1
|
Huang D, Dong H, Li X, Li L, Deng J, Xiao J, Dong J, Xiao S. Transformation of dissolved organic matter leached from biodegradable and conventional microplastics under UV/chlorine treatment and the subsequent effect on contaminant removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135994. [PMID: 39357355 DOI: 10.1016/j.jhazmat.2024.135994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The ultraviolet (UV)/chlorine process has been widely applied for water treatment. However, the transformation of microplastic-leached dissolved organic matter (MP-DOM) in advanced treatment of real wastewater remains unclear. Here, we investigated alterations in the photoproperties of MP-DOM leached from biodegradable and conventional microplastics (MPs) and their subsequent effects on the degradation of sulfamethazine (SMT) by the UV/chlorine process. Spectroscopy was used to assess photophysical properties, focusing on changes in light absorption capacity, functional groups, and fluorescence components, while photochemical properties were determined by calculating the apparent quantum yields of reactive intermediates (ΦRIs). For photophysical properties, our findings revealed that the degree of molecular structure modification, functional group changes, and fluorescence characteristics during UV/chlorine treatment are closely linked to the type of MPs. For photochemical properties, the ΦRIs increased with higher chlorine dosages due to the formation of new functionalities. Both singlet oxygen (1O2) and hydroxyl radicals (•OH) formation were strongly correlated with excited triplet state of DOM (3DOM*) in the UV/chlorine treatment. Additionally, we found that the four types of MP-DOM inhibit the degradation of SMT and elucidated the mechanisms behind this inhibition. We also proposed degradation pathways for SMT and assessed the ecotoxicity of the resulting intermediates. This study provides important insights into how the characteristics and transformation of MP-DOM affect contaminant degradation, which is critical for evaluating the practical application of UV-based advanced oxidation processes (UV-AOPs).
Collapse
Affiliation(s)
- Daofen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Xing Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junmin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
2
|
Li Y, Lam JCH, He Y, Ruan Y, Huang X, Nah T. Roles of direct and indirect photodegradation in the photochemical fates of three 3rd generation fluoroquinolones. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136314. [PMID: 39500193 DOI: 10.1016/j.jhazmat.2024.136314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Fluoroquinolones (FQs) are widely prescribed antibiotics that are commonly detected in aquatic environments, but the persistence, fates, and ecotoxicities of new generation FQs have yet to be fully investigated. We investigated the direct and indirect (hydroxyl radical (·OH), singlet oxygen (O21), and excited stated of organic matter (3CDOM*)) photodegradation of three 3rd generation FQs, moxifloxacin (MOX), gatifloxacin (GAT), and sparfloxacin (SPAR). The photodegradation rates and photolytic quantum yields (ΦFQ) of the FQs depended on their dissociation species at different pH in a range of 1×10-4 to 1×10-3 M mol-photon-1. Unlike MOX and GAT whose zwitterions had the highest ΦFQ, the anionic form of SPAR had the highest ΦFQ. The k·OH,FQ values were in the order of: k·OH,SPAR > k·OH,GAT ≈ k·OH,MOX with the 1010M-1s-1 order of magnitude. The kO21,FQ values were in the order of: kO21,SPAR (∼108M-1s-1) > kO21,MOX (∼107M-1s-1) > >> kO21,GAT (insignificant). Higher kLC*3,FQ values were observed for MOX (109 to 1010M-1s-1) compared to GAT and SPAR (108 to 109M-1s-1). The zwitterions had the highest reactivities with ·OH and the lowest reactivities with O21 and 3CDOM*. Reactions with ·OH enhanced the formation of transformation products (TPs) from decarboxylation and sidechain oxidation pathways, whereas reactions with O21 and 3CDOM* enhanced the formation of TPs from sidechain oxidation pathways. Some of the TPs were predicted to exhibit aquatic ecotoxicity and environmental persistence. The half-lives of the FQs were estimated to be 0.42 to 0.67 h for MOX and SPAR, and 4.6 to 4.9 h for GAT. Their half-lives and main photochemical fates depended on the surface water pH and water column depth. These results highlight the key roles that photodegradation plays in removing new generation FQs from aquatic environments, though this might lead to the formation of TPs that are harmful to aquatic ecosystems.
Collapse
Affiliation(s)
- Yitao Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Jason Chun Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Yuefei Ruan
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xinming Huang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Wang J, Han Y, Zhao Z, Ma C, Yu G, Qi Y. Assessment of the Migration of Polar Compounds from Petroleum-Contaminated Soil Using a Column Leaching Experiment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39345231 DOI: 10.1021/jasms.4c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
When petroleum leaks into soil, the polar compounds exhibit strong biological toxicity, causing serious damage to soil animals, plants, and microorganisms and potentially threatening human health. However, the systematic comprehension of the migration of polar compounds in petroleum-contaminated soil remains limited. Herein, we employed elemental analysis, stable carbon isotope analysis, and high-resolution mass spectrometry techniques to study the migration of polar compounds in petroleum-contaminated soil using a column leaching experiment. The results indicate that petroleum migration ability in soil is limited, and the compounds are primarily concentrated in the soil above 40 cm. The C/N, C/H, and δ13C ratios of organic matter in soils are highly affected by petroleum contamination. Meanwhile, the different compound classes show varying migration abilities, with N1 and N1O1 compounds exhibiting stronger adsorption capacity on soil, while oxygen-containing compounds are more likely to migrate with water to deeper soil. Additionally, molecular polarity, unsaturation degree, and size are key factors affecting the migration of polar compounds in petroleum within the soil. This simulation experiment offers valuable insights into comprehending migration of polar compounds in petroleum-contaminated soil and their potential impacts for soil ecological environment.
