1
|
Zeng Y, Wang H, Liang D, Yuan W, Li S, Xu H, Chen J. Navigating the difference of riverine microplastic movement footprint into the sea: Particle properties influence. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134888. [PMID: 38897117 DOI: 10.1016/j.jhazmat.2024.134888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
As a critical source of marine microplastics (MPs), estuarine MPs community varied in movement due to particle diversity, while tide and runoff further complicated their transport. In this study, a particle mass gradient that represents MPs in the surface layer of the Yangtze River estuary was established. This was done by calculating the masses of 16 particle types using the particle size probability density function (PDF), with typical shapes and polymers as classifiers. Further, Aschenbrenner shape factor and polymer density were embedded into drag coefficients to categorically trace MP movement footprints. Results revealed that the MPs in North Branch moved northward and the MPs in South Branch moved southeastward in a spiral oscillation until they left the model boundary under Changjiang Diluted Water front and the northward coastal currents. Low-density fibrous MPs are more likely to move into the open ocean and oscillate more than films, with a single PE fiber trajectory that reached a maximum oscillatory width of 16.7 km. Over 95 % of the PVC fiber particles settled in nearshore waters west of 122.5°E. Elucidating the aggregation and retention of different MPs types can provide more accurate environmental baseline reference for more precise MP exposure levels and risk dose of ingestion for marine organisms.
Collapse
Affiliation(s)
- Yichuan Zeng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Weihao Yuan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Siqiong Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haosen Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingwei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Floreani F, Barago N, Klun K, Faganeli J, Covelli S. Dissolved gaseous mercury production and sea-air gaseous exchange in impacted coastal environments of the northern Adriatic Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121926. [PMID: 37268218 DOI: 10.1016/j.envpol.2023.121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
The northern Adriatic Sea is well known for mercury (Hg) contamination mainly due to historical Hg mining which took place in Idrija (Slovenia). The formation of dissolved gaseous mercury (DGM) and its subsequent volatilisation can reduce the amount of Hg available in the water column. In this work, the diurnal patterns of both DGM production and gaseous Hg fluxes at the water-air interface were seasonally evaluated in two selected environments within this area, a highly Hg-impacted, confined fish farm (VN: Val Noghera, Italy) and an open coastal zone less impacted by Hg inputs (PR: Bay of Piran, Slovenia). A floating flux chamber coupled with real-time Hg0 analyser was used for flux estimation in parallel with DGM concentrations determination through in-field incubations. Substantial DGM production was observed at VN (range = 126.0-711.3 pg L-1) driven by both strong photoreduction and possibly dark biotic reduction, resulting in higher values in spring and summer and comparable concentrations throughout both day and night. Significantly lower DGM was observed at PR (range = 21.8-183.4 pg L-1). Surprisingly, comparable Hg0 fluxes were found at the two sites (range VN = 7.43-41.17 ng m-2 h-1, PR = 0-81.49 ng m-2 h-1), likely due to enhanced gaseous exchanges at PR thanks to high water turbulence and to the strong limitation of evasion at VN by water stagnation and expected high DGM oxidation in saltwater. Slight differences between the temporal variation of DGM and fluxes indicate that Hg evasion is more controlled by factors such as water temperature and mixing conditions than DGM concentrations alone. The relative low Hg losses through volatilisation at VN (2.4-4.6% of total Hg) further confirm that static conditions in saltwater environments negatively affect the ability of this process in reducing the amount of Hg retained in the water column, therefore potentially leading to a greater availability for methylation and trophic transfer.
Collapse
Affiliation(s)
- Federico Floreani
- Department of Mathematics & Geosciences, University of Trieste, Via E. Weiss 2, 34128, Trieste, Italy; Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy.
