1
|
Wang L, Zhang Y, Chen S, Jin Y, Zhang B. Remediation of vanadium(V)-contaminated groundwater by the Shewanella oneidensis MR-1, Fe 2O 3, and biochar composite. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70063. [PMID: 40152150 DOI: 10.1002/wer.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Vanadium, essential for steel production and energy storage, is increasingly found in groundwater due to extensive mining and industrial activities. Its high mobility and reactivity pose significant environmental risks. This study developed an Shewanella oneidensis MR-1- Fe2O3-biochar composite to enhance vanadium bioremediation. The composite exhibited strong vanadium resistance, achieving 92.5 ± 1.48% removal of pentavalent vanadium [V(V)] at 100 mg/l with an optimal biochar/Fe₂O₃ ratio of 10:1. Its efficiency was further assessed under varying pH, organic carbon levels, and V(V) concentrations. XPS analysis confirmed the presence of tetravalent vanadium [V (IV)] and divalent iron [Fe (II)], while FTIR spectroscopy identified functional groups (-OH, C=C, C=O) within the composite. These results suggest a synergistic removal mechanism involving complexation, dissimilatory iron reduction, and microbial V(V) reduction. This study provides a promising strategy for remediating V(V)-contaminated groundwater. PRACTITIONER POINTS: A novel composite consisted of Shewanella oneidensis MR-1, Fe2O3, and biochar was synthesized Complex promoted microbial life and increased resistance towards V(V) Complexation, Fe (II) oxidation, and bioreduction collectively contributed to V(V) removal.
Collapse
Affiliation(s)
- Luyao Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| | - Yang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| | - Siming Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| | - Yiming Jin
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| |
Collapse
|
2
|
Du XY, Yu YQ, Yang J, Liu HB, Yang JY. Cytotoxicity of Vanadium(IV) and Vanadium(V) on Caco-2 Cells: The Important Influence of Vanadium Speciation. Biol Trace Elem Res 2025:10.1007/s12011-024-04506-9. [PMID: 39755851 DOI: 10.1007/s12011-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO4) and sodium orthovanadate (Na3VO4). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells. Cell viability correlated linearly with V(V) concentration, whereas it exhibited a non-monotonic dose-response curve with V(IV) concentration. Moreover, exposures to V(IV) and V(V) induced oxidative stress in Caco-2 cells. Under experimental conditions, Caco-2 cells exhibited greater uptake of V(IV) compared to V(V). Morphological experiments further substantiated the adverse effects of V(IV) on Caco-2 cells, manifested as alterations in cellular morphology and disruption of cell monolayer structure. In conclusion, these results indicate that V(IV) exerts stronger negative effects on Caco-2 cells, with a more complex mechanism of action. Altogether, studying intestinal cytotoxicity of V provides deeper insights into the potential health risks posed by oral V exposure.
Collapse
Affiliation(s)
- Xin-Yue Du
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Ya-Qi Yu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jie Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Heng-Bo Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Bian L, Chappaz A, Sanei H. Chromium, tungsten and vanadium sediment-porewater geochemistry under oxic and anoxic redox conditions: Implication for their remobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178036. [PMID: 39671940 DOI: 10.1016/j.scitotenv.2024.178036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Global chromium (Cr), tungsten (W), and vanadium (V) cycles are emerging concerns due to their toxicities to ecosystems. However, a comprehensive understanding of their geochemical reactions and controls at the sediment-water interface remains largely unknown. This knowledge gap hinders the assessment of their potential remobilization in Earth's surface environments threatened by hypoxic conditions. We collected pore water and sediment samples from the undisturbed Castle Lake, situated in the Klamath-Siskiyou Mountains of northern California, USA, to investigate the geochemical controls responsible for the fixation and release of Cr, W, and V under redox transitions from oxia to anoxia during early diagenesis. The results show that, under oxic conditions, authigenic Cr, W, and V ratios in porewater account for approximately 4.7 %, <0.1 %, and < 0.1 %, respectively, whereas their ratios display around ten times increase under anoxic conditions with average values of 62.4 % for Cr, 4.1 % for W, and 1.1 % for V. Our combined thermodynamic calculation and diagenetic analyses show that the sequestration and release of Cr, W, and V are intimately associated with Fe cycle under anoxic conditions. In contrast, under oxygenated conditions, only Cr and V geochemical behaviors are significantly affected by Fe cycle, while the adsorption of W to Fe minerals is probably inhibited by dissolved organic matter. Furthermore, we suggest that the Cr, W, and V pollution could become significant in coastal and inland water areas where redox conditions oscillate between oxia and anoxia, with intensified water deoxygenation, acidity, and eutrophication.