Collapse
Affiliation(s)
- Jianwen Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yufu Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zibin Zhao
- Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Guanghui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| |
Collapse
|
4
|
Gao M, Yu S, Ning R, Ji X, Xu Y, Hou L. Indirect photodegradation of typical pyrrolizidine alkaloids in water induced by triplet states of dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135142. [PMID: 39029185 DOI: 10.1016/j.jhazmat.2024.135142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024]
Abstract
The occurrence of pyrrolizidine alkaloids (PAs) in the aquatic environment has received growing attention due to their persistent mutagenicity and carcinogenicity. In this study, the photooxidation processes of four representative PAs (senecionine, senecionine N-oxide, europine, and heliotrine) in the presence of dissolved organic matter (DOM) were investigated. The excited triplet DOM (3DOM*) was demonstrated to play a dominant role in the phototransformation of PAs. The observed degradation rates of PAs largely depended on the DOM concentration. Alkaline conditions and the presence of HCO3-/CO32- were conducive to the photodegradation. Based on kinetic modeling, the second-order reaction rate constants of PAs with 3DOM* were predicted to be (1.7∼5.3)×108 M-1 s-1, nearly two orders of magnitude higher than those with singlet oxygen (1O2). The monoester structure and electron-withdrawing substituent (e.g., -O atom) substantially affected the one-electron oxidation potential of PAs, which dictates the reaction rates of PAs with 3DOM*. Finally, a tentative degradation pathway of PAs was proposed, involving the formation of an N-centered radical cation through one-electron transfer, which then likely deprotonated and further oxidized to more persistent and toxic phototransformation products with an added oxygen atom into the pyrrole ring.
Collapse
Affiliation(s)
- Menghong Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rongsheng Ning
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingli Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Li'an Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
de Brito Anton L, Silverman AI, Apell JN. Determining wavelength-dependent quantum yields of photodegradation: importance of experimental setup and reference values for actinometers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1052-1063. [PMID: 38713490 DOI: 10.1039/d4em00084f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Accurate quantum yields are crucial for modeling photochemical reactions in natural and engineered treatment systems. Quantum yields are usually determined using a single representative light source such as xenon lamps to mimic sunlight or UVC light for water treatment. However, photodegradation modeling can be improved by understanding the wavelength dependence of quantum yields and the potential errors introduced by the experimental setup. In this study, we investigated the effects of experimental setup on measured quantum yields using four photoreactor systems and up to 11 different light sources. When using a calibrated spectroradiometer to measure incident irradiance on an open solution surface, apparent quantum yields were up to two times higher if light reflection and light screening were not accounted for in the experimental setup. When the experimental setup was optimized to allow for accurate irradiance measurements, quantum yields were reproducible across photoreactors. The optimized experimental setup was then used to determine quantum yields of uridine, atrazine, p-nitroanisole (PNA), sulfamethoxazole, and diclofenac across the UV spectrum. No significant wavelength dependence of quantum yields was observed for sulfamethoxazole and diclofenac, in contrast to wavelength-dependent quantum yields for uridine, atrazine, and PNA. These reference values can be used for determining wavelength-dependent quantum yields of other compounds of interest. Additionally, more accurate results can be obtained when using (1) an actinometer with similar light absorption and photoreactivity compared to that of the target chemical, (2) optically transparent actinometer solutions that can account for light reflection within reaction vessels, and (3) a quantum yield that corresponds to the spectrum of the selected light source.
Collapse
Affiliation(s)
- Luana de Brito Anton
- Civil and Urban Engineering Department, Tandon School of Engineering, New York University, Brooklyn, New York 11201, USA.
| | - Andrea I Silverman
- Civil and Urban Engineering Department, Tandon School of Engineering, New York University, Brooklyn, New York 11201, USA.
| | - Jennifer N Apell
- Civil and Urban Engineering Department, Tandon School of Engineering, New York University, Brooklyn, New York 11201, USA.
| |
Collapse
|
6
|
Wang J, Guo Z, Guo Y, Zhang Y, Yu P, Ye Z, Qian Y, Yoshimura C, Wang T, Zhang L. Photochemical fate of β-blocker pindolol in riverine and its downstream coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172236. [PMID: 38582123 DOI: 10.1016/j.scitotenv.2024.172236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Pindolol (PIN) is a commonly used β-blocker drug and has been frequently detected in various natural waters. Comprehensive understanding of its environmental photochemical transformation is necessary to assess its environmental risk. In this study, the photodegradation kinetics and mechanisms of PIN in both freshwater and coastal water were investigated for the first time. The photodegradation experiments were carried out by steady-state photochemical experiment under simulated sunlight irradiation. The results showed that the photodegradation rate of PIN in the freshwater of the Pearl River estuary was significantly faster than that in its downstream coastal water. In river water, PIN can undergo both direct photolysis and indirect photolysis induced by riverine dissolved organic matter (DOM) mainly through excited triplet-state of DOM and singlet oxygen, while direct photolysis dominated its degradation in coastal water. The promotion effect was found to be much greater for Suwannee River Natural Organic Matter (SRNOM) than that of the sampled riverine DOM, due to its high steady-state concentrations of reactive species. Interestingly, coastal DOM in northern and southern China were found to have similar promotion effects on PIN photodegradation for the first time, but both less than that of riverine DOM. A total of seven degradation products of PIN resulting from hydroxylation, hydrogen abstraction and cleavage of ether bond were identified. Biological toxicity of one products were found to be higher than that of PIN. These results are of significance for knowing the persistence and ecological risk of PIN in natural waters.
Collapse
Affiliation(s)
- Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yuchen Guo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yingqi Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zimi Ye
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Yao Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
7
|
Zhou C, Wu B, Zheng X, Chen B, Chu C. Wavelength-dependent direct and indirect photochemical transformations of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170414. [PMID: 38272084 DOI: 10.1016/j.scitotenv.2024.170414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Sunlight-induced photochemical transformations greatly affect the persistence of organic pollutants in natural environment. Whereas sunlight intensity is well-known to affect pollutant phototransformation rates, the reliance of pollutant phototransformation kinetics on sunlight spectrum remains poorly understood, which may greatly vary under different spatial-temporal, water matrix, and climatic conditions. Here, we systematically assessed the wavelength-dependent direct and indirect phototransformations of 12 organic pollutants. Their phototransformation rates dramatically decreased with light wavelength increasing from 375 to 632 nm, with direct photolysis displaying higher wavelength-dependence than indirect photolysis. Remarkably, UV light dominated both direct (90.4-99.5 %) and indirect (64.6-98.7 %) photochemical transformations of all investigated organic pollutants, despite its minor portion in sunlight spectrum (e.g., 6.5 % on March 20 at the equator). Based on wavelength-dependent rate constant spectrum, the predicted phototransformation rate of chloramphenicol (4.5 ± 0.7 × 10-4 s-1) agreed well with the observed rate under outdoor sunlight irradiation (4.3 ± 0.0 × 10-4 s-1), and there is no significant difference between the predicted rate and the observed rate (p-value = 0.132). Moreover, rate constant and quantum yield coefficient (QYC) spectrum could be applied for facilely investigate the influence of spectral changes on the phototransformation of pollutants under varying spatial-temporal (e.g., season, latitude) and climatic conditions (e.g., cloud cover). Our study highlights the wavelength-dependence of both direct and indirect phototransformation of pollutants, and the UV part of natural sunlight plays a decisive role in the phototransformation of pollutants.
