1
|
Wu Y, Zhang L, Dodd SW, Schöneich C. Metal-induced oxidation of polysorbate 80 in the presence of hydrogen peroxide: mechanistic studies. J Pharm Sci 2025; 114:103799. [PMID: 40258401 DOI: 10.1016/j.xphs.2025.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Polysorbate 80 (PS80) is a commonly used surfactant in protein formulations and is highly susceptible to oxidative degradation. Here, we present mechanistic studies on metal-induced PS80 oxidation in the presence of hydrogen peroxide in acetate buffer. A total of 12 pharmaceutically relevant metal ions were tested, including Mn(II), Cu(II), Cu(I), Mg(II), Zn(II), Ca(II), Al(III), Pb(II), Sn(II), Co(II), Fe(III), Ni(II) and W(IV). The overall PS80 degradation was monitored by a fluorescence micelle assay (FMA) and the oxidation products were characterized by mass spectrometry (MS). Three metal ions, Cu(II), Co(II), and Fe(III), induced significant PS80 degradation and solutions containing these ions were subjected to further mechanistic studies. The extent of oxidation was dependent on both metal and peroxide concentrations. PS80 degradation catalyzed by Cu(II) and Co(II) was completely prevented by 250 µM and 500 µM ethylenediaminetetraacetic acid (EDTA), but only partially inhibited when catalyzed by Fe(III). The role for superoxide radical anion in the initiation of PS80 oxidation was examined by addition of Cu,Zn superoxide dismutase (SOD). The potential of the metal ions to generate free radicals was monitored with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), followed by LC-MS analysis. Degradation mechanisms, particularly the initiation of the oxidation chain reactions, are discussed for each metal.
Collapse
Affiliation(s)
- Yaqi Wu
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, United States
| | - Lin Zhang
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Steve W Dodd
- Bioproduct Research & Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, United States.
| |
Collapse
|
2
|
Wei X, Jiao P, Jiang Z, Wang C, Liu Q, Li Y, Liu S, Guan S, Ma Y. Study on Differential Metabolite Active Ingredients in Maize Roots Based on Network Pharmacology and Metabolomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6646-6658. [PMID: 40064553 DOI: 10.1021/acs.jafc.4c08012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Maize is a globally important crop. Roots are the main part of maize and are mainly used for soil improvement and for maintaining crop growth as agricultural waste. Their application scope is relatively small. It is very important to analyze the components in maize roots in order to increase their resource utilization and reduce the burden of waste disposal. Metabolomics shows that maize roots contain various bioactive components, such as alkaloids, phenolic acids, flavonoids, etc. Therefore, this study explores the potential pharmacological effects of maize root metabolites under drought stress from the perspective of metabolomics combined with network pharmacology. The crude extraction of betaine, a metabolite in maize roots under drought stress, was conducted, and the anti-inflammatory and antioxidant effects of the crude extract were evaluated. The experimental results of DPPH, Fenton, etc. indicate that the crude extract of betaine from maize roots has certain anti-inflammatory and antioxidant effects, which provides a basis for its potential applications in the fields of medicine and food. The research on extracting medicinal active substances such as betaine from maize roots as agricultural waste not only has economic and environmental advantages but also has important significance in promoting technological progress and public health.
