1
|
Huang Y, Deng M, Zhou S, Xue Y, Yeerken S, Wang Y, Li L, Song K. Microbial mechanisms underlying the reduction of N 2O emissions from submerged plant covered system. WATER RESEARCH X 2025; 28:100314. [PMID: 40007796 PMCID: PMC11849602 DOI: 10.1016/j.wroa.2025.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Submerged plant (SP) restoration is a crucial strategy for restoring aquatic ecosystem. However, the effect of SP on nitrous oxide (N2O) emissions remains controversial, and the impact of SP-attached biofilms on N2O emissions is often overlooked. In this study, SP and non-submerged plant (NSP) systems were set up and operated continuously for 189 days, revealing that SP reduced N2O flux by 42.4 %. By comparing the N2O net emission rates from water, sediment, and biofilms, we identified biofilms as the primary medium responsible for the reduction in N2O emissions in both SP and NSP systems. Further analysis of N2O metabolic rates from nitrification, denitrification, and abiotic processes under light and dark conditions confirmed that counter-diffusion of dissolved oxygen and nutrients in SP biofilms plays a key role in reducing denitrification-driven N2O emissions. Additionally, SP-attached biofilms increased nosZII-type denitrifiers (e.g., Bacillus) and reduced N2O production potential ((nirS+nirK)/(nosZI+nosZII)). Notably, the establishment of a SP restoration project in a typical eutrophic freshwater lake demonstrated that SP could reduce N2O fluxes by 61.5 %. This study provides significant insights for strategies aimed at mitigating N2O emissions.
Collapse
Affiliation(s)
- Yongxia Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Shuni Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yunpeng Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lu Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Kang Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
| |
Collapse
|
2
|
Guo J, Guan A, Chen M, Chen Y, Qi W, Cao X, Peng J, Liu H, Qu J, Jia Z, Hu H. Spatial distribution of potential nitrogen reduction rates and associated microbial communities revealed by metagenomic analysis in Yangtze River sediments. ENVIRONMENTAL RESEARCH 2025; 272:121170. [PMID: 39983954 DOI: 10.1016/j.envres.2025.121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Understanding the intricacies of nitrogen reduction processes and the composition of associated microbial communities is crucial for illuminating the reactions of ecosystems and their functions to persistent nitrogen inputs. To enhance research on the nitrogen reduction process, we determined the potential rates, quantified the relevant genes, and analyzed the macro factors in the sediments of the Yangtze River. The results showed that dissimilatory reduction of nitrate to ammonium (DNRA) dominated the N-reduction processes in the Yangtze River sediment, with average rates of 0.89 ± 0.71 nmol N g-1 h-1. Meanwhile, denitrification and anammox rates were 0.73 ± 0.74 and 0.07 ± 0.07 nmol N g-1 h-1, respectively. The Three Gorges Dam (TGD) caused higher potential rates (nmol N g-1 h-1) of denitrification (1.38), anammox (0.12), DNRA (1.48), and N2O depletion (1.49 nmol g-1 h-1) in the Three Gorges Reservoir (TGR) compared to other river reaches. The average copy numbers (copies·g-1) of nrfA (2.96 × 106), narG (8.17 × 105), nirS (6.10 × 106), nosZ (2.77 × 106), and hzsB (3.68 × 105) in TGR sediments were higher than those in the other reaches. The TGD's interception of fine sediments and nutrients enhanced microbial gene abundance, thereby favoring N-reduction processes and resulting in N2O depletion in reservoir sediments. Moreover, the TGD caused a decreased contribution gap between DNRA and denitrification in the TGR (2%) compared with the upper (35%) and lower (18%) reaches, while causing predominant anammox (50%) in the middle reach. Metagenomic results suggested that sediment particle size, along with organic carbon and inorganic nitrogen concentrations, influenced N reduction rates by affecting narG, norB and C, nrfA and H, and hzsB and C. This study reveals the spatial pattern of the N-reduction rate in the Yangtze River sediments and quantitatively defines the intensity of dam effects on sediment N-reduction rate.
Collapse
Affiliation(s)
- Jiaxun Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, 430010, China
| | - Aomei Guan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Min Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, 430010, China
| | - Yufeng Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, 430010, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuoyue Jia
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, 430010, China
| | - Hongxiu Hu
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, 430010, China
| |
Collapse
|
3
|
Huang Y, Deng M, Li L, Wang Z, Song K, Wu F. Freshwater Salinization Mitigated N 2O Emissions in Submerged Plant-Covered Systems: Insights from Attached Biofilms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3205-3217. [PMID: 39847529 DOI: 10.1021/acs.est.4c10860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Submerged plants (SMPs) play a critical role in improving water quality and reducing N2O greenhouse gas emissions. However, freshwater salinization represents a major environmental challenge in aquatic systems. To investigate the impact of salinization on N2O emissions, this study conducted indoor mesocosm experiments simulating SMP and nonsubmerged plant (Non_SMP) areas in freshwater lakes. The objective was to explore the effects and microbial mechanisms of the attached biofilm on N2O emission in freshwater salinization. Salinization systems (700-1500 μS cm-1) reduced N2O flux by 37.0 and 40.5% compared to freshwater systems (<700 μS cm-1) of SMPs and Non_SMPs, respectively. Kinetic experiments showed that the reduction in N2O emissions was mainly attributed to the attached biofilm rather than the sediment or water. The N2O net emission rates of the attached biofilm decreased by 47.1 and 71.8% in salinization systems of SMPs and Non_SMPs, respectively, compared with freshwater systems. Additionally, biofilms in salinization systems exhibited lower denitrification rates. Furthermore, salinization reduced the N2O production potential ((nirS + nirK)/(nosZI + nosZII)), thereby further decreasing N2O emissions. This study provides valuable insights into the role and mechanisms of biofilms in mitigating N2O emissions in salinized freshwater lakes.