Collapse
Affiliation(s)
- Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
8
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
9
|
Li C, Zhang Y, Yin S, Wang Q, Li Y, Liu Q, Liu L, Luo X, Chen L, Zheng H, Li F. First insights into 6PPD-quinone formation from 6PPD photodegradation in water environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132127. [PMID: 37573823 DOI: 10.1016/j.jhazmat.2023.132127] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
p-Phenylenediamines (PPDs), an important type of rubber antioxidants, have received little study on their environmental fate, particularly for their vital photodegradation process in water environment. Accordingly, N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6PPD), as a representative of PPDs, was investigated experimentally and theoretically for its photodegradation in water. Rapid photodegradation occurred when 6PPD was exposed to illumination especially UV region irradiation. Under acidic conditions, the photodegradation of 6PPD accelerated mainly due to the increased absorption of long wavelength irradiation by ionized 6PPD. Nine photodegradation products (e.g., 6PPD-quinone (6PPDQ)) of 6PPD were identified by an ultra-performance liquid chromatography QTOF mass spectrometry. Molar yields of photoproducts such as 6PPDQ, aniline, 4-aminodiphenylamine, and 4-hydroxydiphenylamine were 0.03 ± 0.00, 0.10 ± 0.01, 0.03 ± 0.02, and 0.08 ± 0.01, respectively. Mechanisms involved in 6PPD photodegradation include photoexcitation, direct photolysis, self-sensitized photodegradation, and 1O2 oxidation, as demonstrated by electron paramagnetic resonance (EPR) analysis, scavenging experiments, and the time-dependent density functional theory (TD-DFT). Notably, the toxicity of the reaction solution formed during the photodegradation of 6PPD was increased by the formation of highly toxic products (e.g., 6PPDQ). This study provides the first explanation for photodegradation mechanisms of 6PPD and confirms the pathway of 6PPDQ produced by the photoreaction in water environment.
Collapse
Affiliation(s)
- Chenguang Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China
| | - Yanlei Zhang
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China
| | - Shiqi Yin
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China
| | - Qin Wang
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China
| | - Yuanyuan Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China
| | - Qiang Liu
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Lingyun Chen
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
10
|
Chen X, Wang J, Wu H, Zhu Z, Zhou J, Guo H. Trade-off effect of dissolved organic matter on degradation and transformation of micropollutants: A review in water decontamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:130996. [PMID: 36867904 DOI: 10.1016/j.jhazmat.2023.130996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The degradation of micropollutants by various treatments is commonly affected by the ubiquitous dissolved organic matter (DOM) in the water environment. To optimize the operating conditions and decomposition efficiency, it is necessary to consider the impacts of DOM. DOM exhibits varied behaviors in diverse treatments, including permanganate oxidation, solar/ultraviolet photolysis, advanced oxidation processes, advanced reduction process, and enzyme biological treatments. Besides, the different sources (i.e., terrestrial and aquatic, etc) of DOM, and operational circumstances (i.e., concentration and pH) fluctuate different transformation efficiency of micropollutants in water. However, so far, systematic explanations and summaries of relevant research and mechanism are rare. This paper reviewed the "trade-off" performances and the corresponding mechanisms of DOM in the elimination of micropollutants, and summarized the similarities and differences for the dual roles of DOM in each of the aforementioned treatments. Inhibition mechanisms typically include radical scavenging, UV attenuation, competition effect, enzyme inactivation, reaction between DOM and micropollutants, and intermediates reduction. Facilitation mechanisms include the generation of reactive species, complexation/stabilization, cross-coupling with pollutants, and electron shuttle. Moreover, electron-drawing groups (i.e., quinones, ketones functional groups) and electron-supplying groups (i.e., phenols) in the DOM are the main contributors to its trade-off effect.
Collapse
Affiliation(s)
- Xingyu Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Han Wu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhuoyu Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jianfei Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China.
