1
|
Chen X, Cao N, Kroeze C, Lakshmanan P, Li Z, Sun Y, Wu J, Ma L, Bai Z, Strokal M, Zhang F, Chen X, Shi X. Trapped Urban Phosphorus: An Overlooked and Inaccessible Stock in the Anthropogenic Phosphorus Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19243-19254. [PMID: 39402705 DOI: 10.1021/acs.est.4c08078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Urban landscapes are high phosphorus (P) consumption areas and consequently generate substantial P-containing urban solid waste (domestic kitchen wastes, animal bones, and municipal sludge), due to large population. However, urbanization can also trap P through cultivated land loss and urban solid waste disposal. Trapped urban P is an overlooked and inaccessible P stock. Here, we studied how urbanization contributes to trapped urban P and how it affects the P cycle. We take China as a case study. Our results showed that China generated a total of 13 (±0.9) Tg urban trapped P between 1992-2019. This amounts to 6 (±0.5) % of the total consumed P and 9 (±0.6) % of the chemical fertilizer P used in China over that period. The loss of cultivated land accounted for 15% of the trapped urban P, and half of this was concentrated in three provinces: Shandong, Henan, and Hebei. This is primarily since nearly one-third of the newly expanded urban areas are located within these provinces. The remaining 85% of trapped urban P was associated with urban solid waste disposal. Our findings call for more actions to preserve fertile cultivated land and promote P recovery from urban solid waste through sound waste classification and recycling systems to minimize P trapped in urban areas.
Collapse
Affiliation(s)
- Xuanjing Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
- Earth Systems and Global Change group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Ning Cao
- College of Plant Science, Jilin University, Changchun 130012, China
| | - Carolien Kroeze
- Earth Systems and Global Change group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4067, QLD Australia
| | - Zheng Li
- College of Plant Science, Jilin University, Changchun 130012, China
| | - Ying Sun
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jiechen Wu
- Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Maryna Strokal
- Earth Systems and Global Change group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Fusuo Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Chen Z, Liu W, Qin T, Wu M, Li Z, Zhang Y, Wu D, Abakumov E, Chebykina E, Zhang Y, Dai J, Xiao H, Xie X, Kong M. Phosphorus flow characteristics in the waste system of Poyang Lake Watershed over the past 70 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173704. [PMID: 38844222 DOI: 10.1016/j.scitotenv.2024.173704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
With the intensification of human activities, the amount of phosphorus (P)-containing waste has increased. When such waste is not recycled, P is released into the environment, leading to environmental issues such as the eutrophication of water bodies. In this study, based on the material flow analysis method, a P Waste Flow analysis model (P-WFA) was developed to analyze the P flow in the waste system of Poyang Lake, the largest freshwater lake in China. To address the research gap in long-term P flow analysis at the watershed scale, this study quantified the P content in the waste system of the Poyang Lake Watershed from 1950 to 2020. The analysis revealed that from 1950 to 2020, the total P input into the waste system increased from 5.49 × 104 tons in 1950 to 2.28 × 105 tons in 2020. The breeding industry system was identified as the primary source, accounting for 25.19-41.59 % of the total waste system. Over the past 70 years, P loss to surface water from waste systems has been primarily facilitated by manure from the breeding industry, as well as drainage from crop farming systems (77.74 % in 2020). At the same time, the P recycling rate (PRR) of the waste system exhibited an initial increase followed by a decrease, increasing from 44.14 % to 47.75 % before dropping to 44.41 %. Population growth, urbanization, and changes in consumption levels in Jiangxi Province have led to changes in the dietary structure and fertilizer use, consequently affecting the P cycling pattern. This study presents a comprehensive P flow model for waste systems in the Poyang Lake Watershed. This model can be used as a reference to enhance P cycling and manage P loss in other large freshwater lakes.
Collapse
Affiliation(s)
- Zhiqin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Tian Qin
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Mengting Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Zhiwen Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China; School of Materials and Chemical Engineering, Pingxiang University, Pingxiang City of Jiangxi Province 337000, China
| | - Evgeny Abakumov
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Ekaterina Chebykina
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Yondong Zhang
- Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province 330300, China
| | - Jianjun Dai
- Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province 330300, China
| | - Huoqing Xiao
- Jiangxi Academy of Eco-environmental Sciences and Planning, Nanchang, Jiangxi 330039, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
3
|
Dong W, Sun N, Deng X, Chen Z, Zhang Y, Chi R, Hu L. Study on the occurrence state of main components of phosphogypsum dihydrate and its impurity distribution. RSC Adv 2024; 14:22280-22291. [PMID: 39010924 PMCID: PMC11247958 DOI: 10.1039/d4ra03273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
The dihydrate phosphoric acid process is the mainstream technique. However, the phosphogypsum (PG) produced contains high levels of impurities such as phosphorus and fluorine, severely constraining its valorization. In order to elucidate the occurrence patterns of phosphorus and fluorine impurities in PG, this study employed analytical methods including XRF, XRD, AMICS (Automated Mineralogy Integrated with Chemistry System), XPS, and chemical element balance analysis. We investigated the occurrence states of phosphorus, fluorine, silicon, iron, and aluminum elements in PG from wet-process phosphoric acid production, as well as the distribution characteristics of phosphorus and fluorine impurities. Additionally, we utilized Density Functional Theory (DFT) calculations to determine the binding energies of major minerals with water-soluble phosphate and fluoride groups, and analyzed the zeta potentials of gypsum and quartz mineral surfaces. The results indicate that the main mineral phases in PG are gypsum, quartz, potassium silicate minerals, aluminosilicate minerals, and hematite, predominantly occurring in monomineralic forms. Phosphorus impurities primarily exist in calcium silicate and hematite minerals, while fluorine is mainly associated with gypsum and potassium silicate minerals. DFT calculations demonstrate strong binding energies between calcium silicate and hematite minerals with PO4 3-, as well as between gypsum and quartz minerals with F-. The acidic conditions in the separation tank during wet-process phosphoric acid production may contribute to the distinctive distribution characteristics of phosphorus and fluorine impurities in PG.
