1
|
Garcia-Marlès M, Lara R, Reche C, Pérez N, Tobías A, Savadkoohi M, Beddows D, Salma I, Vörösmarty M, Weidinger T, Hueglin C, Mihalopoulos N, Grivas G, Kalkavouras P, Ondracek J, Zikova N, Niemi JV, Manninen HE, Green DC, Tremper AH, Norman M, Vratolis S, Diapouli E, Eleftheriadis K, Gómez-Moreno FJ, Alonso-Blanco E, Wiedensohler A, Weinhold K, Merkel M, Bastian S, Hoffmann B, Altug H, Petit JE, Acharja P, Favez O, Santos SMD, Putaud JP, Dinoi A, Contini D, Casans A, Casquero-Vera JA, Crumeyrolle S, Bourrianne E, Poppel MV, Dreesen FE, Harni S, Timonen H, Lampilahti J, Petäjä T, Pandolfi M, Hopke PK, Harrison RM, Alastuey A, Querol X. Source apportionment of ultrafine particles in urban Europe. ENVIRONMENT INTERNATIONAL 2024; 194:109149. [PMID: 39566442 DOI: 10.1016/j.envint.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method. Datasets evaluated include 14 urban background (UB), 5 traffic (TR), 4 suburban background (SUB), and 1 regional background (RB) sites, covering 18 European and 1 USA cities, over the period, when available, from 2009 to 2019. Ten factors were identified (4 road traffic factors, photonucleation, urban background, domestic heating, 2 regional factors and long-distance transport), with road traffic being the primary contributor at all UB and TR sites (56-95 %), and photonucleation being also significant in many cities. The trends analyses showed a notable decrease in traffic-related UFP ambient concentrations, with statistically significant decreasing trends for the total traffic-related factors of -5.40 and -2.15 % yr-1 for the TR and UB sites, respectively. This abatement is most probably due to the implementation of European emissions standards, particularly after the introduction of diesel particle filters (DPFs) in 2011. However, DPFs do not retain nucleated particles generated during the dilution of diesel exhaust semi-volatile organic compounds (SVOCs). Trends in photonucleation were more diverse, influenced by a reduction in the condensation sink potential facilitating new particle formation (NPF) or by a decrease in the emissions of UFP precursors. The decrease of primary PM emissions and precursors of UFP also contributed to the reduction of urban and regional background sources.
Collapse
Affiliation(s)
- Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, 08028, Spain.
| | - Rosa Lara
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Mining, Industrial and ICT Engineering (EMIT), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Manresa, 08242, Spain
| | - David Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Máté Vörösmarty
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Weidinger
- Department of Meteorology, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Duebendorf, Switzerland
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Georgios Grivas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Panayiotis Kalkavouras
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Jakub Ondracek
- Research Group of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Nadezda Zikova
- Research Group of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Box 8136, 104 20 Stockholm, Sweden
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | | | | | | | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, German
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Prodip Acharja
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550 Verneuil-en-Halatte, France
| | | | | | - Adelaide Dinoi
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Andrea Casans
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | | | - Suzanne Crumeyrolle
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Eric Bourrianne