| |
Collapse
|
11
|
Wu B, Zhou C, Zhao G, Wang J, Dai H, Liu T, Zheng X, Chen B, Chu C. Enhanced photochemical production of reactive intermediates at the wetland soil-water interface. WATER RESEARCH 2022; 223:118971. [PMID: 35977437 DOI: 10.1016/j.watres.2022.118971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photochemically produced reactive intermediates (PPRIs) formed by sunlight-irradiation of natural photosensitizers play critical roles in accelerating biogeochemical cycles on earth surface. Existing PPRI studies mostly focus on bulk phase reactions (e.g., bulk water), with PPRI processes at the environmental interfaces largely unexplored. Here, we report the wetland soil-water interface (SWI) as a widespread but previously unappreciated hotspot for PPRI productions. Massive productions of four important PPRI species (i.e., triplet-state excited organic matter (3OM*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (•OH)) were observed at the SWI. All four PPRI species exhibited higher productions at the SWI than those in bulk water, where •OH production was largely elevated by up to one order of magnitude. The enhanced PPRI productions at the SWI were caused by intensified photon absorption and vibrant Fe-mediated redox processes, where the light absorption by less- or non-photoactive soil substances partially offset the enhancement on PPRI productions. Nationwide wetland investigations demonstrate that the SWI was a ubiquitous hotspot for PPRI productions. Simulations on PPRIs-mediated reactions suggest that the enhanced PPRI productions could greatly affect the kinetics and transformation pathways of nutrients and pollutants. Given that the SWI also acts a hotspot for nutrient and pollutant accumulation, incorporating the SWI enhanced PPRI productions into biogeochemical process assessments is pivotal for advancing our understandings on the element cycles and pollutant dynamics in wetlands.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hengyi Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Mavriou Ζ, Alexandropoulou I, Melidis P, Karpouzas DG, Ntougias S. Bioprocess performance, transformation pathway, and bacterial community dynamics in an immobilized cell bioreactor treating fludioxonil-contaminated wastewater under microaerophilic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29597-29612. [PMID: 34542817 DOI: 10.1007/s11356-021-16452-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Fludioxonil is a post-harvest fungicide contained in effluents produced by fruit packaging plants, which should be treated prior to environmental dispersal. We developed and evaluated an immobilized cell bioreactor, operating under microaerophilic conditions and gradually reduced hydraulic retention times (HRTs) from 10 to 3.9 days, for the biotreatment of fludioxonil-rich wastewater. Fludioxonil removal efficiency was consistently above 96%, even at the shortest HRT applied. A total of 12 transformation products were tentatively identified during fludioxonil degradation by using liquid chromatography coupled to quadrupole time-of-flight Mass spectrometry (LC-QTOF-MS). Fludioxonil degradation pathway was initiated by successive hydroxylation and carbonylation of the pyrrole moiety and disruption of the oxidized cyanopyrrole ring at the NH-C bond. The detection of 2,2-difluoro-2H-1,3-benzodioxole-4-carboxylic acid verified the decyanation and deamination of the molecule, whereas its conversion to the tentatively identified compound 2,3-dihydroxybenzoic acid indicated its defluorination. High-throughput amplicon sequencing revealed that HRT shortening led to reduced α-diversity, significant changes in the β-diversity, and a shift in the bacterial community composition from an initial activated sludge system typical community to a community composed of bacterial taxa like Clostridium, Oligotropha, Pseudomonas, and Terrimonas capable of performing advanced degradation and/or aerobic denitrification. Overall, the immobilized cell bioreactor operation under microaerophilic conditions, which minimizes the cost for aeration, can provide a sustainable solution for the depuration of fludioxonil-contaminated agro-industrial effluents.
Collapse
Affiliation(s)
- Ζografina Mavriou
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Ioanna Alexandropoulou
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Paraschos Melidis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Dimitrios G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece.
| |
Collapse
|
13
|
Yu LQ, Zhao YH, Wang H, Jin F, Chen SL, Wen TE, He CS, Huang BC, Jin RC. Surface oxygen vacancies formation on Zn 2SnO 4 for bisphenol-A degradation under visible light: The tuning effect by peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127828. [PMID: 34815121 DOI: 10.1016/j.jhazmat.2021.127828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Visible light catalysis has been widely coupled with persulfate activation for refractory pollutants removal, while the exact role of persulfate played in such composite system is still questionable. In this work, the relation between peroxymonosulfate (PMS) induced structure change and visible light responsive activity of inverse spinel: i.e., Zn2SnO4, was deciphered. Under the visible light illumination (λ> 420nm) PMS addition would endow the composite system with pollutant removal performance. Batch test revealed that 60% of bisphenol-A (5 mg L-1) was mineralized within 3 h reaction time, by dosing 0.81 mM PMS and 0.1 g L-1 catalyst. The above oxidative system was also effective for other refractory pollutants elimination. Further analysis indicated that PMS could reduce the band gap of spinel from 2.75 to 2.52 eV and thereby enabling its visible light activity. Photogenerated h+ induced •OH and e- mediated •O2- contributed to the pollutant removal while h+ played a leading role. Density functional theory revealed that PMS would capture oxygen atom of spinel and induce surface oxygen vacancy defect structure formation. Also, three-oxygen atom coordinated Zn was identified as the possible catalyze site. This work is valuable for deep understanding the exact role of persulfate in photocatalytic system.
Collapse
Affiliation(s)
- Lin-Qian Yu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Heng Zhao
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Feng Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shu-La Chen
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Te-Er Wen
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chuan-Shu He
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
Nevins MG, Apell JN. Emerging investigator series: quantifying the impact of cloud cover on solar irradiance and environmental photodegradation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1884-1892. [PMID: 34753158 DOI: 10.1039/d1em00314c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environmental photodegradation is dependent on the solar irradiance that reaches the Earth's surface, and photodegradation half-lives of contaminants are typically estimated assuming clear sky (i.e., cloudless) conditions. In this work, the effect of cloud cover on solar irradiance was investigated. Data from the National Renewable Energy Laboratory (NREL), which spanned 3 years of observations (10/2017 to 12/2020), were used to train two machine learning models to predict irradiance based on three inputs - day of year, time of day, and percentage of the sky that was cloudy. Results showed a non-linear relationship between cloud cover and irradiance. Solar irradiance was minimally impacted up to ≈50% cloud cover but decreased by ≈67% at 100% cloud cover. Both random forest and artificial neural network models performed well with relative root mean squared errors of 26-31%, which varied depending on the source of cloud cover data and the spectral region being modeled. Daily irradiance values for a whole year were predicted for varying cloud conditions using the machine learning models; this result was approximated using a quadratic fit of y = 1 - 0.00243x - (4.24 × 10-5)x2 where y is the fraction of clear sky irradiance expected and x is the percentage of cloud cover in the sky. In addition, the model results supported that there was no wavelength dependence for the effect of cloud cover. Therefore, decreases in both direct and indirect photodegradation rates should be proportional to the decrease in irradiance, which has a non-linear dependence on cloud cover.