| | - Nicolò Barago
- Department of Mathematics & Geosciences, University of Trieste, Via E. Weiss 2, 34128, Trieste, Italy
| | - Katja Klun
- Marine Biology Station, National Institute of Biology, Fornace 41, 6330, Piran, Slovenia
| | - Jadran Faganeli
- Marine Biology Station, National Institute of Biology, Fornace 41, 6330, Piran, Slovenia
| | - Stefano Covelli
- Department of Mathematics & Geosciences, University of Trieste, Via E. Weiss 2, 34128, Trieste, Italy
| |
Collapse
|
3
|
Kalinchuk VV. Gaseous elemental mercury and its evasion fluxes in the marine boundary layer of the marginal seas of the northwestern Pacific: Results from two cruises in September-December 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159711. [PMID: 36302426 DOI: 10.1016/j.scitotenv.2022.159711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
There are many questions regarding the behavior of mercury in the sea-atmosphere system of the northwestern Pacific. Continuous underway measurements of atmospheric gaseous elemental mercury (GEM) and measurements of sea-air GEM evasion fluxes were carried out in the marginal seas of northwestern Pacific from the South China Sea to the Sea of Okhotsk in fall-winter 2019. The median GEM concentration (1.1 ng/m3) was lower than both the background value and the averages previously observed in these areas. A latitudinal gradient of atmospheric GEM and GEM evasion fluxes with maximum values at southern latitudes was found. The following areas have been identified as potential source areas: the Kurill area of the Pacific Ocean Northeast China, Korean Peninsula, and the territory from the southwest coast of the Yellow Sea to the south of Indochina. Seasonal variations were observed in the Sea of Japan and East China Sea with higher GEM concentrations in winter than in fall. Our data and analysis of published data showed significant relationships between GEM evasion fluxes, latitude and sea surface temperature (SST). It seems that on a global scale, along with the GEM gradient between water and atmosphere, SST is the most significant parameter for sea-air GEM evasion fluxes.
Collapse
Affiliation(s)
- Viktor V Kalinchuk
- V.I.Il'ichev Pacific Oceanological Institute of Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
4
|
Chen L, Liu C, Yin Y, Liu G, Li Y, Cai Y. Mass Budget of Mercury (Hg) in the Seawater of Eastern China Marginal Seas: Importance of the Sediment-Water Transport Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11418-11428. [PMID: 35917221 DOI: 10.1021/acs.est.2c03261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Eastern China Marginal Seas (ECMS) have been facing a variety of environmental problems, including mercury (Hg) pollution. Although several previous studies have been focused on mass balance of Hg in the ECMS, the contribution of Hg transport at the sediment-water interface remains unclear. This study was aimed to access and quantify the importance of sediment-water transport processes in Hg cycling. Significantly positive correlations were observed between Hg concentrations in the overlying and bottom water and the diffusion rates of Hg from sediment to the water. Approximately 2-3 times higher of THg concentrations in the entire water column were observed in a winter cruise with strong waves which was supposed to strengthen the resuspension process. The mass budget of Hg in the ECMS further showed that diffusion and resuspension processes accounted for approximate 46%, 60%, and 16% of total input Hg in the BS, YS, and ECS, respectively. These results suggest that the sediment-water transport processes play an important role in Hg cycling in the ECMS. As an important "pool" of Hg in the ECMS, the transport of Hg at the sediment-water interface may affect the long-term risk assessment of Hg in these systems.
Collapse
Affiliation(s)
- Lufeng Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | | | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | | | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
5
|
Tseng CM, Chen YS, Ang SJ, Li KC, Peng HC, Gong GC. Probing the outfall-related anomalous Hg levels in the Danshuei Estuarine Coastal, Taiwan. MARINE POLLUTION BULLETIN 2022; 181:113840. [PMID: 35732090 DOI: 10.1016/j.marpolbul.2022.113840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Seasonal and spatial distributions of total mercury (THg) in the Danshuei Estuary and adjacent coastal areas near the ocean outfall of Taipei, Taiwan, have been successfully investigated from May 2003 to January 2005. We found spatio-temporal variation in THg levels in the Danshuei coastal area was the result of sources and supplies of Hg. High THg concentrations in sediments and seawater were particularly found near the effluent outfall. Average THg levels (avg.: 9-22 ng L-1) were much higher than those in surrounding coastal seawaters (avg.:1-2 ng L-1). Organic carbon contents then played vital roles in controlling water and sedimentary Hg concentrations and occurrences. Hg enrichment factor (EF) as an index of contamination status in surface sediments of the Danshuei coastal area averaged 2.0 ± 0.8 (EFs > 1), indicating an extra non-crustal source from anthropogenic loadings. It implies the Dansheui coastal environment nearby the sewer outfall is facing Hg pollution.