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Martine Van Poppel
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Freja E Dreesen
- Flanders Environment Agency, Dokter De Moorstraat 24-26, 9300, Aalst, Belgium
| | - Sami Harni
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Hilkka Timonen
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|
2
|
Lloyd M, Olaniyan T, Ganji A, Xu J, Simon L, Zhang M, Saeedi M, Yamanouchi S, Wang A, Burnett RT, Tjepkema M, Hatzopoulou M, Weichenthal S. Airborne ultrafine particle concentrations and brain cancer incidence in Canada's two largest cities. ENVIRONMENT INTERNATIONAL 2024; 193:109088. [PMID: 39467481 DOI: 10.1016/j.envint.2024.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Malignant brain tumours are rare, but are important to study because survival rates are low and few modifiable risk factors have been identified. Existing evidence suggests that outdoor ultrafine particles (UFPs; particulate matter < 100 nm; sometimes referred to as nanoparticles) can deposit in the brain and could encourage initiation and progression of cancerous tumours, but epidemiological data are limited. METHODS High-resolution estimates of outdoor UFP concentrations and size were linked to residential locations of approximately 1.5 million people in Montreal and Toronto, Canada from 2001 to 2015. Cox proportional hazards models were used to estimate associations between annual average outdoor UFPs and malignant brain tumour incidence while adjusting for potential confounding factors including other outdoor air pollutants. FINDINGS In total, 1365 incident brain tumour cases occurred during follow-up. Consistent positive associations were observed between long-term exposures to outdoor UFPs and brain tumour incidence with increased risk ranging from 10.5% (95% CI: -1.4, 24.0%) to 15.3% (95% CI: 0.4, 32.5%) per 10,000 particle/cm3 increase. Long-term exposures to oxidant gases, black carbon, or fine particulate matter (PM2.5) were not associated with increased brain tumour incidence. INTERPRETATION Our results suggest that long-term exposures to outdoor UFPs are associated with an increased risk of developing malignant brain tumours. On an absolute scale, the magnitude of this risk translates into approximately 24 additional cases per year per 10,000 particle/cm3 increase in annual average outdoor UFPs in a hypothetical city of 3-million people. FUNDING Canadian Institutes of Health Research (CIHR) Foundation Grant and The United States Health Effects Institute (HEI).
Collapse
Affiliation(s)
| | | | | | - Junshi Xu
- University of Toronto, Toronto, Canada
| | | | | | | | | | - An Wang
- University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
3
|
Garcia-Marlès M, Lara R, Reche C, Pérez N, Tobías A, Savadkoohi M, Beddows D, Salma I, Vörösmarty M, Weidinger T, Hueglin C, Mihalopoulos N, Grivas G, Kalkavouras P, Ondráček J, Zíková N, Niemi JV, Manninen HE, Green DC, Tremper AH, Norman M, Vratolis S, Eleftheriadis K, Gómez-Moreno FJ, Alonso-Blanco E, Wiedensohler A, Weinhold K, Merkel M, Bastian S, Hoffmann B, Altug H, Petit JE, Favez O, Dos Santos SM, Putaud JP, Dinoi A, Contini D, Timonen H, Lampilahti J, Petäjä T, Pandolfi M, Hopke PK, Harrison RM, Alastuey A, Querol X. Inter-annual trends of ultrafine particles in urban Europe. ENVIRONMENT INTERNATIONAL 2024; 185:108510. [PMID: 38460241 DOI: 10.1016/j.envint.2024.108510] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25-100 nm) and the Accumulation (100-800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.
Collapse
Affiliation(s)
- Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, 08028, Spain.