Collapse
Affiliation(s)
- Michelle G Nevins
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA.
| | - Jennifer N Apell
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA.
| |
Collapse
|
15
|
Hong M, Yang X, Zhang X, Ji Y, Zhou L, Xiu G, Ni Z, Richard C. Aqueous photodegradation of the benzophenone fungicide metrafenone: Carbon-bromine bond cleavage mechanism. WATER RESEARCH 2021; 206:117775. [PMID: 34706320 DOI: 10.1016/j.watres.2021.117775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Metrafenone (MF), as a new type of benzophenone fungicide, has been widely used in agriculture and is persistent in the environment. Understanding its photochemical fate is essential for the comprehensive evaluation of its ecological risk. In the present work, we reported a detailed study on the photochemical transformation of MF in aqueous solution under irradiation (at λ > 290 nm using a high pressure mercury lamp). MF was relatively photo-reactive showing a low polychromatic quantum yield of photolysis (1.06 × 10-4, 20 µM) counterbalanced by a significant light absorption above 290 nm. A series of photoproducts were identified by high resolution mass spectrometry (HR-MS) analysis, and three different pathways, including oxidation of the methyl group, debromination and replacement of bromine by hydroxyl group were proposed. Among them, debromination was identified as the dominating process that could be achieved via homolytic C-Br bond cleavage from singlet and triplet MF, as confirmed by laser flash photolysis (LFP) experiments and density functional theory (DFT) calculations. Toxicity assessment revealed that photochemical degradation reduced the ecotoxicity of MF efficiently. Nitrate ions and humic acid promoted the MF photolysis, while bicarbonate exhibited no effect. Results obtained in this work would increase our understanding on the environmental fate of MF in sunlit surface waters.
Collapse
Affiliation(s)
- Minghui Hong
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuerui Yang
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuewei Zhang
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Claire Richard
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, Aubière F-63178, France
| |
Collapse
|
16
|
Partanen SB, Apell JN, Lin J, McNeill K. Factors affecting the mixed-layer concentrations of singlet oxygen in sunlit lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1130-1145. [PMID: 34231605 PMCID: PMC8372756 DOI: 10.1039/d1em00062d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/16/2021] [Indexed: 06/01/2023]
Abstract
The steady-state concentration of singlet oxygen within a lake ([1O2]SS) is an important parameter that can affect the environmental half-life of pollutants and environmental fate modelling. However, values of [1O2]SS are often determined for the near-surface of a lake, and these values typically do not represent the average over the epilimnia of lakes. In this work, the environmental and physical factors that have the largest impact on [1O2]SS within lake epilimnia were identified. It was found that the depth of the epilimnion has the largest impact on depth-averaged [1O2]SS, with a factor of 8.8 decrease in [1O2]SS when epilimnion depth increases from 2 m to 20 m. The next most important factors are the wavelength-dependent singlet oxygen quantum yield relationship and the latitude of the lake, causing variations in [1O2]SS by factors of 3.2 and 2.5 respectively, over ranges of representative values. For a set of representative parameters, the depth-averaged value of [1O2]SS within an average epilimnion depth of 9.0 m was found to be 5.8 × 10-16 M and the near-surface value of [1O2]SS was found to be 1.9 × 10-14 M. We recommend a range of 6 × 10-17 to 5 × 10-15 M as being more representative of [1O2]SS values within the epilimnia of lakes globally and potentially more useful for estimating pollutant lifetimes than those calculated using [1O2]SS values that correspond to near-surface, summer midday values. This work advances our understanding of [1O2]SS inter-lake variability in the environment, and provides estimates of [1O2]SS for practitioners and researchers to assess environmental half-lives of pollutants due to reaction with singlet oxygen.
Collapse
Affiliation(s)
- Sarah B. Partanen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
| | - Jennifer N. Apell
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering6 MetroTech CenterBrooklynNY 11201USA
| | - Jianming Lin
- Firmenich IncorporatedP.O. Box 5880PrincetonNew Jersey 08543USA
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
| |
Collapse
|
17
|
Zhao G, Xu X. Cocatalysts from types, preparation to applications in the field of photocatalysis. NANOSCALE 2021; 13:10649-10667. [PMID: 34105577 DOI: 10.1039/d1nr02464g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the rapid development of society, the burden of energy and the environment is becoming more and more serious. Photocatalytic hydrogen production, the photosynthesis of organic fuel, and the photodegradation of pollutants are three effective ways to reduce these burdens using semiconductor photocatalysts. To improve the reaction efficiency of photocatalysts, a small amount of cocatalyst is often added when photocatalysts participate in the synthesis or decomposition reaction. The addition of this small amount of cocatalyst is like a finishing touch, significantly increasing the activity of the photocatalysts. However, in our common study of photocatalysis, we often pay attention to the study of photocatalysts but ignore the study of cocatalysts. Herein, we summarize the recent application research on cocatalysts in the field of photocatalysis, starting from the types, preparation methods, and reaction mechanisms among others, to remind researchers of the matters needing attention when using cocatalysts.
Collapse
Affiliation(s)
- Gang Zhao
- Laboratory of Functional Micro-nano Material and Device, School of Physics and Technology, University of Jinan, Jinan, Shandong, P. R. China.
| | - Xijin Xu
- Laboratory of Functional Micro-nano Material and Device, School of Physics and Technology, University of Jinan, Jinan, Shandong, P. R. China.
| |
Collapse
|
18
|
Barrios B, Mohrhardt B, Doskey PV, Minakata D. Mechanistic Insight into the Reactivities of Aqueous-Phase Singlet Oxygen with Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8054-8067. [PMID: 34096699 DOI: 10.1021/acs.est.1c01712] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Singlet oxygen (1O2) is a selective reactive oxygen species that plays a key role for the fate of various organic compounds in the aquatic environment under sunlight irradiation, engineered water oxidation systems, atmospheric water droplets, and biomedical systems. While the initial rate-determining charge-transfer reaction mechanisms and kinetics of 1O2 have been studied extensively, no comprehensive studies have been performed to elucidate the reaction mechanisms with organic compounds that have various functional groups. In this study, we use density functional theory calculations to determine elementary reaction mechanisms with a wide variety of organic compounds. The theoretically calculated aqueous-phase free energies of activation of single electron transfer and 1O2 addition reactions are compared to the experimentally determined rate constants in the literature to determine linear free-energy relationships. The theoretically calculated free energies of activation for the groups of phenolates and phenols show excellent correlations with the Hammett constants that accept electron densities by through-resonance. The dominant elementary reaction mechanism is discussed for each group of compounds. As a practical implication, we demonstrate the fate of environmentally relevant organic compounds induced by photochemically produced intermediate species at different pH and evaluate the impact of predicting rate constants to the half-life.