Collapse
Affiliation(s)
- Yongxia Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road No. 7, Wuhan 430072, Hubei, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road No. 7, Wuhan 430072, Hubei, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road No. 7, Wuhan 430072, Hubei, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zezheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road No. 7, Wuhan 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road No. 7, Wuhan 430072, Hubei, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Wu W, Comer-Warner SA, Peacock M, Han X, Li SL, Ju X, Liu CQ, Smith P, Yan Z. IPCC Emission Factor Overestimates N 2O Emissions from Agricultural Ditches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20019-20029. [PMID: 39529580 DOI: 10.1021/acs.est.4c05760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Agricultural ditches emit disproportionate amounts of nitrous oxide (N2O), but their contributions to regional or global N2O emissions remain unclear due to limited data. The Intergovernmental Panel on Climate Change (IPCC) recommends using emission factors (EFs) to estimate indirect N2O emission, but the EF for ditches (EF5g) is categorized as groundwater, which potentially introduces a significant bias. This study conducted a regional-scale campaign in the North China Plain, one of the world's most intensive agricultural regions, and calculated the EF5g values from agricultural ditches by the concentration method (N2O-N/NO3--N). The results found that the regional-scale mean EF5g value (0.0028) was less than half of the IPCC default value (0.006), illustrating that the current IPCC methodology significantly overestimates N2O emissions from agricultural ditches. Despite the relatively small EF5g values, agricultural ditches exhibited a high mean N2O concentration (3.36 μg L-1) and a large regional emission (1.14 ± 0.86 Gg N2O-N yr-1), which is equal to 3.8 ± 2.9% of direct N2O emission from the croplands in the North China Plain. Since ditches are ubiquitous in agricultural regions and are likely to expand under climate change, refining EF5g is crucial to accurately assess their contribution to global N2O budgets.
Collapse
Affiliation(s)
- Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sophie A Comer-Warner
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, U.K
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mike Peacock
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, U.K
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Xingxing Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Xiaotang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| | - Pete Smith
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Dr., Aberdeen AB24 3UU, U.K
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Sun C, Liu N, Song J, Chen L, Zhang Y, Wang X. High-Resolution Estimates of N 2O Emissions from Inland Waters and Wetlands in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8736-8747. [PMID: 38723264 DOI: 10.1021/acs.est.4c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Inland waters (rivers, lakes, and reservoirs) and wetlands (marshes and coastal wetlands) represent large and continuous sources of nitrous oxide (N2O) emissions, in view of adequate biomass and anaerobic conditions. Considerable uncertainties remain in quantifying spatially explicit N2O emissions from aquatic systems, attributable to the limitations of models and a lack of comprehensive data sets. Herein, we conducted a synthesis of 1659 observations of N2O emission rates to determine the major environmental drivers across five aquatic systems. A framework for spatially explicit estimates of N2O emissions in China was established, employing a data-driven approach that upscaled from site-specific N2O fluxes to robust multiple-regression models. Results revealed the effectiveness of models incorporating soil organic carbon and water content for marshes and coastal wetlands, as well as water nitrate concentration and dissolved organic carbon for lakes, rivers, and reservoirs for predicting emissions. Total national N2O emissions from inland waters and wetlands were 1.02 × 105 t N2O yr-1, with contributions from marshes (36.33%), rivers (27.77%), lakes (25.27%), reservoirs (6.47%), and coastal wetlands (4.16%). Spatially, larger emissions occurred in the Songliao River Basin and Continental River Basin, primarily due to their substantial terrestrial biomass. This study offers a vital national inventory of N2O emissions from inland waters and wetlands in China, providing paradigms for the inventorying work in other countries and insights to formulate effective mitigation strategies for climate change.
Collapse
Affiliation(s)
- Cheng Sun
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Nuo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Junnian Song
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
- The Bartlett School of Sustainable Construction, University College London, London WC1E 7HB, U.K
| | - Lei Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Zhang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Xian'en Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
6
|
Abulaiti A, She D, Pan Y, Shi Z, Hu L, Huang X, Shan J, Xia Y. Drainage ditches are significant sources of indirect N 2O emissions regulated by available carbon to nitrogen substrates in salt-affected farmlands. WATER RESEARCH 2024; 251:121164. [PMID: 38246078 DOI: 10.1016/j.watres.2024.121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Agriculture is a main source of nitrous oxide (N2O) emissions. In agricultural systems, direct N2O emissions from nitrogen (N) addition to soils have been widely investigated, whereas indirect emissions from aquatic ecosystems such as ditches are poorly known, with insufficient data available to refine the IPCC emission factor. In this contribution, in situ N2O emissions from two ditch water‒air interfaces based on a diffusion model were investigated (almost once per month) from June 2021 to December 2022 in an intensive arable catchment with high N inputs and salt-affected conditions in the Qingtongxia Irrigation District, northwestern China. Our results implied that agricultural ditches (mean 148 μg N m-2 h-1) were significant sources for N2O emissions, and were approximately 2.1 times greater than those of the Yellow River directly connected to ditches. Agronomic management strategies increased N2O fluxes in summer, while precipitation events decreased N2O fluxes. Agronomic management strategies, including fertilization (294--540 kg N hm-2) and irrigation on farmland, resulted in enhanced diffuse N loads in drain water, whereas precipitation diluted the dissolved N2O concentration in ditches and accelerated the ditch flow rate, leading to changes in the residence time of N-containing substances in water. The spatial analysis showed that N2O fluxes (202-233 μg N m-2 h-1) in the headstream and upstream regions of ditches due to livestock and aquaculture pollution sources were relatively high compared to those in the midstream and downstream regions (100-114 μg N m-2 h-1). Furthermore, high available carbon (C) relative to N reduced N2O fluxes at low DOC:DIN ratio levels by inhibiting nitrification. Spatiotemporal variations in the N2O emission factor (EF5) across ditches with higher N resulted in lower EF5 and a large coefficient of variation (CV) range. EF5 was 0.0011 for the ditches in this region, while the EF5 (0.0025) currently adopted by the IPCC is relatively high. The EF5 variation was strongly controlled by the DOC:DIN ratio, TN, and NO3--N, while salinity was also a nonnegligible factor regulating the EF5 variation. The regression model incorporating NO3--N and the DOC:DIN ratio could greatly enhance the predictions of EF5 for agricultural ditches. Our study filled a key knowledge gap regarding EF5 from agricultural ditches in salt-affected farmland and offered a field investigation for refining the EF5 currently used by the IPCC.