Collapse
Affiliation(s)
- Chun-Mao Tseng
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC.
| | - Yi-Sheng Chen
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Shin-Jing Ang
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Kuo-Chen Li
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Hao-Cheng Peng
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| |
Collapse
|
6
|
Živković I, Humphreys MP, Achterberg EP, Dumousseaud C, Woodward EMS, Bojanić N, Šolić M, Bratkič A, Kotnik J, Vahčič M, Obu Vazner K, Begu E, Fajon V, Shlyapnikov Y, Horvat M. Enhanced mercury reduction in the South Atlantic Ocean during carbon remineralization. MARINE POLLUTION BULLETIN 2022; 178:113644. [PMID: 35413504 DOI: 10.1016/j.marpolbul.2022.113644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) in seawater is subject to interconversions via (photo)chemical and (micro)biological processes that determine the extent of dissolved gaseous mercury (DGM) (re)emission and the production of monomethylmercury. We investigated Hg speciation in the South Atlantic Ocean on a GEOTRACES cruise along a 40°S section between December 2011 and January 2012 (354 samples collected at 24 stations from surface to 5250 m maximum depth). Using statistical analysis, concentrations of methylated mercury (MeHg, geometric mean 35.4 fmol L-1) were related to seawater temperature, salinity, and fluorescence. DGM concentrations (geometric mean 0.17 pmol L-1) were related to water column depth, concentrations of macronutrients and dissolved inorganic carbon (DIC). The first-ever observed linear correlation between DGM and DIC obtained from high-resolution data indicates possible DGM production by organic matter remineralization via biological or dark abiotic reactions. DGM concentrations projected from literature DIC data using the newly discovered DGM-DIC relationship agreed with published DGM observations.
Collapse
Affiliation(s)
- Igor Živković
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Matthew P Humphreys
- NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean Systems (OCS), P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Cynthia Dumousseaud
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom
| | | | - Natalia Bojanić
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
| | - Mladen Šolić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
| | - Arne Bratkič
- Chemistry Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Jože Kotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Mitja Vahčič
- Joint Research Centre, European Commission, Retieseweg 111, 2440 Geel, Belgium
| | - Kristina Obu Vazner
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Ecological Engineering Institute, Ljubljanska ulica 9, 2000 Maribor, Slovenia
| | - Ermira Begu
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Vesna Fajon
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Yaroslav Shlyapnikov
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Liu M, Zhang Q, Yu C, Yuan L, He Y, Xiao W, Zhang H, Guo J, Zhang W, Li Y, Zhang Q, Chen L, Wang X. Observation-Based Mercury Export from Rivers to Coastal Oceans in East Asia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14269-14280. [PMID: 34618428 DOI: 10.1021/acs.est.1c03755] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Globally, the consumption of coastal fish is the predominant source of human exposure to methylmercury, a potent neurotoxicant that poses health risks to humans. However, the relative importance of riverine inputs and atmospheric deposition of mercury into coastal oceans remains uncertain owing to a lack of riverine mercury observations. Here, we present comprehensive seasonal observations of riverine mercury and methylmercury loads, including dissolved and particulate phases, to East Asia's coastal oceans, which supply nearly half of the world's seafood products. We found that East Asia's rivers annually exported 95 ± 29 megagrams of mercury to adjacent seas, 3-fold greater than the corresponding atmospheric deposition. Three rivers alone accounted for 71% of East Asia's riverine mercury exports, namely: Yangtze, Yellow, and Pearl rivers. We further conducted a metadata analysis to discuss the mercury burden on seawater and found that riverine export, combined with atmospheric deposition and terrestrial nutrients, quantitatively elevated the levels of total, methylated, and dissolved gaseous mercury in seawater by an order of magnitude. Our observations support that massive amounts of riverine mercury are exported to coastal oceans on a continental scale, intensifying their spread from coastal seawater to the atmosphere, marine sediments, and open oceans. We suggest that the impact of mercury transport along the land-ocean aquatic continuum should be considered in human exposure risk assessments.
Collapse
Affiliation(s)
- Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chenghao Yu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liuliang Yuan
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Department of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong
| | - Yipeng He
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, Connecticut 06340, United States
| | - Wenjie Xiao
- Department of Ocean Science and Engineering & Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 523936 Guangzhou, China
| | - Haoran Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|