Collapse
Affiliation(s)
- Leibo Bian
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China; STARLAB, Dept. of Earth and Atmospheric Sciences, Central Michigan University, MI 48859, USA; Lithospheric Organic Carbon (L.O.C.) Group, Dept. of Geoscience, Aarhus University, Aarhus 8000C, Denmark
| | - Anthony Chappaz
- STARLAB, Dept. of Earth and Atmospheric Sciences, Central Michigan University, MI 48859, USA.
| | - Hamed Sanei
- Lithospheric Organic Carbon (L.O.C.) Group, Dept. of Geoscience, Aarhus University, Aarhus 8000C, Denmark
| |
Collapse
|
4
|
Fei Y, Zhang B, Zhang Q, Chen D, Cao W, Borthwick AGL. Multiple pathways of vanadate reduction and denitrification mediated by denitrifying bacterium Acidovorax sp. strain BoFeN1. WATER RESEARCH 2024; 257:121747. [PMID: 38733964 DOI: 10.1016/j.watres.2024.121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Contamination of aquifers by a combination of vanadate [V(V)] and nitrate (NO3-) is widespread nowadays. Although bioremediation of V(V)- and nitrate-contaminated environments is possible, only a limited number of functional species have been identified to date. The present study demonstrates the effectiveness of V(V) reduction and denitrification by a denitrifying bacterium Acidovorax sp. strain BoFeN1. The V(V) removal efficiency was 76.5 ± 5.41 % during 120 h incubation, with complete removal of NO3- within 48 h. Inhibitor experiments confirmed the involvement of electron transport substances and denitrifying enzymes in the bioreduction of V(V) and NO3-. Cyt c and riboflavin were important for extracellular V(V) reduction, with quinone and EPS more significant for NO3- removal. Intracellular reductive compounds including glutathione and NADH directly reduce V(V) and NO3-. Reverse transcription quantitative PCR confirmed the important roles of nirK and napA genes in regulating V(V) reduction and denitrification. Bioaugmentation by strain BoFeN1 increased V(V) and NO3- removal efficiency by 55.3 % ± 2.78 % and 42.1 % ± 1.04 % for samples from a contaminated aquifer. This study proposes new microbial resources for the bioremediation of V(V) and NO3-contaminated aquifers, and contributes to our understanding of coupled vanadium, nitrogen, and carbon biogeochemical processes.
Collapse
Affiliation(s)
- Yangmei Fei
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
| | - Qinghao Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science (CAGS), Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, PR China
| | - Alistair G L Borthwick
- St Edmund Hall, Queen's Lane, Oxford OX1 4AR, UK; School of Engineering, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK; School of Engineering, Computing and Mathematics, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
5
|
Skierszkan EK, Carey SK, Jackson SI, Fellwock M, Fraser C, Lindsay MBJ. Seasonal controls on stream metal(loid) signatures in mountainous discontinuous permafrost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167999. [PMID: 37914137 DOI: 10.1016/j.scitotenv.2023.167999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
We assess physical and chemical processes driving seasonal fluctuations in dissolved (<0.45 μm) trace metal(loid) concentrations in subarctic streams in discontinuous permafrost. Our analysis integrates multiple years of stream hydrometric and geochemical data with geochemical analyses of bedrock, permafrost, and active-layer samples. Three principal flow regimes govern stream hydrology: winter baseflow, spring freshet, and summer high flows. Metal(oid) concentrations in streams respond seasonally to these flow regimes. Baseflows are dominated by discharge of circumneutral-pH groundwater draining fractured bedrock. This discharge acts as a source of metals found as oxyanions or neutrally charged complexes, such as uranium and molybdenum. High stream flows are associated with peak concentrations of aluminium, cobalt, copper, iron, nickel, titanium, and vanadium. Concentrations of the metal cations aluminium, cobalt, copper, nickel, and titanium peak during freshet, when infiltration of snowmelt through organic-rich and moderately acidic soils favors their complexation with dissolved organic carbon. Concentrations of vanadium peak during summer high flows, likely reflecting flow through mineral soils in the active layer and involving reductive dissolution of iron(III)-(oxyhydr)oxides. The seasonal variation of arsenic concentrations is complex; at the majority of catchments it is sourced from shallow flowpaths in the active layer, but it can also be locally associated with discharge of deeper bedrock groundwater, which is spatially constrained by the presence of permafrost. Based on our analysis, we present a conceptual model that describes the flowpaths and processes governing metal(loid) release to streams in discontinuous permafrost. This model provides a framework upon which we consider changes in metal(loid) export into water resources in the context of thawing permafrost.