Collapse
Affiliation(s)
- Alimu Abulaiti
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; College of Soil and Water Conservation, Hohai University, Changzhou 213200, China.
| | - Yongchun Pan
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Zhenqi Shi
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Lei Hu
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou 225002, China
| | - Xuan Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Jun Shan
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
7
|
Li Y, Tian H, Yao Y, Shi H, Bian Z, Shi Y, Wang S, Maavara T, Lauerwald R, Pan S. Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era. Nat Commun 2024; 15:942. [PMID: 38296943 PMCID: PMC10830459 DOI: 10.1038/s41467-024-45061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Lentic systems (lakes and reservoirs) are emission hotpots of nitrous oxide (N2O), a potent greenhouse gas; however, this has not been well quantified yet. Here we examine how multiple environmental forcings have affected N2O emissions from global lentic systems since the pre-industrial period. Our results show that global lentic systems emitted 64.6 ± 12.1 Gg N2O-N yr-1 in the 2010s, increased by 126% since the 1850s. The significance of small lentic systems on mitigating N2O emissions is highlighted due to their substantial emission rates and response to terrestrial environmental changes. Incorporated with riverine emissions, this study indicates that N2O emissions from global inland waters in the 2010s was 319.6 ± 58.2 Gg N yr-1. This suggests a global emission factor of 0.051% for inland water N2O emissions relative to agricultural nitrogen applications and provides the country-level emission factors (ranging from 0 to 0.341%) for improving the methodology for national greenhouse gas emission inventories.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanqin Tian
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA.
| | - Yuanzhi Yao
- School of Geographic Sciences, East China Normal University, Shanghai, 610000, China
| | - Hao Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zihao Bian
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Shi
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Siyuan Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taylor Maavara
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Ronny Lauerwald
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Palaiseau, 91120, France
| | - Shufen Pan
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA
- Department of Engineering, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
8
|
Li B, Duan X, Zhao T, Niu B, Li G, Zhao Z, Yang Z, Liu D, Zhang F, Cheng J, Hao Z. Boosting N 2O Catalytic Decomposition by the Synergistic Effect of Multiple Elements in Cobalt-Based High-Entropy Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2153-2161. [PMID: 38244211 DOI: 10.1021/acs.est.3c09741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Nitrous oxide (N2O) has a detrimental impact on the greenhouse effect, and its efficient catalytic decomposition at low temperatures remains challenging. Herein, the cobalt-based high-entropy oxide with a spinel-type structure (Co-HEO) is successfully fabricated via a facile coprecipitation method for N2O catalytic decomposition. The obtained Co-HEO catalyst displays more remarkable catalytic performance and higher thermal stability compared with single and binary Co-based oxides, as the temperature of 90% N2O decomposition (T90) is 356 °C. A series of characterization results reveal that the synergistic effect of multiple elements enhances the reducibility and augments oxygen vacancy in the high-entropy system, thus boosting the activity of the Co-HEO catalyst. Moreover, density functional theory (DFT) calculations and the temperature-programmed surface reaction (TPSR) with isotope labeling demonstrate that N2O decomposition on the Co-HEO catalyst follows the Langmuir-Hinshelwood (L-H) mechanism with the promotion of abundant oxygen vacancies. This work provides a fundamental understanding of the synergistic catalytic effect in N2O decomposition and paves the way for the novel environmental catalytic applications of HEO.
Collapse
Affiliation(s)
- Bingzhi Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ting Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ben Niu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zeyu Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zhenwen Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Dongmei Liu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Fenglian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
9
|
Wu W, Niu X, Yan Z, Li S, Comer-Warner SA, Tian H, Li SL, Zou J, Yu G, Liu CQ. Agricultural ditches are hotspots of greenhouse gas emissions controlled by nutrient input. WATER RESEARCH 2023; 242:120271. [PMID: 37399689 DOI: 10.1016/j.watres.2023.120271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Agricultural ditches are pervasive in agricultural areas and are potential greenhouse gas (GHG) hotspots, since they directly receive abundant nutrients from neighboring farmlands. However, few studies measure GHG concentrations or fluxes in this particular water course, likely resulting in underestimations of GHG emissions from agricultural regions. Here we conducted a one-year field study to investigate the GHG concentrations and fluxes from typical agricultural ditch systems, which included four different types of ditches in an irrigation district located in the North China Plain. The results showed that almost all the ditches were large GHG sources. The mean fluxes were 333 μmol m-2 h-1 for CH4, 7.1 mmol m-2 h-1 for CO2, and 2.4 μmol m-2 h-1 for N2O, which were approximately 12, 5, and 2 times higher, respectively, than that in the river connecting to the ditch systems. Nutrient input was the primary driver stimulating GHG production and emissions, resulting in GHG concentrations and fluxes increasing from the river to ditches adjacent to farmlands, which potentially received more nutrients. Nevertheless, the ditches directly connected to farmlands showed lower GHG concentrations and fluxes compared to the ditches adjacent to farmlands, possibly due to seasonal dryness and occasional drainage. All the ditches covered approximately 3.3% of the 312 km2 farmland area in the study district, and the total GHG emission from the ditches in this area was estimated to be 26.6 Gg CO2-eq yr-1, with 17.5 Gg CO2, 0.27 Gg CH4, and 0.006 Gg N2O emitted annually. Overall, this study demonstrated that agricultural ditches were hotspots of GHG emissions, and future GHG estimations should incorporate this ubiquitous but underrepresented water course.
Collapse
Affiliation(s)
- Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xueqi Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sophie A Comer-Warner
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hanqin Tian
- Department of Earth and Environmental Sciences, Boston College, Schiller Institute for Integrated Science and Society, Chestnut Hill, MA 02467, United States
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Jianwen Zou
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guirui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| |
Collapse
|
10
|
Wang J, Wang G, Zhang S, Xin Y, Jiang C, Liu S, He X, McDowell WH, Xia X. Indirect nitrous oxide emission factors of fluvial networks can be predicted by dissolved organic carbon and nitrate from local to global scales. GLOBAL CHANGE BIOLOGY 2022; 28:7270-7285. [PMID: 36176238 DOI: 10.1111/gcb.16458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3 - ) and NO3 - concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3 - and NO3 - is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.