Collapse
Affiliation(s)
- Wanqiang Dong
- School of Resources and Safety Engineering, Wuhan Institute of Technology Wuhan 430205 Hubei China
| | - Ningjie Sun
- School of Resources and Safety Engineering, Wuhan Institute of Technology Wuhan 430205 Hubei China
| | - Xiangyi Deng
- School of Resources and Safety Engineering, Wuhan Institute of Technology Wuhan 430205 Hubei China
| | - Zhuo Chen
- School of Resources and Safety Engineering, Wuhan Institute of Technology Wuhan 430205 Hubei China
| | - Yuefei Zhang
- School of Chemistry and Enviromental Engineering, Wuhan Institute of Technology Wuhan 430205 Hubei China
| | - Ru'an Chi
- School of Resources and Safety Engineering, Wuhan Institute of Technology Wuhan 430205 Hubei China
- Hubei Three Gorges Laboratory Yichang 430073 Hubei China
| | - Lisong Hu
- School of Resources and Safety Engineering, Wuhan Institute of Technology Wuhan 430205 Hubei China
| |
Collapse
|
4
|
Miao J, Wang X, Liu G, Bai S, Daigger GT, Kang J, Wang M, Ren N. Smoothing the Phosphorus Resource Stress under the Socioeconomic Development in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6998-7009. [PMID: 38602777 DOI: 10.1021/acs.est.3c08301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Phosphorus (P) is the key in maintaining food security and ecosystem functions. Population growth and economic development have increased the demand for phosphate rocks. China has gradually developed from zero phosphate mining to the world's leading P miner, fertilizer, and agricultural producer since 1949. China released policies, such as designating phosphate rock as a strategic resource, promoting eco-agricultural policies, and encouraging the use of solid wastes produced in mining and the phosphorus chemical industry as construction materials. However, methodological and data gaps remain in the mapping of the long-term effects of policies on P resource efficiency. Here, P resource efficiency can be represented by the potential of the P cycle to concentrate or dilute P as assessed by substance flow analysis (SFA) complemented by statistical entropy analysis (SEA). P-flow quantification over the past 70 years in China revealed that both resource utilization and waste generation peaked around 2015, with 20 and 11 Mt of mined and wasted P, respectively. Additionally, rapidly increasing aquaculture wastewater has exacerbated pollution. The resource efficiency of the Chinese P cycle showed a U-shaped change with an overall improvement of 22.7%, except for a temporary trough in 1975. The driving force behind the efficiency decline was the roaring phosphate fertilizer industry, as confirmed by the sharp increase in P flows for both resource utilization and waste generation from the mid-1960s to 1975. The positive driving forces behind the 30.7% efficiency increase from 1975 to 2018 were the implementation of the resource conservation policy, downstream pollution control, and, especially, the circular agro-food system strategy. However, not all current management practices improve the P resource efficiency. Mixing P industry waste with construction materials and the development of aquaculture to complement offshore fisheries erode P resource efficiency by 2.12% and 9.19%, respectively. With the promotion of a zero-waste society in China, effective P-cycle management is expected.
Collapse
Affiliation(s)
- Jingyu Miao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Gang Liu
- College of Urban and Environmental Sciences, Peking University, Beijing 100091, PR China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2092 United States
| | - Jinhao Kang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mengyue Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
5
|
Sun K, Cui Y, Sun L, Wei B, Wang Y, Li S, Zhou C, Wang Y, Zhang W. Optimizing the manure substitution rate based on phosphorus fertilizer to enhance soil phosphorus turnover and root uptake in pepper ( Capsicum). FRONTIERS IN PLANT SCIENCE 2024; 15:1356861. [PMID: 38504886 PMCID: PMC10948398 DOI: 10.3389/fpls.2024.1356861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Introduction In contemporary agriculture, the substitution of manure for chemical fertilizer based on phosphorus (P) input in vegetable production has led to a significant reduction in P fertilizer application rates, while, the effect of manure substitution rates on soil P transformation and uptake by root remain unclear. Methods This research conducts a pot experiment with varying manure substitution rates (0%, 10%, 20%, 30%, 40%, 50%, 75% and 100%) based on P nutrient content to elucidate the mechanisms through which manure substitution affects P uptake in pepper. Results and discussion The result showed that shoot and root biomass of pepper gradually increased as manure substitution rate from 10% to 40%, and then gradually decreased with further increases in the substitution rate. Soil alkaline phosphatase activity and arbuscular mycorrhizal (AM) colonization gradually increased with manure substitution rates improvement. Specifically, when the substitution rate reached 30%-40%, the alkaline phosphatase activity increased by 24.5%-33.8% compared to the fertilizer treatment. In contrast, phytase activity and the relative expression of phosphate transporter protein genes in the root system was declined after peaking at 30% manure substitution. Additionally, soil available P remained moderate under 30%-40% substitution rate, which was reduced by 8.6%-10.2% compared to that in chemical fertilizer treatment, while microbial biomass P was comparable. In the current study, soil labile P similar to or even higher than that in chemical fertilizer treatment when the substitution rate was ≤40%. Correlation heatmaps demonstrated a significant and positive relationship between soil available P and factors related to labile P and moderately labile P. Conclusion This finding suggested that substituting 30%-40% of chemical P with manure can effectively enhance root length, AM colonization, soil enzyme activity, soil labile P, and consequently improve P uptake in pepper. These findings provide valuable insights for future organic agricultural practices that prioritize P supply, aiming to standardize organic P management in farmland and achieve high crop yields and maintain soil health.