| | - Rosa Lara
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Mining, Industrial and ICT Engineering (EMIT), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Manresa 08242, Spain
| | - David Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Máté Vörösmarty
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Weidinger
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Duebendorf, Switzerland
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Georgios Grivas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Panayiotis Kalkavouras
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Jakub Ondráček
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i, Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Nadĕžda Zíková
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i, Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Box 8136, 104 20 Stockholm, Sweden
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | | | | | | | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, German
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Germany
| | - Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Germany
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550 Verneuil-en-Halatte, France
| | | | | | - Adelaide Dinoi
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Hilkka Timonen
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Abdillah SFI, Wang YF. Ambient ultrafine particle (PM 0.1): Sources, characteristics, measurements and exposure implications on human health. ENVIRONMENTAL RESEARCH 2023; 218:115061. [PMID: 36525995 DOI: 10.1016/j.envres.2022.115061] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The problem of ultrafine particles (UFPs; PM0.1) has been prevalent since the past decades. In addition to become easily inhaled by human respiratory system due to their ultrafine diameter (<100 nm), ambient UFPs possess various physicochemical properties which make it more toxic. These properties vary based on the emission source profile. The current development of UFPs studies is hindered by the problem of expensive instruments and the inexistence of standardized measurement method. This review provides detailed insights on ambient UFPs sources, physicochemical properties, measurements, and estimation models development. Implications on health impacts due to short-term and long-term exposure of ambient UFPs are also presented alongside the development progress of potentially low-cost UFPs sensors which can be used for future UFPs studies references. Current challenge and future outlook of ambient UFPs research are also discussed in this review. Based on the review results, ambient UFPs may originate from primary and secondary sources which include anthropogenic and natural activities. In addition to that, it is confirmed from various chemical content analysis that UFPs carry heavy metals, PAHs, BCs which are toxic in its nature. Measurement of ambient UFPs may be performed through stationary and mobile methods for environmental profiling and exposure assessment purposes. UFPs PNC estimation model (LUR) developed from measurement data could be deployed to support future epidemiological study of ambient UFPs. Low-cost sensors such as bipolar ion and ionization sensor from common smoke detector device may be further developed as affordable instrument to monitor ambient UFPs. Recent studies indicate that short-term exposure of UFPs can be associated with HRV change and increased cardiopulmonary effects. On the other hand, long-term UFPs exposure have positive association with COPD, CVD, CHF, pre-term birth, asthma, and also acute myocardial infarction cases.
Collapse
Affiliation(s)
- Sultan F I Abdillah
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
5
|
Yu Z, Koppelman GH, Boer JMA, Hoek G, Kerckhoffs J, Vonk JM, Vermeulen R, Gehring U. Ambient ultrafine particles and asthma onset until age 20: The PIAMA birth cohort. ENVIRONMENTAL RESEARCH 2022; 214:113770. [PMID: 35777436 DOI: 10.1016/j.envres.2022.113770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Evidence regarding the role of long-term exposure to ultrafine particles (<0.1 μm, UFP) in asthma onset is scarce. OBJECTIVES We examined the association between exposure to UFP and asthma development in the Dutch PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort and assessed whether there is an association with UFP, independent of other air pollutants. METHODS Data from birth up to age 20 years from 3687 participants were included. Annual average exposure to UFP at the residential addresses was estimated with a land-use regression model. Overall and age-specific associations of exposure at the birth address and current address at the time of follow-up with asthma incidence were assessed using discrete-time hazard models adjusting for potential confounders. We investigated both single- and two-pollutant models accounting for co-exposure to other air pollutants (PM2.5 and PM10 mass concentrations, nitrogen dioxide, and PM2.5 absorbance). MEASUREMENTS AND MAIN RESULTS A total of 812 incident asthma cases were identified. Overall, we found that higher UFP exposure was associated with higher asthma incidence (adjusted odds ratio (95% confidence interval) 1.08 (1.02,1.14) and 1.06 (1.00, 1.12) per interquartile range increase in exposure at the birth address and current address at the time of follow-up, respectively). Age-specific associations were not consistent. The association was no longer significant after adjustment for other traffic-related pollutants (nitrogen dioxide and PM2.5 absorbance). CONCLUSIONS Our findings support the importance of traffic-related air pollutants for asthma development through childhood and adolescence, but provide little support for an independent effect of UFP.