Collapse
Affiliation(s)
- Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Gongqin Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, Hebei, China
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yuan Xin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Chenrun Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing, China
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Yang P, Tang KW, Tong C, Lai DYF, Zhang L, Lin X, Yang H, Tan L, Zhang Y, Hong Y, Tang C, Lin Y. Conversion of coastal wetland to aquaculture ponds decreased N 2O emission: Evidence from a multi-year field study. WATER RESEARCH 2022; 227:119326. [PMID: 36368085 DOI: 10.1016/j.watres.2022.119326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Land reclamation is a major threat to the world's coastal wetlands, and it may influence the biogeochemical cycling of nitrogen in coastal regions. Conversion of coastal marshes into aquaculture ponds is common in the Asian Pacific region, but its impacts on the production and emission of nitrogen greenhouse gases remain poorly understood. In this study, we compared N2O emission from a brackish marsh and converted shrimp aquaculture ponds in the Shanyutan wetland, the Min River Estuary in Southeast China over a three-year period. We also measured sediment and porewater properties, relevant functional gene abundance, sediment N2O production potential and denitrification potential in the two habitats. Results indicated that the pond sediment had lower N-substrate availability, lower ammonia oxidation (AOA and comammox Nitrospira amoA), nitrite reduction (nirK and nirS) and nitrous oxide reduction (nosZ Ⅰ and nosZ Ⅱ) gene abundance and lower N2O production and denitrification potentials than in marsh sediments. Consequently, N2O emission fluxes from the aquaculture ponds (range 5.4-251.8 μg m-2 h-1) were significantly lower than those from the marsh (12.6-570.7 μg m-2 h-1). Overall, our results show that conversion from marsh to shrimp aquaculture ponds in the Shanyutan wetland may have diminished nutrient input from the catchment, impacted the N-cycling microbial community and lowered N2O production capacity of the sediment, leading to lower N2O emissions. Better post-harvesting management of pond water and sediment may further mitigate N2O emissions caused by the aquaculture operation.
Collapse
Affiliation(s)
- Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Kam W Tang
- Department of Biosciences, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Chuan Tong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Xiao Lin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Hong Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, United Kingdom
| | - Lishan Tan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Yifei Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yan Hong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chen Tang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yongxin Lin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
12
|
Lee YJ, Lin BL, Lei Z. Nitrous oxide emission mitigation from biological wastewater treatment - A review. BIORESOURCE TECHNOLOGY 2022; 362:127747. [PMID: 35964917 DOI: 10.1016/j.biortech.2022.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment processes has emerged as a focal point for academic and practical research amidst pressing environmental issues. This review presents an updated view on the biological pathways for N2O production and consumption in addition to the critical process factors affecting N2O emission. The current research trends including the strain and reactor aspects were then outlined with discussions. Last but not least, the research needs were proposed. The holistic life cycle assessment needs to be performed to evaluate the technical and economic feasibility of the proposed mitigation strategies or recovery options. This review also provides the background information for the proposed future research prospects on N2O mitigation and recovery technologies. As pointed out, dilution effects of the produced N2O gas product would hinder its use as renewable energy; instead, its use as an effective oxidizing agent is proposed as a promising recovery option.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10649, Taiwan
| | - Bin-le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
13
|
Zheng Y, Wu S, Xiao S, Yu K, Fang X, Xia L, Wang J, Liu S, Freeman C, Zou J. Global methane and nitrous oxide emissions from inland waters and estuaries. GLOBAL CHANGE BIOLOGY 2022; 28:4713-4725. [PMID: 35560967 DOI: 10.1111/gcb.16233] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Inland waters (rivers, reservoirs, lakes, ponds, streams) and estuaries are significant emitters of methane (CH4 ) and nitrous oxide (N2 O) to the atmosphere, while global estimates of these emissions have been hampered due to the lack of a worldwide comprehensive data set of CH4 and N2 O flux components. Here, we synthesize 2997 in-situ flux or concentration measurements of CH4 and N2 O from 277 peer-reviewed publications to estimate global CH4 and N2 O emissions from inland waters and estuaries. Inland waters including rivers, reservoirs, lakes, and streams together release 95.18 Tg CH4 year-1 (ebullition plus diffusion) and 1.48 Tg N2 O year-1 (diffusion) to the atmosphere, yielding an overall CO2 -equivalent emission total of 3.06 Pg CO2 year-1 . The estimate of CH4 and N2 O emissions represents roughly 60% of CO2 emissions (5.13 Pg CO2 year-1 ) from these four inland aquatic systems, among which lakes act as the largest emitter for both CH4 and N2 O. Ebullition showed as a dominant flux component of CH4 , contributing up to 62%-84% of total CH4 fluxes across all inland waters. Chamber-derived CH4 emission rates are significantly greater than those determined by diffusion model-based methods for commonly capturing of both diffusive and ebullitive fluxes. Water dissolved oxygen (DO) showed as a dominant factor among all variables to influence both CH4 (diffusive and ebullitive) and N2 O fluxes from inland waters. Our study reveals a major oversight in regional and global CH4 budgets from inland waters, caused by neglecting the dominant role of ebullition pathways in those emissions. The estimated indirect N2 O EF5 values suggest that a downward refinement is required in current IPCC default EF5 values for inland waters and estuaries. Our findings further indicate that a comprehensive understanding of the magnitude and patterns of CH4 and N2 O emissions from inland waters and estuaries is essential in defining the way of how these aquatic systems will shape our climate.