Collapse
Affiliation(s)
- E K Skierszkan
- Department of Geological Sciences, University of Saskatchewan, 114 Geological Sciences Place, Saskatoon S7N 5E2, Canada.
| | - S K Carey
- School of Earth, Environment & Society, McMaster University, 1280 Main Street West, Hamilton L8S 4K1, Canada
| | - S I Jackson
- Lorax Environmental Services Ltd., 2289 Burrard Street, Vancouver V6J 3H9, Canada
| | - M Fellwock
- Department of Geological Sciences, University of Saskatchewan, 114 Geological Sciences Place, Saskatoon S7N 5E2, Canada
| | - C Fraser
- Lorax Environmental Services Ltd., 2289 Burrard Street, Vancouver V6J 3H9, Canada
| | - M B J Lindsay
- Department of Geological Sciences, University of Saskatchewan, 114 Geological Sciences Place, Saskatoon S7N 5E2, Canada
| |
Collapse
|
6
|
Wang S, Zhang B, Fei Y, Liu H, Zhao Y, Guo H. Elucidating Multiple Electron-Transfer Pathways for Metavanadate Bioreduction by Actinomycetic Streptomyces microflavus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19921-19931. [PMID: 37934564 DOI: 10.1021/acs.est.3c07288] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
While microbial reduction has gained widespread recognition for efficiently remediating environments polluted by toxic metavanadate [V(V)], the pool of identified V(V)-reducing strains remains rather limited, with the vast majority belonging to bacteria and fungi. This study is among the first to confirm the V(V) reduction capability of Streptomyces microflavus, a representative member of ubiquitous actinomycetes in environment. A V(V) removal efficiency of 91.0 ± 4.35% was achieved during 12 days of operation, with a maximum specific growth rate of 0.073 d-1. V(V) was bioreduced to insoluble V(IV) precipitates. V(V) reduction took place both intracellularly and extracellularly. Electron transfer was enhanced during V(V) bioreduction with increased electron transporters. The electron-transfer pathways were revealed through transcriptomic, proteomic, and metabolomic analyses. Electrons might flow either through the respiratory chain to reduce intracellular V(V) or to cytochrome c on the outer membrane for extracellular V(V) reduction. Soluble riboflavin and quinone also possibly mediated extracellular V(V) reduction. Glutathione might deliver electrons for intracellular V(V) reduction. Bioaugmentation of the aquifer sediment with S. microflavus accelerated V(V) reduction. The strain could successfully colonize the sediment and foster positive correlations with indigenous microorganisms. This study offers new microbial resources for V(V) bioremediation and improve the understanding of the involved molecular mechanisms.