Collapse
Affiliation(s)
- Xiaotong Wei
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zhenzhong Jiang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Chunlai Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qiang Liu
- Changchun Granulofeng Seed Research Institute, Changchun 130118, China
| | - Yuexuan Li
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Shao X, Fan T, Yan C, Cao X, Wang C, Wang X, Guan P, Fan L, Hu X. Multifunctional selenium-doped carbon dots for modulating Alzheimer's disease related toxic ions, inhibiting amyloid aggregation and scavenging reactive oxygen species. Int J Biol Macromol 2025; 293:139333. [PMID: 39743062 DOI: 10.1016/j.ijbiomac.2024.139333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
β-Amyloid (Aβ) protein deposition, oxidative stress, and metal ion imbalance are established pathological features of Alzheimer's disease (AD), highlighting the imperative to efficiently reduce Aβ aggregates formation, alleviate oxidative stress, and chelate metal ions. Existing research indicates the necessity of developing multifunctional nanomaterials to facilitate multi-target therapy. In this work, we designed and prepared multifunctional selenium-doped carbonized polymer dots (SeCDs), and examined the multifunctionality at inhibiting Aβ, cleaning reactive oxygen species (ROS), and modulating copper ions. SeCDs exhibit efficient clearance of active hydroxyl radicals and superoxide anion radicals. In addition, SeCDs can chelate Cu ions, therefore reducing the cytotoxicity linked to the Aβ-Cu complex. More importantly, SeCDs can effectively reduce the level of intracellular reactive oxygen species. This study demonstrates the potential of carbon dots as a multifunctional β-sheet disruptor, while multifunctional SeCDs offer promising avenues for further research in the multi-target treatment of Alzheimer's disease. Meanwhile, this strategy provides a new perspective on the development of zero-dimensional carbon materials in Alzheimer's therapy.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Tiange Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, Shaanxi 712082, China.
| | - Xiuyun Cao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, 169 Changle West Road, Xi'an 710032, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
4
|
Zhang X, Zhang X, Li H, Ao X, Sun W, Li Z. Reactive Oxygen Species Generated in Situ During Carbamazepine Photodegradation at 222 nm Far-UVC: Unexpected Role of H 2O Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19070-19079. [PMID: 39382092 DOI: 10.1021/acs.est.4c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
When 222 nm far-UVC is used to drive AOPs, photolysis emerges as a critical pathway for the degradation of numerous organic micropollutants (OMPs). However, the photodegradation mechanisms of the asymmetrically polarized OMPs at 222 nm remain unclear, potentially posing a knowledge barrier to the applications of far-UVC. This study selected carbamazepine (CBZ), a prevalent aquatic antiepileptic drug that degrades negligibly at 254 nm, to investigate its photodegradation mechanisms at 222 nm. Accelerated CBZ treatment by 222 nm far-UVC was mainly attributed to in situ ROS generation via self-sensitized photodegradation of CBZ. By quenching experiments and EPR tests, •OH radicals were identified as the major contributor to the CBZ photodegradation, whereas O2•- played a minor role. By deoxygenation and solvent exchange experiments, the H2O molecules were demonstrated to play a crucial role in deactivating the excited singlet state of CBZ (1CBZ*) at 222 nm: generating •OH radicals via electron transfer interactions with 1CBZ*. In addition, 1CBZ* could also undergo a photoionization process. The transformation products and pathways of CBZ at 222 nm were proposed, and the toxicities of CBZ's products were predicted. These findings provide valuable insights into OMPs' photolysis with 222 nm far-UVC, revealing more mechanistic details for far-UVC-driven systems.
Collapse
Affiliation(s)
- Xi Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xintong Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Haoxin Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
5
|
Kye H, Nam SH, Kim E, Koo J, Shin Y, Lee J, Hwang TM. Application of tryptophan-like fluorescence index to quantify the trace organic compounds removal in wastewater ozonation. CHEMOSPHERE 2024; 363:142862. [PMID: 39029713 DOI: 10.1016/j.chemosphere.2024.142862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The effectiveness of ozonation, one of the techniques known for destroying organic contaminants from wastewater, depends on the composition of the wastewater matrix. The required ozone (O3) dose is determined based on the target compounds during ozonation. Hydroxyl radicals are quantified using a probe compound. The para-chlorobenzoic acid (pCBA) is typically used as a probe compound to measure hydroxyl radicals. However, real-time measurement is impossible, as the analysis process consumes time and resources. This study aimed to evaluate the spectroscopic characteristics of various organic substances in wastewater ozonation through fluorescence excitation-emission matrix and parallel factor analysis. The study also demonstrated that real-time analyzable tryptophan-like fluorescence (TLF) can be used as a hydroxyl radical index. Importantly, the correlation between para-chlorobenzoic acid and TLF was derived, and the results showed a high correlation (R2 = 0.91), confirming the reliability of our findings. Seven trace organic compounds, classified based on their reactivity with O3 and hydroxyl radicals, were selected as target compounds and treated with O3. The TLF index was used as a model factor for the removal rate of the target compounds. The experimental and model values matched when the O3 dose was below 1.0 g O3/g DOC (RMSE: 0.0445-0.0895).