Collapse
Affiliation(s)
- Yajing Zheng
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuang Wu
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqi Xiao
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Yu
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiantao Fang
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Longlong Xia
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jinyang Wang
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Shuwei Liu
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| | - Chris Freeman
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Jianwen Zou
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| |
Collapse
|
14
|
Yan X, Han H, Qiu J, Zhang L, Xia Y, Yan X. Suburban agriculture increased N levels but decreased indirect N 2O emissions in an agricultural-urban gradient river. WATER RESEARCH 2022; 220:118639. [PMID: 35640505 DOI: 10.1016/j.watres.2022.118639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The effects of land use on riverine N2O emissions are not well understood, especially in suburban zones between urban and rural with distinct anthropogenic perturbations. Here, we investigated in situ riverine N2O emissions among suburban, urban, and rural sections of a typical agricultural-urban gradient river, the Qinhuai River of Southeastern China from June 2010 to September 2012. Our results showed that suburban agriculture greatly increased riverine N concentration compared to traditional agricultural rivers (TAR). The mean total dissolved nitrogen (TDN) concentration was 8.18 mg N L-1 in the suburban agricultural rivers (SUAR), which was almost the same as that in the urban rivers (UR, of 8.50 mg N L-1), compared to that in TAR (0.92 mg N L-1). However, the annual average indirect N2O flux from the SUAR was only 27.15 μg N2O-N m-2 h-1, which was slightly higher than that from the TAR (13.14 μg N2O-N m-2 h-1) but much lower than that from the UR (131.10 μg N2O-N m-2 h-1). Moreover, the average N2O emission factor (EF5r, N2O-N/DIN-N) in the SUAR (0.0002) was significantly lower than those in the TAR (0.0028) and UR (0.0004). The limited indirect N2O fluxes from the SUAR are best explained by the high riverine dissolved organic carbon (DOC) and low dissolved oxygen, which probably reduced the denitrification source N2O by favoring complete denitrification to produce N2 and inhibited the nitrification source N2O, respectively. An exponential decrease model incorporating dissolved inorganic nitrogen and DOC could greatly improve our EF5r predictions in the agricultural-urban gradient river. Given the unprecedented suburban agriculture in the world, more studies in suburban agricultural rivers are needed to further refine the EF5r and better reveal the mechanisms behind indirect N2O emissions as influenced by suburban agriculture.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haojie Han
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qiu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
15
|
Zhou Y, Toyoda R, Suenaga T, Aoyagi T, Hori T, Terada A. Low nitrous oxide concentration and spatial microbial community transition across an urban river affected by treated sewage. WATER RESEARCH 2022; 216:118276. [PMID: 35339050 DOI: 10.1016/j.watres.2022.118276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Urban rivers receive used water derived from anthropogenic activities and are a crucial source of the potent greenhouse gas nitrous oxide (N2O). However, considerable uncertainties still exist regarding the variation and mechanisms of N2O production in response to the discharge of treated sewage from municipal wastewater treatment plants (WWTPs). This study investigated N2O concentrations and microbial processes responsible for nitrogen conversion upstream and downstream of WWTPs along the Tama River flowing through Tokyo, Japan. We evaluated the effect of treated sewage on dissolved N2O concentrations and inherent N2O consumption activities in the river sediments. In summer and winter, the mean dissolved N2O concentrations were 0.67 µg-N L-1 and 0.82 µg-N L-1, respectively. Although the dissolved N2O was supersaturated (mean 288.7% in summer, mean 240.7% in winter) in the river, the N2O emission factors (EF5r, 0.013%-0.025%) were significantly lower than those in other urban rivers and the Intergovernmental Panel on Climate Change default value (0.25%). The nitrate (NO3-) concentration in the Tama River increased downstream of the WWTPs discharge sites, and it was the main nitrogen constituent. An increasing trend of NO3- concentration was observed from upstream to downstream, along with an increase in the N2O consumption potential of the river sediment. A multiple regression model showed that NO3- is the crucial factor influencing N2O saturation. The diversity in the upstream microbial communities was greater than that in the downstream ones, indicating the involvement of treated sewage discharge in shaping the microbial communities. Functional gene quantification for N2O production and consumption suggested that nirK-type denitrifiers likely contributed to N2O production. Structural equation models (SEMs) revealed that treated sewage discharged from WWTPs increased the NO3- loading from upstream to downstream in the river, inducing changes in the microbial communities and enhancing the N2O consumption activities. Collectively, aerobic conditions limited denitrification and in turn facilitated nitrification, leading to low N2O emissions even despite high NO3- loadings in the Tama River. Our findings unravel an overestimation of the N2O emission potential in an urban oxygen-rich river affected by treated sewage discharge.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Risako Toyoda
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Department of Chemical Engineering, Hiroshima University, Hiroshima 739-8527, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| |
Collapse
|
16
|
Shao B, Zhang R, Xu X, Niu L, Fan K, Lin Z, Zhao L, Zhou X, Ren N, Lee DJ, Chen C. Cryptic Sulfur and Oxygen Cycling Potentially Reduces N 2O-Driven Greenhouse Warming: Underlying Revision Need of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5960-5972. [PMID: 35416037 DOI: 10.1021/acs.est.1c08113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing global deoxygenation has widely formed oxygen-limited biotopes, altering the metabolic pathways of numerous microbes and causing a large greenhouse effect of nitrous oxide (N2O). Although there are many sources of N2O, denitrification is the sole sink that removes N2O from the biosphere, and the low-level oxygen in waters has been classically thought to be the key factor regulating N2O emissions from incomplete denitrification. However, through microcosm incubations with sandy sediment, we demonstrate here for the first time that the stress from oxygenated environments does not suppress, but rather boosts the complete denitrification process when the sulfur cycle is actively ongoing. This study highlights the potential of reducing N2O-driven greenhouse warming and fills a gap in pre-cognitions on the nitrogen cycle, which may impact our current understanding of greenhouse gas sinks. Combining molecular techniques and kinetic verification, we reveal that dominant inhibitions in oxygen-limited environments can interestingly undergo triple detoxification by cryptic sulfur and oxygen cycling, which may extensively occur in nature but have been long neglected by researchers. Furthermore, reviewing the present data and observations from natural and artificial ecosystems leads to the necessary revision needs of the global nitrogen cycle.