Collapse
Affiliation(s)
- Zhebin Yu
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Jolanda M A Boer
- Center for Nutrition, Prevention, and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Rovira J, Paredes-Ahumada JA, Barceló-Ordinas JM, García-Vidal J, Reche C, Sola Y, Fung PL, Petäjä T, Hussein T, Viana M. Non-linear models for black carbon exposure modelling using air pollution datasets. ENVIRONMENTAL RESEARCH 2022; 212:113269. [PMID: 35427594 DOI: 10.1016/j.envres.2022.113269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Black carbon (BC) is a product of incomplete combustion, present in urban aerosols and sourcing mainly from road traffic. Epidemiological evidence reports positive associations between BC and cardiovascular and respiratory disease. Despite this, BC is currently not regulated by the EU Air Quality Directive, and as a result BC data are not available in urban areas from reference air quality monitoring networks in many countries. To fill this gap, a machine learning approach is proposed to develop a BC proxy using air pollution datasets as an input. The proposed BC proxy is based on two machine learning models, support vector regression (SVR) and random forest (RF), using observations of particle mass and number concentrations (N), gaseous pollutants and meteorological variables as the input. Experimental data were collected from a reference station in Barcelona (Spain) over a 2-year period (2018-2019). Two months of additional data were available from a second urban site in Barcelona, for model validation. BC concentrations estimated by SVR showed a high degree of correlation with the measured BC concentrations (R2 = 0.828) with a relatively low error (RMSE = 0.48 μg/m3). Model performance was dependent on seasonality and time of the day, due to the influence of new particle formation events. When validated at the second station, performance indicators decreased (R2 = 0.633; RMSE = 1.19 μg/m3) due to the lack of N data and PM2.5 and the smaller size of the dataset (2 months). New particle formation events critically impacted model performance, suggesting that its application would be optimal in environments where traffic is the main source of ultrafine particles. Due to its flexibility, it is concluded that the model can act as a BC proxy, even based on EU-regulatory air quality parameters only, to complement experimental measurements for exposure assessment in urban areas.
Collapse
Affiliation(s)
- J Rovira
- Barcelona University, Barcelona, Spain
| | - J A Paredes-Ahumada
- Department of Computer Architecture, Universitat Politècnica de Catalunya, UPC, Barcelona, Spain
| | - J M Barceló-Ordinas
- Department of Computer Architecture, Universitat Politècnica de Catalunya, UPC, Barcelona, Spain
| | - J García-Vidal
- Department of Computer Architecture, Universitat Politècnica de Catalunya, UPC, Barcelona, Spain
| | - C Reche
- Institute of Environmental Assessment and Water Research, Spanish Research Council, IDAEA-CSIC, Barcelona, Spain
| | - Y Sola
- Barcelona University, Barcelona, Spain
| | - P L Fung
- University of Helsinki, Institute for Atmospheric and Earth System Research (INAR/Physics), UHEL, Helsinki, Finland
| | - T Petäjä
- University of Helsinki, Institute for Atmospheric and Earth System Research (INAR/Physics), UHEL, Helsinki, Finland
| | - T Hussein
- University of Helsinki, Institute for Atmospheric and Earth System Research (INAR/Physics), UHEL, Helsinki, Finland; The University of Jordan, School of Science, Department of Physics, Amman, Jordan
| | - M Viana
- Institute of Environmental Assessment and Water Research, Spanish Research Council, IDAEA-CSIC, Barcelona, Spain.
| |
Collapse
|
7
|
Deng B, Wang Y, Huang H, Duan X, Liu A. Effects of inhalation frequency on inhalation/exposure dose of hazardous nanoparticles and toxic gases during cigarette smoking. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113709. [PMID: 35653970 DOI: 10.1016/j.ecoenv.2022.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, we measured the pollutants generations during cigarette smoking under various inhalation frequency experiment scenarios by a self-developed smoking machine. Some concepts, the effective inhaled amount and exposure amount were proposed to quantitatively estimate emission rates. Important findings include: For interval 1 s, 2 s, 3 s, 4 s and 9 s (called from 1 s to 9 s herein), effective inhaled nano-scale PN (particle number) per cigarette was 8.43E+09 #, 7.24E+09 #, 5.74E+ 09 #, 3.82E+09 # and 1.15E+09 #, it decreased linearly with interval time; exposure amount of PN in side stream smoke was 1.06E+10 #, 1.2E+10 #, 1.48E+10 #, 1.84E+10 # and 8.74E+10 #, it increased with interval time. For toxic gases, all pollutants decreased with interval time in main stream smoke. In side stream smoke, NOx and CO firstly increased with interval time and then decreased (with the highest value at 3 s interval time), while HC always increased with interval time. So, this study is useful to understand the relationship between pollution and smoking habit.