Collapse
Affiliation(s)
- Shixiang Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yangmei Fei
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huan Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yi Zhao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| |
Collapse
|
7
|
Zhang B, Zhang H, He J, Zhou S, Dong H, Rinklebe J, Ok YS. Vanadium in the Environment: Biogeochemistry and Bioremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14770-14786. [PMID: 37695611 DOI: 10.1021/acs.est.3c04508] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Vanadium(V) is a highly toxic multivalent, redox-sensitive element. It is widely distributed in the environment and employed in various industrial applications. Interactions between V and (micro)organisms have recently garnered considerable attention. This Review discusses the biogeochemical cycling of V and its corresponding bioremediation strategies. Anthropogenic activities have resulted in elevated environmental V concentrations compared to natural emissions. The global distributions of V in the atmosphere, soils, water bodies, and sediments are outlined here, with notable prevalence in Europe. Soluble V(V) predominantly exists in the environment and exhibits high mobility and chemical reactivity. The transport of V within environmental media and across food chains is also discussed. Microbially mediated V transformation is evaluated to shed light on the primary mechanisms underlying microbial V(V) reduction, namely electron transfer and enzymatic catalysis. Additionally, this Review highlights bioremediation strategies by exploring their geochemical influences and technical implementation methods. The identified knowledge gaps include the particulate speciation of V and its associated environmental behaviors as well as the biogeochemical processes of V in marine environments. Finally, challenges for future research are reported, including the screening of V hyperaccumulators and V(V)-reducing microbes and field tests for bioremediation approaches.
Collapse
Affiliation(s)
- Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Han Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
- International ESG Association (IESGA), Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Indraratne SP, Attanayake CP, Kumaragamage D, Amarawansha G, Goltz DM, Applin DM. Mobility of arsenic and vanadium in waterlogged calcareous soils due to addition of zeolite and manganese oxide amendments. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:380-392. [PMID: 36647899 DOI: 10.1002/jeq2.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Addition of manganese(IV) oxides (MnO2 ) and zeolite can affect the mobility of As and V in soils due to geochemical changes that have not been studied well in calcareous, flooded soils. This study evaluated the mobility of As and V in flooded soils surface-amended with MnO2 or zeolite. A simulated summer flooding study was conducted for 8 weeks using intact soil columns from four calcareous soils. Redox potential was measured in soils, whereas pH, major cations, and As and V concentrations were measured biweekly in pore water and floodwater. Aqueous As and V species were modeled at 0, 4, and 8 weeks after flooding (WAF) using Visual MINTEQ modeling software with input parameters of redox potential, temperature, pH, total alkalinity, and concentrations of major cations and anions. Aqueous As concentrations were below the critical thresholds (<100 μg L-1 ), whereas aqueous V concentrations exceeded the threshold for sensitive aquatic species (2-80 μg L-1 ). MnO2 -amended soils were reduced to sub-oxic levels, whereas zeolite-amended and unamended soils were reduced to anoxic levels by 8 WAF. MnO2 decreased As and V mobilities, whereas zeolite had no effect on As but increased V mobility, compared to unamended soils. Arsenic mobility increased under anoxic conditions, and V mobility increased under oxic and alkaline pH conditions. Conversion of As(V) to As(III) and V(V) to V(IV) was regulated by MnO2 in flooded soils. MnO2 can be used as an amendment in immobilizing As and V, whereas the use of zeolite in flooded calcareous soils should be done cautiously.
Collapse
Affiliation(s)
- Srimathie P Indraratne
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Chammi P Attanayake
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Darshani Kumaragamage
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Geethani Amarawansha
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Douglas M Goltz
- Department of Chemistry, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Daniel M Applin
- Department of Geography, The University of Winnipeg, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
He J, Zhang B, Wang Y, Chen S, Dong H. Vanadate Bio-Detoxification Driven by Pyrrhotite with Secondary Mineral Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1807-1818. [PMID: 36598371 DOI: 10.1021/acs.est.2c06184] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vanadium(V) is a redox-sensitive heavy-metal contaminant whose environmental mobility is strongly influenced by pyrrhotite, a widely distributed iron sulfide mineral. However, relatively little is known about microbially mediated vanadate [V(V)] reduction characteristics driven by pyrrhotite and concomitant mineral dynamics in this process. This study demonstrated efficient V(V) bioreduction during 210 d of operation, with a lifespan about 10 times longer than abiotic control, especially in a stable period when the V(V) removal efficiency reached 44.1 ± 13.8%. Pyrrhotite oxidation coupled to V(V) reduction could be achieved by an enriched single autotroph (e.g., Thiobacillus and Thermomonas) independently. Autotrophs (e.g., Sulfurifustis) gained energy from pyrrhotite oxidation to synthesize organic intermediates, which were utilized by the heterotrophic V(V) reducing bacteria such as Anaerolinea, Bacillus, and Pseudomonas to sustain V(V) reduction. V(V) was reduced to insoluble tetravalent V, while pyrrhotite oxidation mainly produced Fe(III) and SO42-. Secondary minerals including mackinawite (FeS) and greigite (Fe3S4) were produced synchronously, resulting from further transformations of Fe(III) and SO42- by sulfate reducing bacteria (e.g., Desulfatiglans) and magnetotactic bacteria (e.g., Nitrospira). This study provides new insights into the biogeochemical behavior of V under pyrrhotite effects and reveals the previously overlooked mineralogical dynamics in V(V) reduction bioprocesses driven by Fe(II)-bearing minerals.