Collapse
Affiliation(s)
- Benjamin Barrios
- Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Benjamin Mohrhardt
- Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Paul V Doskey
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Daisuke Minakata
- Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
19
|
Yang J, Lv G, Wang Z, Sun X, Gao J. Mechanisms, kinetics and eco-toxicity assessment of singlet oxygen, sulfate and hydroxyl radicals-initiated degradation of fenpiclonil in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124505. [PMID: 33191031 DOI: 10.1016/j.jhazmat.2020.124505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Fenpiclonil is an agricultural phenylpyrrole fungicide, which raise the concern about its ecotoxicological effects. In this paper, we investigate the indirect photochemical transformation mechanisms, environmental persistence and eco-toxicity of fenpiclonil initiated by various active oxidants (1O2, •OH and SO4•‾) in aquatic environments. The results shown that 1O2 can react with pyrrole ring by cycloaddition pathways to form the endo-peroxides. In addition, •OH and SO4•‾ initial mechanisms are calculated, suggesting that •OH-initiated mechanisms play a dominant role in the degradation process of fenpiclonil at high rate constants (2.26 ×109 M-1 s-1, at 298 K). The kinetic calculation results indicate that high temperature is more favorable for the degradation of fenpiclonil. To better understand the adverse effects of the transformation products formed during the subsequent reaction of •OH-adduct IM10, the computational toxicology has been used for the toxicity estimation. The results show that aquatic toxicity of these products decrease with degradation process, especially the decomposition products (TP3 and TP4). However, TP1 and TP2 are still toxic and developmental toxicant. The study provides guidance for further experimental research and industrial application of fungicide degradation from the perspective of theoretical calculation.
Collapse
Affiliation(s)
- Jiaoxue Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Guochun Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zehua Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
20
|
Zhou Y, Cheng F, He D, Zhang YN, Qu J, Yang X, Chen J, Peijnenburg WJGM. Effect of UV/chlorine treatment on photophysical and photochemical properties of dissolved organic matter. WATER RESEARCH 2021; 192:116857. [PMID: 33517044 DOI: 10.1016/j.watres.2021.116857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is a ubiquitous component in effluents, DOM discharged with an effluent can affect the composition and properties of natural DOM in the receiving waters. As the photophysical and photochemical properties of effluent DOM can be changed by wastewater treatment processes, the effect of UV/chlorine treatment on the photophysical and photochemical properties of DOM was investigated using Suwannee River fulvic acid (SRFA) and Suwannee River natural organic matter (SRNOM) as representatives. Results showed that the absorbance of the two DOM was significantly decreased. The evolution trends of three representative photophysical parameters upon increase of chlorine dosages were observed. Also, a decrease in DOM aromaticity, molecular weight and electron-donating capacity was observed upon increasing chlorine dosage. Quantum yields of excited triplet state of DOM (3DOM*), singlet oxygen (1O2) and hydroxyl radicals (·OH) first decreases and then increased in the UV/chlorine systems upon increasing chlorine dosages due to the different reaction pathways of the two DOM. Moreover, 3DOM* can not only be regarded as a "controller" of other reactive intermediates, but also effectively promote the photodegradation of bezafibrate, which is classified as a persistent organic contaminant. This study gives deep insights into effects of UV/chlorine on the photophysical and photochemical properties of DOM, and is helpful for understanding the dynamic roles of DOM in the photodegradation of micropollutants.
Collapse
Affiliation(s)
- Yangjian Zhou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Dongyang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
21
|
Ossola R, Jönsson OM, Moor K, McNeill K. Singlet Oxygen Quantum Yields in Environmental Waters. Chem Rev 2021; 121:4100-4146. [PMID: 33683861 DOI: 10.1021/acs.chemrev.0c00781] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Singlet oxygen (1O2) is a reactive oxygen species produced in sunlit waters via energy transfer from the triplet states of natural sensitizers. There has been an increasing interest in measuring apparent 1O2 quantum yields (ΦΔ) of aquatic and atmospheric organic matter samples, driven in part by the fact that this parameter can be used for environmental fate modeling of organic contaminants and to advance our understanding of dissolved organic matter photophysics. However, the lack of reproducibility across research groups and publications remains a challenge that significantly limits the usability of literature data. In the first part of this review, we critically evaluate the experimental techniques that have been used to determine ΦΔ values of natural organic matter, we identify and quantify sources of errors that potentially explain the large variability in the literature, and we provide general experimental recommendations for future studies. In the second part, we provide a qualitative overview of known ΦΔ trends as a function of organic matter type, isolation and extraction procedures, bulk water chemistry parameters, molecular and spectroscopic organic matter features, chemical treatments, wavelength, season, and location. This review is supplemented with a comprehensive database of ΦΔ values of environmental samples.
Collapse
Affiliation(s)
- Rachele Ossola
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Oskar Martin Jönsson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Kyle Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, 84322 Logan, Utah, United States
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
22
|
Cai Y, Apell JN, Pflug NC, McNeill K, Bollmann UE. Photochemical fate of medetomidine in coastal and marine environments. WATER RESEARCH 2021; 191:116791. [PMID: 33433334 DOI: 10.1016/j.watres.2020.116791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Medetomidine has been authorized in ship hull paints as an antifouling biocide under the biocidal product regulation in Europe since 2016. Its release into marine systems causes concerns over persistence and toxicity. However, the environmental fate of medetomidine has not been fully investigated. In this study, the photodegradation of medetomidine under natural sunlight conditions was investigated using collected coastal and sea waters. In addition, the phototransformation of medetomidine with reactive species (i.e., singlet oxygen, excited triplet state organic matter, and hydroxyl radicals) under UVA light was examined. Photoproducts were isolated by high-performance liquid chromatography (HPLC), identified by a combination of nuclear magnetic resonance (NMR) spectroscopy and time-of-flight mass spectrometry (qTOF), and reaction mechanisms were proposed. The results show that medetomidine is a neutral base (pKa of protonated form = 7.2) that leads to two different protonation states in the aquatic environment. Photodegradation of neutral medetomidine was dominated by reaction with singlet oxygen, while protonated medetomidine was relatively photostable. The contribution of reactive species to the overall photodegradation of neutral medetomidine was calculated to provide an assessment of phototransformation of medetomidine. The half-live of medetomidine was < 1.5 days in natural waters (pHcoastal = 8.3; pHsea = 8.1) under sunlit near-surface conditions, suggesting that it is not persistent in the aquatic environment. Because medetomidine has a relatively short half-life in sunlit aquatic ecosystems, a number of products, such as 2-(2,3-dimethylphenyl)propanamide, can be formed by photochemical reactions of medetomidine, with unknown consequences for marine and coastal waters.