Collapse
Affiliation(s)
- Kai Sun
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Yutao Cui
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
| | - Linglulu Sun
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
| | - Bingli Wei
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Yuan Wang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Shunjin Li
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Chengxiang Zhou
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yixia Wang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
| | - Wei Zhang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
6
|
Gao M, Chen Y. Get the win-win: Sustainable circular model of 'generation-value-technology' of industrial solid waste management. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:191-205. [PMID: 37387197 DOI: 10.1177/0734242x231184446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The management of industrial solid waste (ISW) and promoting sustainable circular development of the industrial economy is an urgent priority today. Therefore, this article constructs a sustainable circular model of 'generation-value-technology' of ISW management through the lens of industrial added value (IAV) and technology level. Also, the importance of the role of government is considered in the model. Based on actual data of China, this article simulates the future trend of the model using a system dynamics approach. The chief findings of the study are as follows: (1) under the current policy, China's future industrialization is increasing and the technological level of industrial enterprises is rising, but this is accompanied by a climb in ISW generation. (2) The win-win situation of ISW decrease and IAV increase can be achieved through enhanced information disclosure, technology innovation and government incentives. (3) Government subsidy should be oriented towards supporting technology innovation in industrial enterprises while reducing the proportion of incentives for ISW management results. Based on the results, this study proposes targeted policy implications for government and industrial enterprises.
Collapse
Affiliation(s)
- Ming Gao
- School of Economics and Management, Fuzhou University, Fuzhou, China
- Fujian Green Development Research Institute, Fuzhou University, Fuzhou, China
| | - Yufan Chen
- School of Economics and Management, Fuzhou University, Fuzhou, China
- Fujian Green Development Research Institute, Fuzhou University, Fuzhou, China
| |
Collapse
|
7
|
Yang J, Li M, Liu L, Zhao H, Luo W, Guo Y, Ji X, Hu W. Dynamic characteristics of net anthropogenic phosphorus input to the upper Yangtze River Basin from 1989 to 2019: Focus on the phosphate ore rich area in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119140. [PMID: 37778077 DOI: 10.1016/j.jenvman.2023.119140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Phosphorus (P), a non-renewable essential resource, faces heavy exploitation and contributes to eutrophication in aquatic environments. Assessing P input is vital for a healthier P cycle in the Upper Yangtze River (UYR), a phosphate ore rich basin, where P mining and P chemical enterprises have prominent pollution problems. This study modified the net anthropogenic phosphorus input (NAPI) model to include ore mining P input (Pore). We analyzed the evolutionary characteristics of P input in five sub-basins of UYR from 1989 to 2019 using prefecture-level data, and assessed the uncertainty of the data. NAPI in all sub-basins exhibited an upward and then downward trend during 1989-2019, with the inflection point occurring in 2015 or 2016, showing a net increase of about 1.1 times (568-1162 kg P km-2 yr-1) in the whole UYR basin. Among the components of NAPI, P fertilizer inputs (Pfer) and food/non-food and feed P inputs (Pf/nf&feed) contributed comparably, though the growth rate of Pfer was most notable basin-wide. Pore proportion increased significantly (about 3-fold), with a peak of 20%, especially in Wujiang sub-basin. The multi-year (1989-2019) average NAPI in UYR rose sequentially from west to east, with hotspot areas mainly concentrated in the Sichuan-Chongqing urban agglomeration and cities of Hubei province. The regional P input closely related to the population density and the level of agricultural development, certainly the phosphate mining was also unignorable. This study emphasizes that based on current status of NAPI development in UYR, targeted management for different regions should focus on improving agricultural P use efficiency and rational exploitation of P mineral resources.