Collapse
Affiliation(s)
- Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruochen Zhang
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Niu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhengda Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xu Zhou
- Engineering Laboratory of Microalgal Bioenergy, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Song K, Senbati Y, Li L, Zhao X, Xue Y, Deng M. Distinctive Microbial Processes and Controlling Factors Related to Indirect N 2O Emission from Agricultural and Urban Rivers in Taihu Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4642-4654. [PMID: 35266386 DOI: 10.1021/acs.est.1c07980] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inland rivers are hotspots of anthropogenic indirect nitrous oxide (N2O) emissions, but the underlying microbial processes remain poorly understood. This study measured N2O fluxes from agricultural and urban rivers in Taihu watershed and investigated the microbial processes driving N2O production and consumption. The N2O fluxes were significantly higher in agricultural rivers (140.1 ± 89.1 μmol m-2 d-1) than in urban rivers (25.1 ± 27.0 μmol m-2 d-1) (p < 0.001). All wind-based models significantly underestimated N2O flux in urban rivers (p < 0.05) when using the Intergovernmental Panel on Climate Change method because they underestimated the N2O emission factor (EF5r). Wind speed and nitrate were the key factors affecting N2O fluxes in agricultural and urban rivers, respectively. NirK-type denitrifiers produced N2O in urban river water, while nirS-type denitrifiers consumed N2O in the sediments of all rivers. Co-occurrence network analysis indicated organics from Microcystis served as electron donors for denitrifiers (dominated by Flavobacterium) in water, while direct interspecies electron transfer between Thiobacillus and methanogens and between Dechloromonas and sulfate-reducing bacteria enhanced N2O reduction in sediments. This study advances our knowledge on the distinctive microbial processes that determine N2O emissions in inland rivers and illustrates the need to revise EF5r for N2O estimation in urban rivers.
Collapse
Affiliation(s)
- Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeerken Senbati
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunpeng Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
18
|
Yang P, Luo L, Tang KW, Lai DYF, Tong C, Hong Y, Zhang L. Environmental drivers of nitrous oxide emission factor for a coastal reservoir and its catchment areas in southeastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118568. [PMID: 34838712 DOI: 10.1016/j.envpol.2021.118568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
While Asia is projected to be one of the major nitrous oxide (N2O) sources in the coming decades, a more accurate assessment of N2O budget has been hampered by low data resolution and poorly constrained emission factor (EF). Since urbanized coastal reservoirs receive high nitrogen loads from diverse sources across a heterogeneous landscape, the use of a single fixed EF may lead to large errors in N2O assessment. In this study, we conducted high spatial resolution sampling of dissolved N2O, nitrate-nitrogen (NO3--N) and other physico-chemical properties of surface water in Wenwusha Reservoir and other types of water bodies (river, drainage channels, and aquaculture ponds) in its catchment areas in southeastern China between November 2018 and June 2019. The empirically derived EF (calculated as N2O-N:NO3--N) for the reservoir showed considerable spatial variations, with a 10-fold difference ranging from 0.8 × 10-3 to 8.8 × 10-3. The average EF varied significantly among the four types of water bodies in the following descending order: aquaculture ponds > river > drainage channels > reservoir. Across all the water bodies, the mean EF in summer was 1.8-3.5 and 1.7-2.8 fold higher than that in autumn and spring, respectively, owing to the elevated water temperature. Overall, our derived EF deviated considerably from the IPCC default value, which implied that the use of default EF could result in over- or under-estimation of N2O emissions by up to 42%. We developed a multiple regression model that could explain 82% of the variance in EF based on water temperature and the ratio between dissolved organic carbon and nitrate-nitrogen (p < 0.001), which could be used to improve the estimate of EF for assessing N2O emission from coastal reservoirs and other similar environments.
Collapse
Affiliation(s)
- Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China.
| | - Liangjuan Luo
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Kam W Tang
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuan Tong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Yan Hong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| |
Collapse
|
19
|
Guan A, Qi W, Peng Q, Zhou J, Bai Y, Qu J. Environmental heterogeneity determines the response patterns of microbially mediated N-reduction processes to sulfamethoxazole in river sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126730. [PMID: 34388921 DOI: 10.1016/j.jhazmat.2021.126730] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 05/28/2023]
Abstract
The widespread occurrence of antibiotics in aquatic ecosystems leads to potential ecological risks to organisms, in turn affecting microbially mediated processes. Here, we investigated the response of dominant N-reduction processes to the frequently detected antibiotic sulfamethoxazole (SMX) along the Chaobai River with regional environmental heterogeneity, including denitrification, anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to ammonium (DNRA), and nitrous oxide (N2O) release. We found two divergent SMX response patterns for denitrification in contrasting scenarios of geochemical properties. In the context of low nitrate and carbon, SMX weakened denitrification with a slightly stimulation first. Whereas SMX directly inhibited denitrification when nitrate and carbon were sufficient. High SMX concentration suppressed anammox (26-72%) and DNRA activities (48-84%) via restraining the activities of anammox and DNRA bacteria. Notably, SMX increased the contribution of denitrification to N-reduction at the expense of DNRA to N-reduction, leading to a shift in nitrogen conversion towards denitrification. Additionally, SMX stimulated N2O emission (up to 91%) due to superior restraint on process of N2O reduction to N2 and an incline for N-reduction towards denitrification, thereby exacerbating greenhouse effect. Our results advance the understanding of how nitrogen cycling is affected by SMX in aquatic ecosystems with environmental heterogeneity.
Collapse
Affiliation(s)
- Aomei Guan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Qiang Peng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiemin Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Hu M, Li B, Wu K, Zhang Y, Wu H, Zhou J, Chen D. Modeling Riverine N 2O Sources, Fates, and Emission Factors in a Typical River Network of Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13356-13365. [PMID: 34521193 DOI: 10.1021/acs.est.1c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Estimates of riverine N2O emission contain great uncertainty because of the lack of quantitative knowledge concerning riverine N2O sources and fates. Using a 3.5-year record of monthly N2O measurements from the Yongan River network of eastern China, we developed a mass-balance model to address the riverine N2O source and sink processes. We achieved reasonable model efficacies (R2 = 0.44-0.84, Nash-Sutcliffe coefficients = 0.40-0.80) across three tributaries and the entire river system. Estimated riverine N2O loads originated from groundwater (38-88%), surface runoff (3-26%), and in-stream production (4-48%). Estimated in-stream losses via atmospheric release + complete denitrification accounted for 76, 95, 25, and 89% of riverine N2O fate for the agricultural, residential, forest, and entire river system, respectively. Considering limited complete denitrification, the model estimated an upper-bound riverine N2O emission rate of 2.65 ton N2O-N km-2 year-1 for the entire river system. Riverine N2O emission estimates were of comparable magnitude to those estimated with a power-law scaling model. Riverine N2O emissions using the IPCC default emission factor (0.26%) overestimated emissions by 3-15 times, whereas the dissolved N2O concentration-based emission factor overestimated or underestimated emissions. This study highlights the importance of combining comprehensive information on N2O sources and fates to achieve accurate riverine N2O emission estimates.