Collapse
Affiliation(s)
- Yi Cai
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jennifer N Apell
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland; Department of Civil and Urban Engineering, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York, 11201, USA
| | - Nicholas C Pflug
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Ulla E Bollmann
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Geological Survey of Denmark and Greenland (GEUS), ØsterVoldgade 10, 1350 Copenhagen, Denmark.
| |
Collapse
|
23
|
Ren Z, Zhang H, Wang Y, Lu L, Ren D, Wang J. Multiple roles of dissolved organic matter released from decomposing rice straw at different times in organic pollutant photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123434. [PMID: 32763715 DOI: 10.1016/j.jhazmat.2020.123434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Rice straw returning causes a considerable amount of dissolved organic matter (DOM) release into aquatic croplands in a relatively short-term. The presence of rice straw-derived DOM in cropland waters may alter the photochemical behaviors of organic pollutants. However, the photochemical activity and photosensitization role of the DOMs are poorly understood. Here, eight DOM samples were extracted from decomposing rice straw at different times in 49 days to explore their photosensitizing capacities toward diuron (DIU), 17β-estradiol (E2), and sulfamethoxazole (SMX). All of the DOMs were photosensitive and mainly composed of tryptophan-, tyrosine- and fulvic-like substances. Over the decomposition period, the amount of photochemically produced reactive intermediates (PPRIs) by the DOMs peaked on days 7 and 14. The evolution of the DOM photosensitizing capacity towards DIU and E2 was consistent with the variations of PPRIs, and HO· was confirmed as a critical factor. However, the influence of the DOMs on SMX photodegradation was opposite to that on DIU and E2. The positive role of the DOMs in SMX photodegradation was attributed to the tryptophan-like components. The results suggest that straw-derived DOM is an important photosensitizer and that its photosensitization towards organic pollutants is dependent on straw decomposing time and pollutant type.
Collapse
Affiliation(s)
- Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Haiyang Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yunwen Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China.
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
24
|
Apell JN, Kliegman S, Solá-Gutiérrez C, McNeill K. Linking Triclosan's Structural Features to Its Environmental Fate and Photoproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14432-14441. [PMID: 33156610 DOI: 10.1021/acs.est.0c05121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Triclosan is a high-production volume chemical, which has become widely detected in environmental systems because of its widespread usage. Photodegradation has been identified as a major degradation pathway, but the identified photoproducts are also chemicals of concern. In this study, lower chlorinated derivatives of triclosan were synthesized to investigate the impact the chlorine substituents have on the photodegradation rate and the photoproducts produced. In addition, the photodegradation of two classes of photoproducts-dibenzo-p-dioxins (DDs) and 2,2'-dihydroxylated biphenyls-was also investigated. Degradation of triclosan in near-surface sunlit waters was relatively fast (t1/2 < 5 h). Calculated degradation rates were slower for DDs and faster for dihydroxylated biphenyls in comparison to that for triclosan. In addition, the 2'-Cl substituent was critical for the high quantum yield measured for triclosan and necessary for the photodegradation mechanism that forms DDs and dihydroxylated biphenyls. The 4-Cl substituent was responsible for higher rates of light absorption and the environmentally relevant pKa. Without either of these substituents, the environmental fate of triclosan would be markedly different.
Collapse
Affiliation(s)
- Jennifer N Apell
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| | - Sarah Kliegman
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Claudia Solá-Gutiérrez
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
25
|
Hopanna M, Kelly L, Blaney L. Photochemistry of the Organoselenium Compound Ebselen: Direct Photolysis and Reaction with Active Intermediates of Conventional Reactive Species Sensitizers and Quenchers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11271-11281. [PMID: 32803943 DOI: 10.1021/acs.est.0c03093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ebselen (EBS), 2-phenyl-1,2-benzisoselenazol-3(2H)-one, is an organoselenium pharmaceutical with antioxidant and anti-inflammatory properties. Furthermore, EBS is an excellent scavenger of reactive oxygen species. This property complicates conventional protocols for sensitizing and quenching reactive species because of potential generation of active intermediates that quickly react with EBS. In this study, the photochemical reactivity of EBS was investigated in the presence of (1) 1O2 and •OH sensitizers [rose Bengal (RB), perinaphthanone, and H2O2] and (2) reactive species scavenging and quenching agents (sorbic acid, isopropanol, sodium azide, and tert-butanol) that are commonly employed to study photodegradation mechanisms and kinetics. The carbon analogue of EBS, namely, 2-phenyl-3H-isoindol-1-one, was included as a reference compound to confirm the impact of the selenium atom on EBS photochemical reactivity. EBS does not undergo acid dissociation, but pH-dependent kinetics were observed in RB-sensitized solutions, suggesting EBS reaction with active intermediates (3RB2-*, O2•-, and H2O2) that are not kinetically relevant for other compounds. In addition, the observed rate constant of EBS increased in the presence of sorbic acid, isopropanol, and sodium azide. These findings suggest that conventional reactive species sensitizers, scavengers, and quenchers need to be carefully applied to highly reactive organoselenium compounds to account for reactions that are typically slow for other organic contaminants.