Collapse
Affiliation(s)
- Banglin Deng
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiwen Wang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Haiyan Huang
- Innovation and Entrepreneurship Institute, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Xiongbo Duan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Aodong Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Yu Z, Koppelman GH, Hoek G, Kerckhoffs J, Vonk JM, Vermeulen R, Gehring U. Ultrafine particles, particle components and lung function at age 16 years: The PIAMA birth cohort study. ENVIRONMENT INTERNATIONAL 2021; 157:106792. [PMID: 34388675 DOI: 10.1016/j.envint.2021.106792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Particulate matter (PM) air pollution exposure has been linked to lung function in adolescents, but little is known about the relevance of specific PM components and ultrafine particles (UFP). OBJECTIVES To investigate the associations of long-term exposure to PM elemental composition and UFP with lung function at age 16 years. METHODS For 706 participants of a prospective Dutch birth cohort, we assessed associations of forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at age 16 with average exposure to eight elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc) in PM2.5 and PM10, as well as UFP during the preceding years (age 13-16 years) estimated by land-use regression models. After assessing associations for each pollutant individually using linear regression models with adjustment for potential confounders, independence of associations with different pollutants was assessed in two-pollutant models with PM mass and NO2, for which associations with lung function have been reported previously. RESULTS We observed that for most PM elemental components higher exposure was associated with lower FEV1, especially PM10 sulfur [e.g. adjusted difference -2.23% (95% confidence interval (CI) -3.70 to -0.74%) per interquartile range (IQR) increase in PM10 sulfur]. The association with PM10 sulfur remained after adjusting for PM10 mass. Negative associations of exposure to UFP with both FEV1 and FVC were observed [-1.06% (95% CI: -2.08 to -0.03%) and -0.65% (95% CI: -1.53 to 0.23%), respectively per IQR increase in UFP], but did not persist in two-pollutant models with NO2 or PM2.5. CONCLUSIONS Long-term exposure to sulfur in PM10 may result in lower FEV1 at age 16. There is no evidence for an independent effect of UFP exposure.
Collapse
Affiliation(s)
- Zhebin Yu
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Department of Epidemiology and Health Statistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Wright RJ, Hsu HHL, Chiu YHM, Coull BA, Simon MC, Hudda N, Schwartz J, Kloog I, Durant JL. Prenatal Ambient Ultrafine Particle Exposure and Childhood Asthma in the Northeastern United States. Am J Respir Crit Care Med 2021; 204:788-796. [PMID: 34018915 PMCID: PMC8528517 DOI: 10.1164/rccm.202010-3743oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Ambient ultrafine particles (UFPs; with an aerodynamic diameter < 0.1 μm) may exert greater toxicity than other pollution components because of their enhanced oxidative capacity and ability to translocate systemically. Studies examining associations between prenatal UFP exposure and childhood asthma remain sparse. Objectives: We used daily UFP exposure estimates to identify windows of susceptibility of prenatal UFP exposure related to asthma in children, accounting for sex-specific effects. Methods: Analyses included 376 mother-child dyads followed since pregnancy. Daily UFP exposure during pregnancy was estimated by using a spatiotemporally resolved particle number concentration prediction model. Bayesian distributed lag interaction models were used to identify windows of susceptibility for UFP exposure and examine whether effect estimates varied by sex. Incident asthma was determined at the first report of asthma (3.6 ± 3.2 yr). Covariates included maternal age, education, race, and obesity; child sex; nitrogen dioxide (NO2) and temperature averaged over gestation; and postnatal UFP exposure. Measurements and Main Results: Women were 37.8% Black and 43.9% Hispanic, with 52.9% reporting having an education at the high school level or lower; 18.4% of children developed asthma. The cumulative odds ratio (95% confidence interval) for incident asthma per doubling of the UFP exposure concentration across pregnancy was 4.28 (1.41-15.7), impacting males and females similarly. Bayesian distributed lag interaction models indicated sex differences in the windows of susceptibility, with the highest risk of asthma seen in females exposed to higher UFP concentrations during late pregnancy. Conclusions: Prenatal UFP exposure was associated with asthma development in children, independent of correlated ambient NO2 and temperature. Findings will benefit future research and policy-makers who are considering appropriate regulations to reduce the adverse effects of UFPs on child respiratory health.