Collapse
Affiliation(s)
- Minpeng Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Bingqing Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Kaibin Wu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yufu Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Jia Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Dingjiang Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Soil Redox Controls CO 2, CH 4 and N 2O Efflux from White-Rot Fungi in Temperate Forest Ecosystems. J Fungi (Basel) 2021; 7:jof7080621. [PMID: 34436159 PMCID: PMC8398011 DOI: 10.3390/jof7080621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Microaerophilic white-rot fungi (WRF) are impacted by oxygen depletion because of fluctuating redox occurrence in southern temperate forest soils of Chile (1500-5000 mm year-1). How these conditions influence WRF survival has been scarcely examined. We explored the contributions of WRF to greenhouse gas (GHG) emissions of N2O and CH4 and soil organic C oxidation (CO2) in five sterilized and inoculated forest soils derived from various parent materials and climates. The soil was incubated for 20 days following (i) oxic, (ii) anoxic, and (iii) fluctuating redox conditions. Fungi contributed to 45% of the total GHG under redox fluctuating conditions, including the contribution of bacteria, while the opposite (26%) was valid for oxic treatment. On average, the highest gas emission (62%) was N2O for WRF under redox treatment, followed by anoxic (22%) and oxic (16%) treatments, while CO2 and CH4 emissions followed oxic > redox > anoxic. These data suggest that indigenous microbial WRF communities are well adapted to fluctuating redox milieu with a significant release of GHG emissions in humid temperate forests of the southern cone.
Collapse
|
22
|
Yang P, Huang J, Tan L, Tong C, Jin B, Hu B, Gao C, Yuan J, Lai DYF, Yang H. Large variations in indirect N 2O emission factors (EF 5) from coastal aquaculture systems in China from plot to regional scales. WATER RESEARCH 2021; 200:117208. [PMID: 34048983 DOI: 10.1016/j.watres.2021.117208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture ponds are important anthropogenic sources of nitrous oxide (N2O). Direct N2O emissions arising from feed application to ponds have been widely investigated, but indirect emissions from N2O production from residual feeds in pond water are much less understood and characterized to refine the IPCC emission factor. In this study, we determined the concentrations and spatiotemporal variations of dissolved N2O and NO3--N in situ in three aquaculture ponds at the Min River Estuary in southeastern China during the culture period over two years, and calculated the indirect N2O emission factor (EF5) for aquaculture ponds using the N2O-N/NO3--N mass ratio methodology. Our results indicated that the EF5 values in the ponds over the culture period ranged between 0.0007 and 0.0543, with a clear seasonal pattern which closely followed that of the DOC:NO3-N ratio. We also observed significant spatial variations in EF5 among the three ponds, which could be attributed to the difference in feed conversion rate. In addition, we assessed the EF5 values from aquaculture ponds in five regions of the Chinese coastline across the latitudinal gradient from the tropical to the temperate zones. The average EF5 value from aquaculture ponds across the five coastal regions was 0.0093±0.0024, which was approximately 3.7 times of the IPCC default value for rivers and estuaries (0.0025). Moreover, the EF5 values demonstrated considerable spatial variations across these coastal regions with a coefficient of variation of 59%, which were largely related to the difference in water salinity. Our findings filled a key knowledge gap about the indirect N2O emission factor from aquaculture ponds, and provided field evidence for the refinement of EF5 value currently adopted by IPCC in the national greenhouse gas inventory.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Jiafang Huang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Lishan Tan
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Chuan Tong
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Baoshi Jin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China; College of Resources and Environment Science, Anqing Normal University, Anqing, 246011, P.R. China
| | - Beibei Hu
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Changjun Gao
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, P.R. China
| | - Junji Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P.R. China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China.
| | - Hong Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, P.R. China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China; Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AB, UK.
| |
Collapse
|
23
|
Zhang W, Li H, Xiao Q, Jiang S, Li X. Surface nitrous oxide (N 2O) concentrations and fluxes from different rivers draining contrasting landscapes: Spatio-temporal variability, controls, and implications based on IPCC emission factor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114457. [PMID: 32247923 DOI: 10.1016/j.envpol.2020.114457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Increasing indirect nitrous oxide (N2O) emission from river networks as a result of enhanced human activities on landscapes has become a global issue, as N2O has been widely recognized as an important ozone-depleting greenhouse gas. However, indirect N2O emissions from different rivers, particularly for those that drain completely different landscapes, are poorly understood. Here, we investigated the spatial-temporal variability of N2O emissions among the different rivers in the Chaohu Lake Basin of Eastern China. Our results showed that river reaches in urban watersheds are the hotspots of N2O production, with a mean N2O concentration of ∼410 nmol L-1, which is 9-18 times greater than those mainly draining forested (23 nmol L-1), agricultural (42 nmol L-1) and mixed (45 nmol L-1) landscapes. Riverine dissolved N2O was generally supersaturated with respect to the atmosphere. Such N2O saturation can best be explained by nitrogen availability, except for those in the forested watersheds, where dissolved oxygen is thought to be the primary predictor. The estimated N2O fluxes in urban rivers reached ∼471 μmol m-2 d-1, a value of ∼22, 13, and 11 times that in forested, agricultural and mixed watersheds, respectively. Averaged riverine N2O emission factors (EF5r) of the forested, agricultural, urban and mixed watersheds were 0.066%, 0.12%, 0.95% and 0.16%, respectively, showing different deviations from the default EF5r that released by IPCC in 2019. This points to a need for more field measurements with wider spatial coverage and finer frequency to further refine the EF5r and to better reveal the mechanisms behind indirect N2O emissions as influenced by watershed landscapes.