Collapse
Affiliation(s)
- Homin Kye
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Sook-Hyun Nam
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Eunju Kim
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Jaewuk Koo
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Yonghyun Shin
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Juwon Lee
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Chemical and Biochemical Engineering, Western University London, Ontario, Canada
| | - Tae-Mun Hwang
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea.
| |
Collapse
|
6
|
Gao S, Wang X, Wang X, Chen X, Liang S, Zhou Z, Xu S, Fang Y, Gao J, Gu C. Role of low-molecular-weight organic compounds on photochemical formation of Mn(III)-ligands in aqueous systems: Implications for BPA removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172468. [PMID: 38615762 DOI: 10.1016/j.scitotenv.2024.172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/23/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Aqueous trivalent manganese [Mn(III)], an important reactive intermediate, is ubiquitous in natural surface water containing humic acid (HA). However, the effect of low-molecular-weight organic acids (LMWOAs) on the formation, stability and reactivity of Mn(III) intermediate is still unknown. In this study, six LMWOAs, including oxalic acid (Oxa), salicylic acid (Sal), catechol (Cat), caffeic acid (Caf), gallic acid (Gal) and ethylene diamine tetraacetic acid (EDTA), were selected to investigate the effects of LMWOAs on the degradation of BPA induced by in situ formed Mn(III)-L in the HA/Mn(II) system under light irradiation. The chromophoric constituents of HA could absorb light radiation and generate superoxide radical to promote the oxidation of Mn(II) to form Mn(III), which was further involved in transformation of BPA. Our results implied that different LMWOAs did significantly impact on Mn(III) production and its degradation of BPA due to their different functional group. EDTA, Oxa and Sal extensively increased the Mn(III) concentration from 50 to 100 μM compared to the system without LMWOAs, following the order of EDTA > Oxa > Sal, and also enhanced the degradation of BPA with the similar patterns. In contrast, Cat, Caf and Gal had an inhibitory effect on the formation of Mn(III), which is likely because they consumed the superoxide radicals generated from irradiated HA, resulting in the inhibition of Mn(II) oxidation and further BPA removal. The product identification and theoretical calculation indicated that a single electron transfer process occurred between Mn(III)-L and BPA, forming BPA radicals and subsequent self-coupling products. Our results demonstrated that the LMWOAs with different structures could alter the cycling process of Mn via complexation and redox reactions, which would provide new implications for the removal of organic pollutants in surface water.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinghao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiru Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Sijia Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ziyan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuxia Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yanfen Fang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Juan Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Hübner U, Spahr S, Lutze H, Wieland A, Rüting S, Gernjak W, Wenk J. Advanced oxidation processes for water and wastewater treatment - Guidance for systematic future research. Heliyon 2024; 10:e30402. [PMID: 38726145 PMCID: PMC11079112 DOI: 10.1016/j.heliyon.2024.e30402] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced oxidation processes (AOPs) are a growing research field with a large variety of different process variants and materials being tested at laboratory scale. However, despite extensive research in recent years and decades, many variants have not been transitioned to pilot- and full-scale operation. One major concern are the inconsistent experimental approaches applied across different studies that impede identification, comparison, and upscaling of the most promising AOPs. The aim of this tutorial review is to streamline future studies on the development of new solutions and materials for advanced oxidation by providing guidance for comparable and scalable oxidation experiments. We discuss recent developments in catalytic, ozone-based, radiation-driven, and other AOPs, and outline future perspectives and research needs. Since standardized experimental procedures are not available for most AOPs, we propose basic rules and key parameters for lab-scale evaluation of new AOPs including selection of suitable probe compounds and scavengers for the measurement of (major) reactive species. A two-phase approach to assess new AOP concepts is proposed, consisting of (i) basic research and proof-of-concept (technology readiness levels (TRL) 1-3), followed by (ii) process development in the intended water matrix including a cost comparison with an established process, applying comparable and scalable parameters such as UV fluence or ozone consumption (TRL 3-5). Subsequent demonstration of the new process (TRL 6-7) is briefly discussed, too. Finally, we highlight important research tools for a thorough mechanistic process evaluation and risk assessment including screening for transformation products that should be based on chemical logic and combined with complementary tools (mass balance, chemical calculations).