Collapse
Affiliation(s)
- Rosalind J. Wright
- Department of Environmental Medicine and Public Health and
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | - Matthew C. Simon
- Volpe National Transportation Systems Center, U.S. Department of Transportation, Cambridge, Massachusetts; and
| | - Neelakshi Hudda
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Itai Kloog
- Department of Environmental Medicine and Public Health and
| | - John L. Durant
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
10
|
Lloyd M, Carter E, Diaz FG, Magara-Gomez KT, Hong KY, Baumgartner J, Herrera G VM, Weichenthal S. Predicting Within-City Spatial Variations in Outdoor Ultrafine Particle and Black Carbon Concentrations in Bucaramanga, Colombia: A Hybrid Approach Using Open-Source Geographic Data and Digital Images. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12483-12492. [PMID: 34498865 DOI: 10.1021/acs.est.1c01412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Outdoor ultrafine particles (UFP, <0.1 μm) and black carbon (BC) vary greatly within cities and may have adverse impacts on human health. In this study, we used a hybrid approach to develop new models to estimate within-city spatial variations in outdoor UFP and BC concentrations across Bucaramanga, Colombia. We conducted a mobile monitoring campaign over 20 days in 2019. Regression models were trained on land use data and combined with predictions from convolutional neural networks (CNN) trained to predict UFP and BC concentrations using satellite and street-level images. The combined UFP model (R2 = 0.54) outperformed the CNN (R2 = 0.47) and land use regression (LUR) models (R2 = 0.47) on their own. Similarly, the combined BC model also outperformed the CNN and LUR BC models (R2 = 0.51 vs 0.43 and 0.45, respectively). Spatial variations in model performance were more stable for the CNN and combined models compared to the LUR models, suggesting that the combined approach may be less likely to contribute to differential exposure measurement error in epidemiological studies. In general, our findings demonstrated that satellite and street-level images can be combined with a traditional LUR modeling approach to improve predictions of within-city spatial variations in outdoor UFP and BC concentrations.
Collapse
Affiliation(s)
- Marshall Lloyd
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1A2, Canada
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Walter Scott, Jr. College of Engineering, Colorado State University, Fort Collins 80523, United States
| | - Florencio Guzman Diaz
- Department of Civil and Environmental Engineering, Walter Scott, Jr. College of Engineering, Colorado State University, Fort Collins 80523, United States
| | | | - Kris Y Hong
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1A2, Canada
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1A2, Canada
- Institute for Health and Social Policy, McGill University, Montreal H3A 1A2, Canada
| | - Víctor M Herrera G
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga, Bucaramanga 680006, Colombia
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1A2, Canada
| |
Collapse
|
11
|
Kerckhoffs J, Hoek G, Gehring U, Vermeulen R. Modelling nationwide spatial variation of ultrafine particles based on mobile monitoring. ENVIRONMENT INTERNATIONAL 2021; 154:106569. [PMID: 33866060 DOI: 10.1016/j.envint.2021.106569] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Large nation- and region-wide epidemiological studies have provided important insights into the health effects of long-term exposure to outdoor air pollution. Evidence from these studies for the long-term effects of ultrafine particles (UFP), however is lacking. Reason for this is the shortage of empirical UFP land use regression models spanning large geographical areas including cities with varying topographies, peri-urban and rural areas. The aim of this paper is to combine targeted mobile monitoring and