Indexed: 05/12/2023]
Abstract
Arsenic (As) is a toxic trace element with many sources, including hydrocarbons such as oil, natural gas, oil sands, and oil- and gas-bearing shales. Arsenic from these hydrocarbon sources can be released to the environment through human activities of hydrocarbon production, storage, transportation and use. In addition, accidental release of hydrocarbons to aquifers with naturally occurring (geogenic) As can induce mobilization of As to groundwater through biogeochemical reactions triggered by hydrocarbon biodegradation. In this paper, we review the occurrence of As in different hydrocarbons and the release of As from these sources into the environment. We also examine the occurrence of As in wastes from hydrocarbon production, including produced water and sludge. Last, we discuss the potential for As release related to waste management, including accidental or intentional releases, and recycling and reuse of these wastes.
Collapse
Affiliation(s)
- Madeline E Schreiber
- Department of Geosciences, Virginia Tech 926 W. Campus Drive, Blacksburg, VA 24061-0420, USA.
| | | |
Collapse
|
8
|
Guo G, Eccles KM, McMillan M, Thomas PJ, Chan HM, Poulain AJ. The Gut Microbial Community Structure of the North American River Otter (Lontra canadensis) in the Alberta Oil Sands Region in Canada: Relationship with Local Environmental Variables and Metal Body Burden. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2516-2526. [PMID: 32946150 DOI: 10.1002/etc.4876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The Alberta Oil Sands Region in Canada is home to one of the largest oil bitumen deposits in the world. The North American river otter (Lontra canadensis) is a top predator with a small home range and is sensitive to disturbances; it has been designated as a sentinel species for the potential impacts of the natural resource exploitation on freshwater ecosystems in the Alberta Oil Sands Region. With an increasing interest in noninvasive biomarkers, recent studies suggest that gut microbiota can be used as a potential biomarker of early biological effects on aquatic wildlife. The goal of the present study was to determine the river otter gut microbial structure related to environmental variables characterizing mining activities and metal body burden. We obtained 18 trapped animals from and surrounding the surface mineable area of the Alberta Oil Sands Region. The gut microbial community structure was characterized using high-throughput sequencing of 16S rRNA gene amplicon analyses. Trace metal concentrations in the liver were measured by inductively coupled plasma-mass spectrometry. Our study revealed that the gut bacteria of river otters in the Alberta Oil Sands Region clustered in 4 groups dominated by Peptostreptococcaceae, Carnobacteriaceae, Enterobacteriaceae, Clostridiaceae, and Nostocaceae. We show that arsenic, barium, rubidium, liver-body weight ratio, and δ15 N were associated with each cluster. When comparing affected versus less affected sites, we show that river otter gut bacterial community and structure are significantly related to trophic level of the river otter but not to Alberta Oil Sands Region mining activities. Our study reveals that the gut bacterial dynamics can provide insights into the diet and habitat use of river otters but that more work is needed to use it as a pollution biomarker. Environ Toxicol Chem 2020;39:2516-2526. © 2020 SETAC.
Collapse
Affiliation(s)
- Galen Guo
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin M Eccles
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan McMillan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Philippe J Thomas
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Center, Ottawa, Ontario, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|