Collapse
Affiliation(s)
- Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Stephanie Spahr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Holger Lutze
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| | - Arne Wieland
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Steffen Rüting
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jannis Wenk
- University of Bath, Department of Chemical Engineering and Water Innovation & Research Centre (WIRC@Bath), Bath, BA2 7AY, United Kingdom
| |
Collapse
|
8
|
Moore N, Wang C, Andrews S, Hofmann R. On the increasing competitiveness of UV/Cl to UV/H 2O 2 advanced oxidation as the organic carbon concentration increases. WATER RESEARCH 2023; 242:120227. [PMID: 37354844 DOI: 10.1016/j.watres.2023.120227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
UV/Cl and UV/H2O2 are advanced oxidation processes (AOPs) used for drinking water treatment and water reuse. This work explored the hypothesis that UV/Cl becomes more competitive to UV/H2O2 at neutral-to-high pH as the concentration of total organic carbon (TOC) increases. Lab experiments and kinetic modelling were used to compare initial pseudo first-order contaminant decay rate coefficients between the AOPs at various pH and TOC conditions. The relative effect of increasing TOC concentrations on UV/Cl vs. UV/H2O2 depended on the pH, contaminant, and organic matter reactivity towards radicals. For example, while the reaction rate coefficients during both AOPs generally decreased with increasing TOC, the UV/Cl reaction rate coefficients for the solely •OH-reactive sucralose decreased 41-138% less than the UV/H2O2 coefficients as the TOC concentration was increased from 0 to 5 mg-C L-1. However, UV/Cl was more affected than UV/H2O2 when targeting caffeine (a contaminant reactive to chlorine radicals). The data were used to define TOC-pH conditions for which either AOP would be more energy-efficient, under a set of standard conditions. The results suggest that UV/Cl may be competitive to UV/H2O2 under a wider range of treatment scenarios than has been conventionally thought based on tests in pure water.
Collapse
Affiliation(s)
- Nathan Moore
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada.
| | - Chengjin Wang
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada; Department of Civil Engineering, University of Manitoba, 15 Gillson Street, Winnipeg, Manitoba R3T 5V6, Canada
| | - Susan Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | - Ron Hofmann
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| |
Collapse
|
9
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
10
|
Huang Y, Qiang Z, Sun Z, Li M. Micropollutant degradation by UV/H 2O 2 in drinking water: Facilitated prediction through combination of model simulation and portable measurement. WATER RESEARCH 2022; 221:118794. [PMID: 35785695 DOI: 10.1016/j.watres.2022.118794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Ultraviolet-based advanced oxidation processes (UV-AOPs) are highly effective for micropollutant degradation. However, it is considerably time and labor consuming to evaluate the practical performance of UV-AOPs. This study developed a novel method, through combination of model simulation with portable measurement (MS-PM), to facilitate prediction of the photon fluence-based rate constant of micropollutant degradation (k'p,MP) by UV/H2O2, a commercially available UV-AOP. Model simulation was performed with photochemical, hydroxyl radical (HO•) concentration steady-state approximation, and quantitative structure-activity relationship models; and portable measurement was conducted on a mini-fluidic photoreaction system to quantify the HO• scavenging capacity (HRSC) of a water matrix. The method was established and further verified experimentally in seven test waters by taking sulfamethazine (SMN) as a model micropollutant. A lower k'p,SMN was predicted in a water matrix with a higher HRSC, for example, 57.5 and 347.8 m2 einstein-1 in the raw water (HRSC = 5.91 × 105 s-1) and sand-filtered effluent (HRSC = 5.25 × 104 s-1) of a drinking water treatment plant at an H2O2 dose of 25 mg L-1, respectively. The predicted values agreed generally well with the experimental ones. The MS-PM method has advantages of high efficiency and convenience, low cost, and acceptable accuracy, which will significantly facilitate the design and field assessment of UV-AOPs for micropollutant removal from drinking water.