Collapse
Affiliation(s)
- Junlan Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Lu Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenqing Luo
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| |
Collapse
|
8
|
Liu W, Qin T, Wu M, Chen Z, Zhang Y, Abakumov E, Chebykina E, Wang W, Wu D, Han C, Xie X, Cheng J, Hua X, Chi S, Xu J. Analyzing the phosphorus flow characteristics in the largest freshwater lake (Poyang Lake) watershed of China from 1950 to 2020 through a bottom-up approach of watershed-scale phosphorus substance flow model. WATER RESEARCH 2023; 245:120546. [PMID: 37688855 DOI: 10.1016/j.watres.2023.120546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
Understanding the historical patterns of phosphorus (P) cycling is essential for sustainable P management and eutrophication mitigation in watersheds. Currently, there is a lack of long-term watershed-scale models that analyze the flow of P substances and quantify the socioeconomic patterns of P flow. This study adopted a watershed perspective and incorporated crucial economic and social subsystems related to P production, consumption, and emissions throughout the entire life cycle. Based on this approach, a bottom-up watershed P flow analysis model was developed to quantify the P cycle for the first time in the Poyang Lake watershed from 1950 to 2020 and to explore the driving factors that influence its strength by analyzing multi-year P flow results. In general, the P cycle in the Poyang Lake watershed was no longer a naturally dominated cycle but significantly influenced by human activities during the flow dynamics between 1950 and 2015. Agricultural intensification and expansion of large-scale livestock farming continue to enhance the P flow in the study area. Fertilizer P inputs from cultivation account for approximately 60% of the total inputs to farming systems, but phosphate fertilizer utilization continues to decline. Feed P inputs have continued to increase since 2007. The expansion of large-scale farming and the demand for urbanization are the main factors leading to changes in feed P input patterns. The P utilization rate for livestock farming (PUEa) is progressively higher than international levels, with PUEa increasing from 0.64% (1950) to 9.7% (2020). Additionally, per capita food P consumption in the watershed increased from 0.67 kg to 0.80 kg between 1950 and 2020. The anthropogenic P emissions have increased from 1.67 × 104 t (1950) to 8.73 × 104 t (2020), with an average annual growth rate of 2.41%. Watershed-wide P pollution emissions have increased by more than five-fold. Population growth and agricultural development are important drivers of structural changes in P flows in the study area, and they induce changes in social conditions, including agricultural production, dietary structure, and consumption levels, further dominating the cyclic patterns of P use, discharge, and recycling. This study provides a broader and applicable P flow model to measure the characteristics of the P cycle throughout the watershed social system as well as provides methodological support and policy insights for large lakes in rapidly developing areas or countries to easily present P flow structures and sustainably manage P resources.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Tian Qin
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Mengting Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Zhiqin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Evgeny Abakumov
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Ekaterina Chebykina
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Wenjuan Wang
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China; School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi 337000, China
| | - Chao Han
- Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China.
| | - Jiancheng Cheng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Xinlong Hua
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Sunlin Chi
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Jinying Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Jia C, Chi J, Zhang W. Adsorption effects and mechanisms of phosphorus by nanosized laponite. CHEMOSPHERE 2023; 331:138684. [PMID: 37059202 DOI: 10.1016/j.chemosphere.2023.138684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Phosphorus (P), an important macroelement for crops, may be lost into water systems by human activities and subsequently cause serious environmental problems such as eutrophication. Thus, the recovery of P from wastewater is essential. P can be adsorbed and recovered from wastewater using many natural, environmentally friendly clay minerals, however the adsorption ability is limited. Here we applied a synthesis nanosized clay mineral, laponite, to evaluate the P adsorption ability and molecular mechanisms of the adsorption process. We apply X-ray Photoelectron Spectroscopy (XPS) to observe the adsorption of inorganic phosphate onto laponite, and then measure the adsorption content of phosphate by laponite via batch experiments in different solution conditions, including pH, ionic species and concentrations. Then the molecular mechanisms of adsorption are analyzed by Transmission Electron Microscopy (TEM) and molecular modeling using Density Functional Theory (DFT). The results show that phosphate adsorbs to the surface and interlayer of laponite via hydrogen bonding, and the adsorption energies of the interlayer are greater than those of the surface. These bulk solution and molecular-scale results in a model system may provide new insights into the recovery of phosphorus by nanosized clay, with possible environmental engineering applications for P-pollution control and sustainable utilization of P sources.
Collapse
Affiliation(s)
- Chonghao Jia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jialin Chi
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Guo Z, Chen SS, Kattel GR, Mkumbo AC, Xiong C, Gao Q, Shen Q. Scenario analysis of phosphorus flow in food production and consumption system in the Mwanza region, Tanzania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162991. [PMID: 36963684 DOI: 10.1016/j.scitotenv.2023.162991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Since the mineral, phosphorus (P), has dual properties of being limited resources for use, and being a pollutant for studying sustainable management of anthropogenic P flows in wetlands and soils, currently P receives the highest interests among researchers around the world. This study has successfully mapped P flows for a reference year (2017) and a future year (2030) using different scenarios of food production and consumption system (hereafter 'system') in the Mwanza region (Tanzania). The results showed that the total P input and output for 2017 alone were 9770 t and 7989 t, respectively. However, as high as 1781 tP accumulated in the system and the potentially recyclable P found, is yet to be recovered due to economic reasons and the lack of market. The main anthropogenic P input to the system occurred via imported feed, fertilizer, and crop food, accounting for about 99.72 % of the total input flow. The output was comprised of animal products exported with 3428 tP, and various P-contained wastes which were lost to water bodies with 4561tP. Analysis of the 2030 scenario showed that setting P management objectives from different perspectives such as the total P budget balance, potential recyclable P, and P emission, can help develop differentially preferred management strategies and measures in the Mwanza region. The combination of diet change, precision feeding, and integrated waste management practices presents the best prospects for decreasing P budget and losses, and the amount of P that can be potentially recovered from the system. We propose a package of integrated P management measures for the Mwanza region. Given the similarity of regional socio-economic development background around the Lake Victoria basin, the model can be used to guide the study of anthropogenic P flow analysis in other areas along the shore of Lake Victoria (Africa).