Collapse
Affiliation(s)
- Mamatha Hopanna
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering Building 314, Baltimore, Maryland 21250 United States
| | - Lisa Kelly
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 United States
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering Building 314, Baltimore, Maryland 21250 United States
| |
Collapse
|
26
|
Yang J, Wang Z, Lv G, Liu W, Wang Y, Sun X, Gao J. Indirect photodegradation of fludioxonil by hydroxyl radical and singlet oxygen in aquatic environment: Mechanism, photoproducts formation and eco-toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110644. [PMID: 32325330 DOI: 10.1016/j.ecoenv.2020.110644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Fludioxonil has been proven valuable as a broad-spectrum fungicide. However, there are concerns about its risk posed to non-target organisms in aquatic environments. In this paper, the mechanism, photoproducts transformation and eco-toxicity of fludioxonil during •OH/1O2-initiated process were systematically studied using quantum chemistry and computational toxicology. The results indicate that the two favorable pathways of •OH/1O2-initiated reactions are both occurred in pyrrole ring. It can conclude that the rate constants of •OH and 1O2 are 1.23 × 1010 and 3.69 × 107 M-1 s-1 at 298K, respectively, which results in half-lives of <2 days in surface waters under sunlit near-surface conditions. Based on toxicity assessments, these photoproducts showed a decreased aquatic toxicity but the majority products are still toxic. This study gives more insight into the chemical transformation mechanism of fludioxonil in aquatic environments.
Collapse
Affiliation(s)
- Jiaoxue Yang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Zehua Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Guochun Lv
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Wen Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
27
|
Photolysis and TiO2 Photocatalytic Treatment under UVC/VUV Irradiation for Simultaneous Degradation of Pesticides and Microorganisms. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Efficiencies of various treatments for UVC photolysis (ultraviolet light-C at 254 nm), VUV photolysis (vacuum ultraviolet light at 254 nm and 185 nm), UVC-assisted titanium dioxide photocatalysis (UVC-TiO2), and VUV-assisted titanium dioxide photocatalysis (VUV-TiO2) were investigated for the degradation of pesticides including pyraclostrobin, boscalid, fludioxonil, and azoxystrobin and inactivation of microorganisms Escherichia coli K12 as a surrogate for E. coli O157:H7 and Saccharomyces cerevisiae in aqueous solutions and on the surface of fresh cut carrots. The degradation efficiencies of VUV were higher than for UVC on pesticides in aqueous solutions. However, there was no significant difference between degradation efficiencies for UVC and UVC-TiO2 treatments, and between VUV and VUV-TiO2 treatments. UVC, VUV, UVC-TiO2, and VUV-TiO2 showed similar inactivation effects against E. coli K12 and S. cerevisiae in aqueous solutions. The combined use of UVC and VUV treatments (combined UV) and combined use of UVC-TiO2 and VUV-TiO2 treatments (combined UV-TiO2) showed higher efficiencies (72–94% removal) for the removal of residual pesticides on fresh cut carrots than bubble water washing (53–73% removal). However, there was no significant difference in removal efficiency between combined UV and combined UV-TiO2 treatments. For E. coli K12 and S. cerevisiae on fresh cut carrots, the combined UV-TiO2 treatment (1.5 log and 1.6 log reduction, respectively) showed slightly higher inactivation effects than combined UV (1.3 log and 1.2 log reduction, respectively). Photolysis and TiO2 photocatalytic treatments under UV irradiation, including VUV as a light source, showed potential for the simultaneous degradation of pesticides and microorganisms as a non-chemical and residue-free technique for surface disinfection of fresh produce.
Collapse
|
28
|
Ding F, Peng W, Peng YK, Liu BQ. Estimating the potential toxicity of chiral diclofop-methyl: Mechanistic insight into the enantioselective behavior. Toxicology 2020; 438:152446. [DOI: 10.1016/j.tox.2020.152446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
|
29
|
Partanen SB, Erickson PR, Latch DE, Moor KJ, McNeill K. Dissolved Organic Matter Singlet Oxygen Quantum Yields: Evaluation Using Time-Resolved Singlet Oxygen Phosphorescence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3316-3324. [PMID: 32064862 DOI: 10.1021/acs.est.9b07246] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Singlet oxygen (1O2) generation quantum yields from chromophoric dissolved organic matter (CDOM) have been reported for many samples over the past 4 decades. Yet even for standardized isolates such as those from the International Humic Substance Society (IHSS), wide-ranging values exist in the literature. In this manuscript, time-resolved 1O2 phosphorescence was used to determine the 1O2 quantum yields (ΦΔ) of a variety of dissolved organic matter (DOM) isolates and natural waters. In general, the 1O2 quantum yield values in this study are in the middle, although below the median of the range of past reported values (e.g., for Suwannee River Natural Organic Matter IHSS isolate: 1.8% vs 0.23-2.89%). Notably, hydrophobic neutral fractions of DOM isolates were found to possess the highest 1O2 quantum yields, an interesting result given that these fractions are not retained in typical humic and fulvic acid isolation procedures that use XAD resins. The excitation wavelength dependence of 1O2 generation from CDOM was also examined, and an approximate linear decrease with longer excitation wavelength was observed. This work advances the understanding of CDOM photoprocesses, especially in relation to wavelength-dependent 1O2 production, which is valuable for assessing real-world environmental behavior.
Collapse
Affiliation(s)
- Sarah B Partanen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Douglas E Latch
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - Kyle J Moor
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
30
|
Lin J, Apell JN, McNeill K, Emberger M, Ciraulo V, Gimeno S. A streamlined workflow to study direct photodegradation kinetic and transformation products for persistence assessment of a fragrance ingredient in natural waters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1713-1721. [PMID: 31588946 DOI: 10.1039/c9em00300b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodegradation can be an important abiotic degradation process to consider for the fate and persistence assessment of chemical substances in the environment. In this work, using a fragrance ingredient (FI, (E)-4-(2,2,3,6-tetramethylcyclohexyl)but-3-en-2-one) as an example, we developed a streamlined workflow to investigate direct photodegradation of chemicals in the aquatic environment, including laboratory investigation of kinetics and transformation products and estimation of its aquatic environmental half-lives. Direct photodegradation was determined to be the dominant photodegradation process for FI with a quantum yield of 0.25, which was supported by photodegradation experiments conducted in natural sunlight. Accounting for light attenuation by dissolved organic matter in natural waters of different depths resulted in aquatic half-lives of <31 days even at polar latitudes. Photoisomerization was shown to be a major photodegradation pathway along with the formation and subsequent degradation of constitutional isomers and photooxidation products. These results contributed to FI being assessed as non-persistent in the environment.
Collapse
Affiliation(s)
- Jianming Lin
- Firmenich Incorporated, P.O.Box 5880, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | |
Collapse
|