Collapse
Affiliation(s)
- Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Ya'nan Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Siming Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science and Resources, China University of Geosciences Beijing, Beijing 100083, P. R. China
| |
Collapse
|
10
|
Li H, Huang Y, Luo Q, Liu J. The simultaneous reduction and adsorption for V(V) and Cr(VI) anionic species in aqueous solution by polyethyleneimine cross-linked titanate nanotubes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Abernathy M, Schaefer MV, Ramirez R, Garniwan A, Lee I, Zaera F, Polizzotto ML, Ying SC. Vanadate Retention by Iron and Manganese Oxides. ACS EARTH & SPACE CHEMISTRY 2022; 6:2041-2052. [PMID: 36016759 PMCID: PMC9393891 DOI: 10.1021/acsearthspacechem.2c00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic emissions of vanadium (V) into terrestrial and aquatic surface systems now match those of geogenic processes, and yet, the geochemistry of vanadium is poorly described in comparison to other comparable contaminants like arsenic. In oxic systems, V is present as an oxyanion with a +5 formal charge on the V center, typically described as H x VO4 (3-x)-, but also here as V(V). Iron (Fe) and manganese (Mn) (oxy)hydroxides represent key mineral phases in the cycling of V(V) at the solid-solution interface, and yet, fundamental descriptions of these surface-processes are not available. Here, we utilize extended X-ray absorption fine structure (EXAFS) and thermodynamic calculations to compare the surface complexation of V(V) by the common Fe and Mn mineral phases ferrihydrite, hematite, goethite, birnessite, and pyrolusite at pH 7. Inner-sphere V(V) complexes were detected on all phases, with mononuclear V(V) species dominating the adsorbed species distribution. Our results demonstrate that V(V) adsorption is exergonic for a variety of surfaces with differing amounts of terminal -OH groups and metal-O bond saturations, implicating the conjunctive role of varied mineral surfaces in controlling the mobility and fate of V(V) in terrestrial and aquatic systems.