Collapse
Affiliation(s)
- Wangshou Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hengpeng Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sanyuan Jiang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyan Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
24
|
Zou Y, Ning D, Huang Y, Liang Y, Wang H, Duan L, Yuan T, He Z, Yang Y, Xue K, Van Nostrand JD, Zhou J. Functional structures of soil microbial community relate to contrasting N 2O emission patterns from a highly acidified forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138504. [PMID: 32302850 DOI: 10.1016/j.scitotenv.2020.138504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 05/23/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas contributing to global climate change. Emissions of N2O from acidic forests are increasing rapidly; however, little is known about the mechanisms driving these emissions. We analyzed soil samples from a high N2O emission area (HEA, 224-601 μg N m-2 h-1) and an adjacent low emission area (LEA, 20-30 μg N m-2 h-1) of a highly acidified forest. HEA showed similar carbon and nitrogen (N) pools and microbial biomass to LEA, but significantly higher moisture and extractable nutrients than LEA did. GeoChip 4 detected 298 gene families (unadjusted P < 0.05; 94, adjusted P < 0.05) showing significantly different structures between HEA and LEA. Both areas had highly diverse N cycling functional genes. However, HEA had higher relative abundances of nor, P450nor, and archaeal nitrifier nirK, which provided evidence for the importance of denitrifiers in N2O emission. HEA also showed significantly higher relative abundances of lignin- and cellulose-degrading genes, oxygen-limitation-response genes and denitrifier ppk, but lower abundances of N- and phosphorus (P) -limitation-response genes especially denitrifier pstS, corresponding to the higher moisture and extractable nutrients conducive to denitrification. The moisture, extractable nutrients and pH explained over 50% variation in microbial communities, and extractable P appeared as the key factor driving community variation and consequently regulated N2O production. CAPSULE ABSTRACT: N2O emission in highly acidified forest soils was related to the diverse N functional genes, especially denitrification genes, and was affected by soil properties.
Collapse
Affiliation(s)
- Yina Zou
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Daliang Ning
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, USA
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yuting Liang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Lei Duan
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Tong Yuan
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, USA
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, USA
| | - Yunfeng Yang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Kai Xue
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, USA
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, USA; Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
25
|
Qin X, Li Y, Wan Y, Fan M, Liao Y, Li Y, Wang B, Gao Q. Diffusive flux of CH 4 and N 2O from agricultural river networks: Regression tree and importance analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137244. [PMID: 32065892 DOI: 10.1016/j.scitotenv.2020.137244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
River networks in subtropical agricultural hilly region become an inconvenient greenhouse gas (GHG, methane and nitrous oxide) source because of the influence of human activities, which has caused large uncertainties for refinement of national GHG inventories and their global budget. Based on field monitoring experiments at high temporal resolution, we employed regression tree and importance analysis to identify quantitatively factors that influence the diffusive flux of GHGs to provide a scientific basis for reducing GHG emissions and controlling regional carbon and nitrogen losses. The results indicate that significant spatiotemporal variation of methane (CH4) nitrous oxide (N2O) diffusion occurs in all the four reaches (W1, W2, W3 and W4) of Tuojia river networks. Among them, W1 contributed lowest CH4 (22.55 μg C m-2 h-1) and N2O (5.00 μg N m-2 h-1) diffusive flux than the other three (P < 0.05), while W4 offered highest CH4 (166.15 μg C m-2 h-1) and N2O (30.47 μg N m-2 h-1) diffusive flux but with no statistically significant difference between W2 and W3 due to homogeneous extraneous nutrition loading into the two reaches. W4 also contributed largest cumulative flux of CH4 (14.55 kg C ha-1 yr-1) and N2O (2.69 kg N ha-1 yr-1) in Tuojia River networks (P < 0.05). Furthermore, the regression tree and importance analysis indicate that, in the anaerobic environment, dissolved oxygen saturation controlled the production and diffusion for both CH4 and N2O. The findings of this investigation highlighted that decision support tools provide an effective pathway to enhance the GHG mitigation technology research in agroecosystems and simultaneously shed light on the global campaign on refinement of national GHG inventories as well as regional nutrient management.
Collapse
Affiliation(s)
- Xiaobo Qin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs, No. 12 Zhongguancun South Street, Haidian district, Beijing 100081, China.
| | - Yu'e Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs, No. 12 Zhongguancun South Street, Haidian district, Beijing 100081, China
| | - Yunfan Wan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs, No. 12 Zhongguancun South Street, Haidian district, Beijing 100081, China
| | - Meirong Fan
- Changsha Environmental Protection College, Changsha 410004, China
| | - Yulin Liao
- Soils and Fertilizer Institute of Hunan Province, Changsha 410125, China
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs, No. 12 Zhongguancun South Street, Haidian district, Beijing 100081, China
| | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs, No. 12 Zhongguancun South Street, Haidian district, Beijing 100081, China
| |
Collapse
|
26
|
Human Activities Inducing High CH4 Diffusive Fluxes in an Agricultural River Catchment in Subtropical China. SUSTAINABILITY 2020. [DOI: 10.3390/su12052114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methane (CH4) is one of the key greenhouse gases (GHGs) in the atmosphere with current concentration of 1859 ppb in 2017 due to climate change and anthropogenic activities. Rivers are of increasing concern due to sources of atmospheric CH4. However, knowledge and data limitations exist for field studies of subtropical agricultural river catchments, particularly in southern China. The headspace balance method and the diffusion model method were employed to assess spatiotemporal variations of CH4 diffusive fluxes from April 2015 to January 2016 in four order reaches (S1, S2, S3, and S4) of the Tuojia River, Hunan, China. Results indicated that both the dissolved concentrations and diffusive fluxes of CH4 showed obvious spatiotemporal variations. The observed mean concentration and diffusive flux of CH4 were 0.40 ± 0.02 μmol L−1 and 41.19 ± 2.50 µg m−2 h−1, respectively, showing the river to be a strong source of atmospheric CH4. The CH4 diffusive fluxes during the rice-growing seasons were significantly greater than the winter fallow season (an increase of 80.26%). The spatial distribution of CH4 diffusive fluxes increased gradually from (17.58 ± 1.42) to (55.56 ± 4.32) µg m−2 h−1 due to the organic and nutrient loading into the river waterbodies, with the maximum value at location S2 and the minimum value at location S1. Correlation analysis showed that the CH4 diffusive fluxes exhibited a positive relationship with the dissolved organic carbon (DOC), salinity, and water temperature (WT), while a negative correlation occurred between CH4 diffusive fluxes and the dissolved oxygen (DO) concentration, as well as the pH value. Our findings highlighted that a good understanding of exogenous nutrient loading in agricultural catchments will clarify the influence of human activities on river water quality and then constrain the global CH4 budget.
Collapse
|