long-term regional background monitoring to develop national UFP models. METHOD We used an electric car to monitor UFP concentrations in selected cities and towns across the Netherlands over a 14-month period in 2016-2017. Routes were monitored 3 times and concentrations were averaged per road segment. In addition, we used kriging maps based on regional background monitoring (20 sites; 3 × 2 weeks) over the same period to assess annual average regional background concentrations. All road segments were used to model spatial variation of UFP with three different land-use (regression) approaches: supervised stepwise regression, LASSO and random forest. For each approach, we also tested a deconvolution method, which segregates the average concentration at each road segment into a local and background signal. Model performance was evaluated with short-term (400 sites across the Netherlands; 3 × 30 minutes) and external longer-term measurements (42 sites in two major cities; 3 × 24 hours). We also compared predictions of all six models at 1000 random addresses spread over the country. RESULTS We found similar predictive performance for the six models, with validation R2 values from 0.25 to 0.35 for short-term measurements and 0.52 to 0.60 for longer-term external measurements. Models with and without deconvolution had similar predictive performance. All models based on the deconvolution method included a regional background kriging map as important predictor. Correlations between predictions at random addresses were high with Pearson correlations from 0.84 to 0.99. Models overestimated exposure at the short-term and long-term sites by about 20-30% in all cases, with small differences between regions and road types. CONCLUSION We developed robust nation-wide models for long-term UFP exposure combining mobile monitoring with long-term regional background monitoring. Minor differences in predictive performance between different algorithms were found, but the deconvolution approach is considered more physically realistic. The models will be applied in Dutch nation-wide health studies.
Collapse
Affiliation(s)
- Jules Kerckhoffs
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, 3584 CK Utrecht, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, 3584 CK Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, 3584 CK Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, 3584 CK Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
12
|
Hou K, Deng B, Liu A, Ran J. Measurement of harmful nanoparticle distribution among filters, smokers' respiratory systems, and surrounding air during cigarette smoking. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1058-1068. [PMID: 34353208 DOI: 10.1080/10934529.2021.1962158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This study was undertaken to investigate the filtration effect of filter on nanoparticle and the deposition behavior of nanoparticle in the human respiratory system from the aspect of nanoparticle number during cigarette smoking. For that, two kinds of experiments were designed. One is machine experiment, a well-controlled simulated respiratory system was designed to measure the raw emission and filter effect. Another is human experiment, volunteers were asked to inhale smoke into the oral cavity only and lungs, respectively, to distinguish smoke path. Results revealed that effective inhaled nanoparticle amount of a Taishan and a Hongtaishan cigarette were 5.8E + 9 (#) and 9.4E + 7 (#), respectively. The filter's integrated reduction rate was 41.65% for nanoparticle. For Taishan cigarette, 35.4% and 41.7% of raw emitted nanoparticles were deposited in the oral cavity and lungs, respectively, the rest of 22.9% was exhaled to surrounding air. The corresponding values were 25.6%, 41.5% and 32.9%, respectively, for Hongtaishan. The current findings are expected to provide basic assessments of filter effect and harm to human and to be a warning for smokers.