Collapse
Affiliation(s)
- Zheng Guo
- School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China
| | - Sophia Shuang Chen
- School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Giri Raj Kattel
- School of Geographical Sciences, Nanjing University of Information Science &Technology, Nanjing 210044, China; Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Parkville 3010, Australia; Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Anna Charles Mkumbo
- Tanzania Fisheries Research Institute, P.O. Box 750, Dar es Salaam, Tanzania
| | - Chuanhe Xiong
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Qun Gao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Qiushi Shen
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| |
Collapse
|
11
|
Ran X, Uppuluri NST, Deng Y, Zheng Y, Dong R, Müller J, Oechsner H, Li B, Guo J. Comparison of phosphorus species in livestock manure and digestate by different detection techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162547. [PMID: 36871712 DOI: 10.1016/j.scitotenv.2023.162547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) species characterize the effectiveness of the P fertilizer. In this study, the P species and distribution in different manures (pig manure, dairy manure and chicken manure) and their digestate were systematically investigated through combined characterization methods of Hedley fractionation (H2OP, NaHCO3-P, NaOH-P, HCl-P, and Residual), X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) techniques. The results from Hedley fractionation showed that >80 % of P in the digestate was inorganic and the HCl-P content in manure increased significantly during anaerobic digestion (AD). XRD manifested that insoluble hydroxyapatite and struvite belonging to HCl-P were presented during AD, which was in agreement with the result of Hedley fractionation. 31P NMR spectral analysis revealed that some orthophosphate monoesters were hydrolyzed during AD, meanwhile the orthophosphate diester organic phosphorus like DNA and phospholipids content has increased. After characterizing P species by combining these methods, it was found that chemical sequential extraction could be an effective way to fully understand the P in livestock manure and digestate, with other methods used as auxiliary tool depending on the purpose of studies. Meanwhile, this study provided a basic knowledge of utilizing digestate as P fertilizer and minimizing the risk of P loss from livestock manure. Overall, applying digestates can minimize the risk of P loss from directly applied livestock manure while satisfying plant demands, and is an environmentally friendly P fertilizer.
Collapse
Affiliation(s)
- Xueling Ran
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, China.
| | - Naga Sai Tejaswi Uppuluri
- The State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Stuttgart 70593, Germany.
| | - Yun Deng
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, China.
| | - Yonghui Zheng
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, China.
| | - Renjie Dong
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, China.
| | - Joachim Müller
- Institute of Agricultural Engineering, Tropics and Subtropics, University of Hohenheim, Stuttgart 70599, Germany.
| | - Hans Oechsner
- The State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Stuttgart 70593, Germany.
| | - Bowen Li
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, China.
| | - Jianbin Guo
- College of Engineering (Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture), China Agricultural University, Beijing 100083, China.
| |
Collapse
|
12
|
Guo C, Li M, Feng M, Yuan M, Qiu S, Zhang L, Fu W, Zhou J, Zhang K, Luo Y, Wang F. B-site metal modulation of phosphate adsorption properties and mechanism of LaBO3 (B = Fe, Al and Mn) perovskites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66638-66650. [PMID: 37101212 DOI: 10.1007/s11356-023-27284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Abstract
La-based adsorbents are widely used for controlling phosphate concentration in water bodies. In order to explore the effect of different B-site metals regulating La-based perovskites on phosphate adsorption, three La-based perovskites (LaBO3, B = Fe, Al, and Mn) were prepared using the citric acid sol-gel method. Adsorption experiments showed that LaFeO3 exhibited the highest adsorption capacity for phosphate, which was 2.7 and 5 times higher than those of LaAlO3 and LaMnO3, respectively. The characterization results demonstrated that LaFeO3 has dispersed particles exhibiting larger pore size and more pores than LaAlO3 and LaMnO3. Spectroscopy analysis and density functional theory calculation results showed that different B-positions cause a change in the type of perovskite crystals. Among them, the differences between lattice oxygen consumption ratio, zeta potential and adsorption energy are the main reasons for the differences in adsorption capacity. In addition, the adsorption of phosphate by La-based perovskites were well fitted with Langmuir isotherm and pursues the pseudo-second-order kinetic models. The maximum adsorption capacities were 33.51, 12.31 and 6.61 mg/g for LaFeO3, LaAlO3 and LaMnO3, respectively. The adsorption mechanism was mainly based on inner-sphere complexation and electrostatic attraction. This study provides an explanation for the influence of different B sites on phosphate adsorption by perovskite.
Collapse
Affiliation(s)
- Changbin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
| | - Mengmeng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Menghan Feng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Mingyao Yuan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Shangkai Qiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Lisheng Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Weilin Fu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Jien Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Yanli Luo
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, People's Republic of China
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China.