Collapse
Affiliation(s)
- Macon
J. Abernathy
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael V. Schaefer
- Department
of Earth and Environmental Science, New
Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Roxana Ramirez
- Environmental
Sciences Department, University of California-Riverside, Riverside, California 92521, United States
| | - Abdi Garniwan
- Environmental
Sciences Department, University of California-Riverside, Riverside, California 92521, United States
| | - Ilkeun Lee
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Francisco Zaera
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Matthew L. Polizzotto
- Department
of Earth Sciences, University of Oregon, Eugene, Oregon 97403, United States
| | - Samantha C. Ying
- Environmental
Sciences Department, University of California-Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
12
|
Abernathy MJ, Schaefer MV, Vessey CJ, Liu H, Ying SC. Oxidation of V(IV) by Birnessite: Kinetics and Surface Complexation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11703-11712. [PMID: 34488349 PMCID: PMC11938697 DOI: 10.1021/acs.est.1c02464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vanadium is a redox-active metal that has been added to the EPA's Contaminant Candidate List with a notification level of 50 μg L-1 due to mounting evidence that VV exposure can lead to adverse health outcomes. Groundwater V concentration exceeds the notification level in many locations, yet geochemical controls on its mobility are poorly understood. Here, we examined the redox interaction between VIV and birnessite (MnO2), a well-characterized oxidant and a scavenger of many trace metals. In our findings, birnessite quickly oxidized sparingly soluble VIV species such as häggite [V2O3(OH)2] into highly mobile and toxic vanadate (HnVO4(3-n)-) in continuously stirred batch reactors under neutral pH conditions. Synchrotron X-ray absorption spectroscopic (XAS) analysis of in situ and ex situ experiments showed that oxidation of VIV occurs in two stages, which are both rapid relative to the measured dissolution rate of the VIV solid. Concomitantly, the reduction of birnessite during VIV oxidation generated soluble MnII, which led to the formation of the MnIII oxyhydroxide feitknechtite (β-MnOOH) upon back-reaction with birnessite. XAS analysis confirmed a bidentate-mononuclear edge-sharing complex formed between VV and birnessite, although retention of VV was minimal relative to the aqueous quantities generated. In summary, we demonstrate that Mn oxides are effective oxidants of VIV in the environment with the potential to increase dissolved V concentrations in aquifers subject to redox oscillations.
Collapse
Affiliation(s)
- Macon J Abernathy
- Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Michael V Schaefer
- Department of Environmental Science, University of California-Riverside, Riverside, California 92521, United States
- Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Colton J Vessey
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Haizhou Liu
- Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
| | - Samantha C Ying
- Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
- Department of Environmental Science, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
13
|
Abstract
Metal sulphides constitute cheap, naturally abundant, and environmentally friendly materials for energy storage applications and chemistry. In particular, iron (II) monosulphide (FeS, mackinawite) is a material of relevance in theories of the origin of life and for heterogenous catalytic applications in the conversion of carbon dioxide (CO2) towards small organic molecules. In natural mackinawite, Fe is often substituted by other metals, however, little is known about how such substitutions alter the chemical activity of the material. Herein, the effect of Ni doping on the structural, electronic, and catalytic properties of FeS surfaces is explored via dispersion-corrected density functional theory simulations. Substitutional Ni dopants, introduced on the Fe site, are readily incorporated into the pristine matrix of FeS, in good agreement with experimental measurements. The CO2 molecule was found to undergo deactivation and partial desorption from the doped surfaces, mainly at the Ni site when compared to undoped FeS surfaces. This behaviour is attributed to the energetically lowered d-band centre position of the doped surface, as a consequence of the increased number of paired electrons originating from the Ni dopant. The reaction and activation energies of CO2 dissociation atop the doped surfaces were found to be increased when compared to pristine surfaces, thus helping to further elucidate the role Ni could have played in the reactivity of FeS. It is expected that Ni doping in other Fe-sulphides may have a similar effect, limiting the catalytic activity of these phases when this dopant is present at their surfaces.
Collapse
|
14
|
Abstract
Fe(II)-bearing minerals (magnetite, siderite, green rust, etc.) are common products of microbial Fe(III) reduction, and they provide a reservoir of reducing capacity in many subsurface environments that may contribute to the reduction of redox active elements such as vanadium; which can exist as V(V), V(IV), and V(III) under conditions typical of near-surface aquatic and terrestrial environments. To better understand the redox behavior of V under ferrugenic/sulfidogenic conditions, we examined the interactions of V(V) (1 mM) in aqueous suspensions containing 50 mM Fe(II) as magnetite, siderite, vivianite, green rust, or mackinawite, using X-ray absorption spectroscopy at the V K-edge to determine the valence state of V. Two additional systems of increased complexity were also examined, containing either 60 mM Fe(II) as biogenic green rust (BioGR) or 40 mM Fe(II) as a mixture of biogenic siderite, mackinawite, and magnetite (BioSMM). Within 48 h, total solution-phase V concentrations decreased to <20 µM in all but the vivianite and the biogenic BiSMM systems; however, >99.5% of V was removed from solution in the BioSMM and vivianite systems within 7 and 20 months, respectively. The most rapid reduction was observed in the mackinawite system, where V(V) was reduced to V(III) within 48 h. Complete reduction of V(V) to V(III) occurred within 4 months in the green rust system, 7 months in the siderite system, and 20 months in the BioGR system. Vanadium(V) was only partially reduced in the magnetite, vivianite, and BioSMM systems, where within 7 months the average V valence state stabilized at 3.7, 3.7, and 3.4, respectively. The reduction of V(V) in soils and sediments has been largely attributed to microbial activity, presumably involving direct enzymatic reduction of V(V); however the reduction of V(V) by Fe(II)-bearing minerals suggests that abiotic or coupled biotic–abiotic processes may also play a critical role in V redox chemistry, and thus need to be considered in modeling the global biogeochemical cycling of V.