Collapse
Affiliation(s)
- Yanyan Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, 19 Yu-quan Road, Beijing 100049, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, 19 Yu-quan Road, Beijing 100049, China.
| | - Zhe Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, 19 Yu-quan Road, Beijing 100049, China.
| |
Collapse
|
11
|
Li F, Wang C, Zhang Y, He X, Zhang C, Sha F. Accurate Concentration Measurement Model of Multicomponent Mixed Gases during a Mine Disaster Period. ACS OMEGA 2022; 7:25443-25457. [PMID: 35910180 PMCID: PMC9330090 DOI: 10.1021/acsomega.2c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
A variety of gaseous products are formed when mine fires and coal and gas outbursts occur in mines. On the one hand, these gas products affect the normal production of mines and the occupational health of miners; on the other hand, the gaseous products can also provide much important information to prevent mine disasters. Thus, the rapid and accurate determination of the component content of multicomponent mixed gases is of great significance. However, the distortion of gas chromatography measurement results, which deviate from the true values, has a serious impact on gas composition determination in mines. To reduce the influence of distortion, an Agilent 490 portable gas chromatograph is used to measure the component content of 11 groups of standard multicomponent mixed gases. It is found that the error rate of the measured result is highly related to the concentration of the selected reference component and the component to be measured. Besides, the key point of each gas concentration is determined according to the scatter diagram of the error rate. Each gas is divided into a high and a low concentration group by the key points, and each gas is selected as the reference component to measure the corresponding component concentration in other gases with multiple-point external standards. Researchers have used the least-squares method to fit univariate linear regression analysis between the measured values and true values of mixed gases. Then, the optimal analysis function and the optimal reference component concentration of each gas can be determined by comparing the regression analysis parameters. Finally, it is found that the error rate of measured values corrected by the optimal analysis function is significantly reduced. It is proved that this method can effectively alleviate the measurement results' distortion, which solves the problem of gas composition determination in underground areas.
Collapse
Affiliation(s)
- Feng Li
- School
of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), No. 11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chenchen Wang
- School
of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), No. 11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yue Zhang
- CNOOC
Energy Development Co., Ltd., Beijing 100028, China
| | - Xiaoxuan He
- School
of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), No. 11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chenyu Zhang
- School
of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), No. 11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Fangfei Sha
- Xuchang
Cigarette Factory of China Tobacco Tenants Industrial Co., Ltd., Xuchang 461001, Henan, China
| |
Collapse
|
12
|
Min X, Zhang T, Xie M, Zhang K, Chai L, Lin Z, Ding C, Shi Y. Functionalized Lignin for Fabrication of FeCoNi Nanoparticles Enriched 3D Carbon Hybrid: From Waste to a High Performance Oxygen Evolution Reaction Catalyst. ChemElectroChem 2022. [DOI: 10.1002/celc.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoye Min
- Central South University School of Metallurgy and Environment CHINA
| | - Tingzheng Zhang
- Central South University School of Metallurgy and Environment CHINA
| | - Mingbo Xie
- Central South University School of Metallurgy and Environment CHINA
| | - Kejing Zhang
- Central South University School of Metallurgy and Environment CHINA
| | - Liyuan Chai
- Central South University School of Metallurgy and Environment CHINA
| | - Zhang Lin
- Central South University School of Metallurgy and Environment CHINA
| | - Chunlian Ding
- Central South University School of Metallurgy and Environment CHINA
| | - Yan Shi
- Central South University School of Metallurgy and Environment No.932, Lushannan Road, Yuelu District 410083 Changsha CHINA
| |
Collapse
|
13
|