Collapse
Affiliation(s)
- Kaihong Hou
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
| | - Banglin Deng
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
| | - Aodong Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
| | - Jiaqi Ran
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Kuittinen N, Jalkanen JP, Alanen J, Ntziachristos L, Hannuniemi H, Johansson L, Karjalainen P, Saukko E, Isotalo M, Aakko-Saksa P, Lehtoranta K, Keskinen J, Simonen P, Saarikoski S, Asmi E, Laurila T, Hillamo R, Mylläri F, Lihavainen H, Timonen H, Rönkkö T. Shipping Remains a Globally Significant Source of Anthropogenic PN Emissions Even after 2020 Sulfur Regulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:129-138. [PMID: 33290058 DOI: 10.1021/acs.est.0c03627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shipping is the main source of anthropogenic particle emissions in large areas of the globe, influencing climate, air quality, and human health in open seas and coast lines. Here, we determined, by laboratory and on-board measurements of ship engine exhaust, fuel-specific particle number (PN) emissions for different fuels and desulfurization applied in shipping. The emission factors were compared to ship exhaust plume observations and, furthermore, exploited in the assessment of global PN emissions from shipping, utilizing the STEAM ship emission model. The results indicate that most particles in the fresh ship engine exhaust are in ultrafine particle size range. Shipping PN emissions are localized, especially close to coastal lines, but significant emissions also exist on open seas and oceans. The global annual PN produced by marine shipping was 1.2 × 1028 (±0.34 × 1028) particles in 2016, thus being of the same magnitude with total anthropogenic PN emissions in continental areas. The reduction potential of PN from shipping strongly depends on the adopted technology mix, and except wide adoption of natural gas or scrubbers, no significant decrease in global PN is expected if heavy fuel oil is mainly replaced by low sulfur residual fuels. The results imply that shipping remains as a significant source of anthropogenic PN emissions that should be considered in future climate and health impact models.
Collapse
Affiliation(s)
- Niina Kuittinen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Jukka-Pekka Jalkanen
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
| | - Jenni Alanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Leonidas Ntziachristos
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Hanna Hannuniemi
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
| | - Lasse Johansson
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
| | - Panu Karjalainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Erkka Saukko
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Mia Isotalo
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Päivi Aakko-Saksa
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 VTT Espoo, Finland
| | - Kati Lehtoranta
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 VTT Espoo, Finland
| | - Jorma Keskinen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Pauli Simonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
| | - Eija Asmi
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
| | - Tuomas Laurila
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
| | - Risto Hillamo
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
| | - Fanni Mylläri
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Heikki Lihavainen
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
- Svalbard Integrated Arctic Earth Observing System, P.O. Box 156, 9171 Longyearbyen, Norway
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| |
Collapse
|
14
|
Hudda N, Simon MC, Patton AP, Durant JL. Reductions in traffic-related black carbon and ultrafine particle number concentrations in an urban neighborhood during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140931. [PMID: 32747009 PMCID: PMC7358174 DOI: 10.1016/j.scitotenv.2020.140931] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 05/20/2023]
Abstract
We investigated changes in traffic-related air pollutant concentrations in an urban area during the COVID-19 pandemic. The study was conducted in a mixed commercial-residential neighborhood in Somerville (MA, USA), where traffic is the dominant source of air pollution. Measurements were made between March 27 and May 14, 2020, coinciding with a dramatic reduction in traffic (71% drop in car and 46% drop in truck traffic) due to business shutdowns and a statewide stay-at-home advisory. Indicators of fresh vehicular emissions (ultrafine particle number concentration [PNC] and black carbon [BC]) were measured with a mobile monitoring platform on an interstate highway and major and minor roadways. Our results show that depending on road class, median PNC and BC contributions from traffic were 60-68% and 22-46% lower, respectively, during the lockdown compared to pre-pandemic conditions, and corresponding reductions in total on-road concentrations were 45-69% and 22-56%, respectively. A higher BC: PNC concentration ratio was observed during the lockdown period likely indicative of the higher fraction of diesel vehicles in the fleet during the lockdown. Overall, the scale of reductions in ultrafine particle and BC concentrations was commensurate with the reductions in traffic. This natural experiment allowed us to quantify the direct impacts of reductions in traffic emissions on neighborhood-scale air quality, which are not captured by the regional regulatory-monitoring network. These results underscore the importance of measurements of appropriate proxies for traffic emissions at relevant spatial scales. Our results are useful for exposure analysis as well as city and regional planners evaluating mitigation strategies for traffic-related air pollution.
Collapse
Affiliation(s)
- Neelakshi Hudda
- Department of Civil and Environmental Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA.
| | - Matthew C Simon
- Volpe National Transportation Systems Center, U.S. Department of Transportation, Cambridge, MA 02142, USA
| | | | - John L Durant
- Department of Civil and Environmental Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| |
Collapse
|