Collapse
|
15
|
He C, Zhang B, Lu J, Qiu R. A newly discovered function of nitrate reductase in chemoautotrophic vanadate transformation by natural mackinawite in aquifer. WATER RESEARCH 2021; 189:116664. [PMID: 33249309 DOI: 10.1016/j.watres.2020.116664] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Mackinawite (FeS), a widely-distributed natural reducing mineral, can donate electron for various (bio)processes. However, little is known about mackinawite-driven chemoautotrophic bioreduction of toxic vanadate [V(V)] in aquifer. This study demonstrates that V(V) is successfully bioreduced by mackinawite under anaerobic condition via 150-d operation of constructed aquifer. Complete V(V) removal was achieved at the initial concentration of 10 mg/L and flow rate of 0.125 mL/min. Fluctuant hydrochemistry and hydrodynamics affected V(V) removal performance. Biotic activity was identified as the major contribution to V(V) transformation (76.4 ± 1.01%). Chemoautotrophic genera (e.g., Thiobacillus) could oxidize FeS coupled to direct V(V) reduction independently. Heterotrophic V(V) reducers (e.g., Pseudomonas and Spirochaeta) could also achieve V(V) detoxification by utilizing metabolic intermediates synthesized by autotrophic Fe(II) oxidizers (e.g., Thiobacillus) and S(-II) oxidizing genera (e.g., Sulfuricurvum). Gene abundance and enzymatic activity tests confirmed that nitrate reductase gene napA functioned crucially in chemoautotrophic V(V) reduction by Fe(II) and S(-II) donating electron. V(V) was reduced to insoluble V(IV) while elements in mackinawite were oxidized to Fe(III) and SO42-. This study reveals the coupling of iron, sulfur and vanadium in biogeochemical cycling, and offers a promising strategy for remediation of V(V)-polluted aquifer.
Collapse
Affiliation(s)
- Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Jianping Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Rui Qiu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
16
|
Sun X, Qiu L, Kolton M, Häggblom M, Xu R, Kong T, Gao P, Li B, Jiang C, Sun W. V V Reduction by Polaromonas spp. in Vanadium Mine Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14442-14454. [PMID: 33125214 DOI: 10.1021/acs.est.0c05328] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vanadium (V) is an important metal with critical industrial and medical applications. Elevated V contamination, however, can be a threat to the environment and human health. Microorganisms can reduce the more toxic and mobile VV to the less toxic and immobile VIV, which could be a detoxification and energy metabolism strategy adopted by V-reducing bacteria (VRB). The limited understanding of microbial responses to V contamination and the mechanisms for VV reduction, however, hamper our capability to attenuate V contamination. This study focused on determining the microbial responses to elevated V concentration and the mechanisms of VV reduction in V tailings. The bacterial communities were characterized and compared between the V tailings and the less contaminated adjacent mineral soils. Further, VV-reducing enrichments indicated that bacteria associated with Polaromonas, a genus belonging to the family Burkholderiaceae, were potentially responsible for VV reduction. Retrieved metagenome-assembled genomes (MAGs) suggested that the Polaromonas spp. encoded genes (cymA, omcA, and narG) were responsible for VV reduction. Additionally, Polaromonas spp. was metabolically versatile and could use both organic and inorganic electron donors. The metabolic versatility of Polaromonas spp. may be important for its ability to flourish in the V tailings.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Lang Qiu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Max Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| |
Collapse
|