| |
Collapse
|
13
|
Liu X, Zhang D, Wu H, Elser JJ, Yuan Z. Uncovering the spatio-temporal dynamics of crop-specific nutrient budgets in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117904. [PMID: 37084647 DOI: 10.1016/j.jenvman.2023.117904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two critical nutrients for agroecosystems. In meeting food demands, human use of both nutrients has crossed planetary boundaries for sustainability. Further, there has been a dramatic shift in their relative inputs and outputs, which may generate strong N:P imbalances. Despite enormous efforts on agronomic N and P budgets, the spatio-temporal characteristics of different crop types in using nutrients are unknown as are patterns in the stoichiometric coupling of these nutrients. Thus, we analyzed the annual crop-specific N and P budgets and their stoichiometric relations for producing ten major crops at the provincial level of China during 2004-2018. Results show that, China has generally witnessed excessive N and P input over the past 15 years, with the N balance remaining stable while the P balance increasing by more than 170%, thus resulting in a decline in the N:P mass ratios from 10.9 in 2004 to 3.8 in 2018. Crop-aggregated nutrient use efficiency (NUE) of N has increased by 10% in these years while most crops have shown a decreasing trend of this indicator for P, which reduced NUE of P from 75% to 61% during this period. At the provincial level, the nutrient fluxes of Beijing and Shanghai have obviously declined, while the nutrient fluxes of provinces such as Xinjiang and Inner Mongolia have increased significantly. Although N management has made progress, P management should be further explored in the future due to eutrophication concerns. More importantly, N and P management strategies for sustainable agriculture in China should take account of not only the absolute nutrient use, but also their stoichiometric balance for different crops in different locations.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dingming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Huijun Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - James J Elser
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Li M, Feng M, Guo C, Qiu S, Zhang L, Zhao D, Guo H, Zhang K, Wang F. Green and Efficient Al-Doped LaFe xAl 1-xO 3 Perovskite Oxide for Enhanced Phosphate Adsorption with Creation of Oxygen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16942-16952. [PMID: 36961428 DOI: 10.1021/acsami.2c19513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
La-based metal oxide materials are environmentally friendly and show promise for phosphate adsorption. A series of Al-doped perovskite oxides, such as LaFexAl1-xO3, were prepared using a facile citric acid-assisted sol-gel method. The characterization results demonstrated that with optimized Al doping, there was a significant increase in the specific surface area and increased defect content of perovskite oxide LaFexAl1-xO3. Adsorption experiments showed that the performance of phosphate removal by LaFexAl1-xO3 was largely enhanced due to the improved adsorption capacity, which is maximum eight times higher compared with control perovskites prepared under neutral conditions. The mass transfer rate for adsorption was considerably boosted with phosphate removal within the initial 15 min. Spectroscopy analysis and density functional theory calculation results showed that the process of phosphate removal by the Al-doped perovskite oxides LaFexAl1-xO3 involved electrostatic interactions, an inner-sphere complex, and surface oxygen vacancies, among which the creation of oxygen vacancies caused by the Al doping was the predominant mechanism for reducing the bonding barrier during adsorption and generating adsorption sites. The results enable the development of a green and efficient perovskite adsorbent with a La-based perovskite material for phosphorus removal.
Collapse
Affiliation(s)
- Mengmeng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Menghan Feng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Changbin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
- College of Grass Industry and Environmental Science, Xinjiang Agricultural University, Urumqi 830052, People's Republic of China
| | - Shangkai Qiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Lisheng Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Di Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| |
Collapse
|
15
|
Zahed MA, Salehi S, Tabari Y, Farraji H, Ataei-Kachooei S, Zinatizadeh AA, Kamali N, Mahjouri M. Phosphorus removal and recovery: state of the science and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58561-58589. [PMID: 35780273 DOI: 10.1007/s11356-022-21637-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus is one of the main nutrients required for all life. Phosphorus as phosphate form plays an important role in different cellular processes. Entrance of phosphorus in the environment leads to serious ecological problems including water quality problems and soil pollution. Furthermore, it may cause eutrophication as well as harmful algae blooms (HABs) in aquatic environments. Several physical, chemical, and biological methods have been presented for phosphorus removal and recovery. In this review, there is an overview of phosphorus role in nature provided, available removal processes are discussed, and each of them is explained in detail. Chemical precipitation, ion exchange, membrane separation, and adsorption can be listed as the most used methods. Identifying advantages of these technologies will allow the performance of phosphorus removal systems to be updated, optimized, evaluate the treatment cost and benefits, and support select directions for further action. Two main applications of biochar and nanoscale materials are recommended.
Collapse
Affiliation(s)
| | - Samira Salehi
- Department of Health, Safety and Environment, Petropars Company, Tehran, Iran.
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, Tehran, Iran
| | - Hossein Farraji
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Ali Akbar Zinatizadeh
- Faculty of Chemistry, Department of Applied Chemistry, Environmental Research Center (ERC), Razi University, Kermanshah, 67144-14971, Iran
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, 1710, South Africa
| | - Nima Kamali
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahjouri
- Department of Environmental Engineering, University of Tehran, Kish International Campus, Tehran, Iran
| |
Collapse
|
16
|
Abraham AJ, Roman J, Doughty CE. The sixth R: Revitalizing the natural phosphorus pump. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155023. [PMID: 35390369 DOI: 10.1016/j.scitotenv.2022.155023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is essential for all life on Earth and sustains food production. Yet, the easily accessible deposits of phosphate-rich rock, which underpin the green revolution are becoming rarer. Here we propose a mechanism to help alleviate the problem of "peak phosphorus". In the past, wild animals played a large role in returning P from ocean depths back to the continental interiors. In doing so, they collectively retained and redistributed P within the biosphere, supporting a more fertile planet. However, species extinctions and population reductions have reduced animal-mediated P transport >90% over the past 12,000 years. Recently a 5R strategy was developed to Realign P inputs, Reduce P losses, Recycle P in bio-resources, Recover P in wastes, and Redefine P in food systems. Here, we suggest a sixth R, to Revitalize the Natural Phosphorus Pump (RNPP). Countries are starting to mandate P recycling and we propose a P-trading scheme based on REDD+, where a country could partially achieve its recycling goals by restoring past animal-mediated P pathways. Accrued money from this scheme could be used to restore or conserve wild animal populations, while increasing natural P recycling.
Collapse
Affiliation(s)
- Andrew J Abraham
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University Flagstaff, AZ 86011, USA.
| | - Joe Roman
- Gund Institute for Environment, Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05445, USA
| | - Christopher E Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University Flagstaff, AZ 86011, USA
| |
Collapse
|
17
|
Yahya M, Rasul M, Sarwar Y, Suleman M, Tariq M, Hussain SZ, Sajid ZI, Imran A, Amin I, Reitz T, Tarkka MT, Yasmin S. Designing Synergistic Biostimulants Formulation Containing Autochthonous Phosphate-Solubilizing Bacteria for Sustainable Wheat Production. Front Microbiol 2022; 13:889073. [PMID: 35592004 PMCID: PMC9111743 DOI: 10.3389/fmicb.2022.889073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Applying phosphate-solubilizing bacteria (PSB) as biofertilizers has enormous potential for sustainable agriculture. Despite this, there is still a lack of information regarding the expression of key genes related to phosphate-solubilization (PS) and efficient formulation strategies. In this study, we investigated rock PS by Ochrobactrum sp. SSR (DSM 109610) by relating it to bacterial gene expression and searching for an efficient formulation. The quantitative PCR (qPCR) primers were designed for PS marker genes glucose dehydrogenase (gcd), pyrroloquinoline quinone biosynthesis protein C (pqqC), and phosphatase (pho). The SSR-inoculated soil supplemented with rock phosphate (RP) showed a 6-fold higher expression of pqqC and pho compared to inoculated soil without RP. Additionally, an increase in plant phosphorous (P) (2%), available soil P (4.7%), and alkaline phosphatase (6%) activity was observed in PSB-inoculated plants supplemented with RP. The root architecture improved by SSR, with higher root length, diameter, and volume. Ochrobactrum sp. SSR was further used to design bioformulations with two well-characterized PS, Enterobacter spp. DSM 109592 and DSM 109593, using the four organic amendments, biochar, compost, filter mud (FM), and humic acid. All four carrier materials maintained adequate survival and inoculum shelf life of the bacterium, as indicated by the field emission scanning electron microscopy analysis. The FM-based bioformulation was most efficacious and enhanced not only wheat grain yield (4-9%) but also seed P (9%). Moreover, FM-based bioformulation enhanced soil available P (8.5-11%) and phosphatase activity (4-5%). Positive correlations were observed between the PSB solubilization in the presence of different insoluble P sources, and soil available P, soil phosphatase activity, seed P content, and grain yield of the field grown inoculated wheat variety Faisalabad-2008, when di-ammonium phosphate fertilizer application was reduced by 20%. This study reports for the first time the marker gene expression of an inoculated PSB strain and provides a valuable groundwork to design field scale formulations that can maintain inoculum dynamics and increase its shelf life. This may constitute a step-change in the sustainable cultivation of wheat under the P-deficient soil conditions.
Collapse
Affiliation(s)
- Mahreen Yahya
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
- Department of Environment and Energy, Sejong University, Seoul, South Korea
| | - Yasra Sarwar
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Suleman
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
- School of Life Sciences, Institute of Microbiology, Lanzhou University, Lanzhou, China
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Zahid Iqbal Sajid
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Thomas Reitz
- Soil Ecology Department, UFZ-Helmholtz-Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika Tapio Tarkka
- Soil Ecology Department, UFZ-Helmholtz-Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
18
|
Zhang Y, Tang Q, Sun Y, Yao C, Yang Z, Yang W. Improved utilization of active sites for phosphorus adsorption in FeOOH/anion exchanger nanocomposites via a glycol-solvothermal synthesis strategy. J Environ Sci (China) 2022; 111:313-323. [PMID: 34949361 DOI: 10.1016/j.jes.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 06/14/2023]
Abstract
Metal oxide/hydroxide-based nanocomposite adsorbents with porous supporting matrices have been recognized as efficient adsorbents for phosphorus recovery. Aiming at satisfying increasingly restrictive environmental requirements involving improving metal site utilization and lowering metal leakage risk, a glycol-solvothermal confined-space synthesis strategy was proposed for the fabrication of FeOOH/anion exchanger nanocomposites (Fe/900s) with enhanced metal site utilization and reduced metal leakage risk. Compared to composites prepared using alkaline precipitation methods, Fe/900s performed comparably, with a high adsorption capacity of 19.05 mg-P/g with an initial concentration of 10 mg-P/L, a high adsorption selectivity of 8.2 mg-P/g in the presence of 500 mg-SO42-/L, and high long-term resilience (with a capacity loss of ~14% after five cycles), along with substantially lower Fe loading amount (4.11 wt.%) and Fe leakage percentage. Mechanistic investigation demonstrated that contribution of the specific FeOOH sites to phosphate adsorption increased substantially (up to 50.97% under the optimal conditions), in which Fe(III)-OH was the dominant efficient species. The side effects of an excessively long reaction time, which included quaternary ammonium decomposition, FeOOH aggregation, and Fe(III) reduction, were discussed as guidance for optimizing the synthesis strategy. The glycol-solvothermal strategy provides a facile solution to environmental problems through nanocrystal growth engineering in a confined space.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Qiong Tang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Yifan Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Chenxu Yao
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China.
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
19
|
Liu L, Zheng X, Wei X, Kai Z, Xu Y. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci Rep 2021; 11:23015. [PMID: 34837009 PMCID: PMC8626514 DOI: 10.1038/s41598-021-02521-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Total phosphorus (TP) loss from planting was one of the resources causing agricultural non-point source pollution. It is significant to clarify the factors influencing TP loss, as well as explore the relationship between TP loss from planting and surface water eutrophication for making recommendations on the reduction of environmental pollution. In this study, the minimum and maximum of average TP loss was appeared in Qinghai and Shandong province with the TP loss of 7.7 × 102 t and 7.5 × 103 t from 2012 to 2014, respectively. The results of structural equation model (SEM) indicating that the effect of anthropogenic drivers on TP loss was more important than natural conditions due to the higher path coefficient of anthropogenic drivers (0.814) than that of natural conditions (0.130). For anthropogenic drivers, the path coefficients of usage of fertilizer and pesticides, which was often excessively applied in China, were 0.921 and 0.909, respectively causing they the two dominant factors affecting TP loss. Annual precipitation and relative humidity, which were belongs to natural conditions, increased TP loss by enhancing leaching and surface runoff. However, light duration could reduce TP loss by promoting crop growth and increasing TP absorption of crops, with a path coefficient of - 0.920. TP loss of each province in per unit area from planting was significantly correlated with TP concentration of its surface water (p < 0.05), suggesting that TP loss from planting was the main factor causing surface water eutrophication. This study targeted presented three proposals to reduce the TP loss from planting, including promotion of scientific fertilization technologies, restriction of organophosphorus pesticides, and popularization of water saving irrigation technologies. These findings as well as suggestions herein would provide direction for the reduction of TP loss from planting.
Collapse
Affiliation(s)
- Liyuan Liu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhang Kai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
20
|
Tian J, Ge F, Zhang D, Deng S, Liu X. Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. BIOLOGY 2021; 10:158. [PMID: 33671192 PMCID: PMC7922199 DOI: 10.3390/biology10020158] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could lead to excessive inputs of inorganic P in intensively managed croplands, consequently rising P losses and ongoing eutrophication of surface waters. Despite phosphate solubilizing microorganisms (PSMs) are widely accepted as eco-friendly P fertilizers for increasing agricultural productivity, a comprehensive and deeper understanding of the role of PSMs in P geochemical processes for managing P deficiency has received inadequate attention. In this review, we summarize the basic P forms and their geochemical and biological cycles in soil systems, how PSMs mediate soil P biogeochemical cycles, and the metabolic and enzymatic mechanisms behind these processes. We also highlight the important roles of PSMs in the biogeochemical P cycle and provide perspectives on several environmental issues to prioritize in future PSM applications.
Collapse
Affiliation(s)
- Jiang Tian
- Department of Chemical Engineering, Xiangtan University, Xiangtan 411105, China;
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China;
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China;
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China;
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua–Suzhou), Suzhou 215163, China;
| | - Xingwang Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China;
| |
Collapse
|
21
|
Li Y, Wang L, Chao C, Yu H, Yu D, Liu C. Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115949. [PMID: 33168373 DOI: 10.1016/j.envpol.2020.115949] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Intensive aquaculture has largely changed the global phosphorus (P) flow and become one of the main reasons for the eutrophication of global aquatic ecosystem. Artificial planting submerged macrophytes has attracted enormous interest regarding the restoration of eutrophic lakes. However, few large-scale (>80 km2) studies have focused on the restoration of aquatic vegetation in the subtropical lakes, and the mechanism underlying the restrain of sediment P release by macrophytes remains unknown. In this study, field surveys and the diffusive gradients in thin films (DGT) technique were used to elucidate the effects of macrophytes on internal P loading control in a typical eutrophic aquacultural lake. Results showed that half of the P content in overlying water and sediments, particularly dissolved P in overlying water and calcium bound P (Ca-P) in sediment, were removed after restoration. Temperature, as well as dissolved oxygen (DO) and P concentration gradients near the sediment-water interface (SWI) jointly controlled the release of labile P from surface sediments. Submerged macrophytes can effectively inhibit the release of sediment P into the overlying water, which depended on DO concentration in the bottom water. Future restoration projects should focus on the temperature response of submerged macrophytes of different growth forms (especially canopy-forming species) to avoid undesirable restoration effects. Our results complement existing knowledge about submerged macrophytes repairing subtropical P-contaminated lakes and have positive significance for lake restoration by in situ phytoremediation.
Collapse
Affiliation(s)
- Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Ligong Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chuanxin Chao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Hongwei Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|
22
|
Li Y, Wang L, Yan Z, Chao C, Yu H, Yu D, Liu C. Effectiveness of dredging on internal phosphorus loading in a typical aquacultural lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140883. [PMID: 32711316 DOI: 10.1016/j.scitotenv.2020.140883] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Intensive aquaculture significantly affects the global phosphorus (P) cycle and enhances eutrophication in inland waters. Sediment dredging efficiently removes P-rich sediments from shallow-water eutrophic lakes. However, studies on the effects of sediment dredging on the internal P loading of aquacultural lakes are still lacking. Moreover, the migration and transformation processes of labile P and the mechanisms of sediment P release are unclear. To evaluate dredging effectiveness, we employed two in situ high-resolution sampling techniques to simultaneously measure sediment labile P and porewater soluble reactive P (SRP) and Fe (II) at the millimeter scale. Dredging effectively reduced surface sediment CaP contents and organic matter (OM) below the sediment-water interface (SWI). Moreover, dredging decreased the SRP diffusion flux across the SWI in summer. After dredging, FeP (P bound to Fe, Al, and Mn oxides and hydroxides) and OP (organic P) contents increased by 136% and 48% in the newly formed deposited layer (140 mm thick), respectively. The increased bioavailable P content significantly enhanced the capability of sediment solids to resupply labile P to porewater SRP. The stronger positive correlation between porewater soluble Fe (II) and SRP suggests that Fe redox cycling regulated internal P release. Our results suggest that dredging effectiveness will weaken over time due to the re-deposition of active P, which in turn increases the risk of sediment P release. To curb the release of sediment P, we recommend the implementation of additional in situ restoration techniques that improve the oxide layer of surface sediments and reduce sediment suspension.
Collapse
Affiliation(s)
- Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Ligong Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhiwei Yan
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chuanxin Chao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Hongwei Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|