Wang H, Hasani M, Wu F, Warriner K. Pre-oxidation of spent lettuce wash water by continuous Advanced Oxidation Process to reduce chlorine demand and cross-contamination of pathogens during post-harvest washing. Food Microbiol 2022; 103:103937. [PMID: 35082063 DOI: 10.1016/j.fm.2021.103937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/04/2022]
Abstract
A continuous Photo-Fenton Advanced-Oxidation-Process (AOP) for reducing the chlorine-demand of spent lettuce wash water was developed based on the generation of hydroxyl-radicals from the UV-C degradation of hydrogen peroxide in the presence of ferric-catalyst. It was found that an interaction between UV-C and hydrogen peroxide or ferric-catalyst concentration was associated with high hydroxyl-radical generation as determined from the oxidation of methylene blue. The optimal AOP treatment was identified as 320 mJ/cm2 UV-C dose, 9.6 mg/L H2O2, and 9 mg/L ferric-catalyst. When the treatment was applied to simulated lettuce spent wash water (6.6 g romaine lettuce per liter of distilled water containing 100 mg bentonite; pH 6.9) the chlorine demand was reduced from 150 ppm to 130 ppm. The chlorination of AOP treated water did not result in a greater log reduction of pathogens (Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella) on lettuce but did reduce cross-contamination between batches during washing. The chlorinated byproducts formed in AOP treated water exhibited higher antimicrobial activity compared to untreated controls. Although the treatment was successful in reducing cross-contamination of lettuce batches the cytotoxicity of disinfection byproducts requires to be assessed.
Collapse
Affiliation(s)
- Hongran Wang
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Mahdiyeh Hasani
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Fan Wu
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
14
|
Meng T, Sun W, Su X, Sun P. The optimal dose of oxidants in UV-based advanced oxidation processes with respect to primary radical concentrations. WATER RESEARCH 2021; 206:117738. [PMID: 34649132 DOI: 10.1016/j.watres.2021.117738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
UV-based advanced oxidation processes (AOPs) via photolysis of precursor chemical oxidants have been of interest to numerous researchers over the past several decades due to their capacity to generate highly active radical species and interesting radical chemistry. However, applications of UV-based AOPs have been commonly optimized case by case, due to the lack of theoretical investigations on process optimization, especially on oxidant doses. In this study, a simple equation for UV/H2O2 (•OH as the sole primary reactive species (PRS)) to obtain the theoretical optimal concentration (Copt-theoretical) for H2O2 was derived (Copt-theoretical=Ab·Scε·k). The equation was then validated for its accuracy in the calculation of Copt-theoretical for H2O2 in the UV/H2O2 AOP using a well-established comprehensive kinetic model. A competition kinetics method for the measurement of scavenging capacity (Sc, the unknown parameter for the simple equation) was designed, for which nitrobenzene was employed as the probe compound and tert‑butyl alcohol was introduced as the standard compound. Based on this simple equation, we calculated the Copt-theoretical of 77 environmental water samples and introduced the concept of a practical optimal oxidants dose for the UV/H2O2 AOP, while minimizing the operation costs in engineering applications. Moreover, this study mathematically proved that the simple equation obtained from UV/H2O2 could be successfully extended to other UV-based AOPs, including UV/chlorine, UV/NH2Cl, UV/S2O82-, and UV/peracetic acid. The simple equation of Copt-theoretical derived in this study may not only help to provide instructions for engineering applications, but also point out the ultimate treatment capability of each UV-based AOPs.
Collapse
Affiliation(s)
- Tan Meng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Su
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Waterworks Group Co. Ltd., Tianjin 300040, China; Tianjin Water Group Co. Ltd., Tianjin 300042, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Velasco-Rozo EA, Ballesteros-Rueda LM, Baldovino-Medrano VG. A Method for the Accurate Quantification of Gas Streams by Online Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2135-2143. [PMID: 34181404 DOI: 10.1021/jasms.1c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The accuracy of the online quantification of gaseous effluents from catalytic reactors by mass spectrometry (MS) is rarely addressed by researchers despite the extensive use of the technique. MS results are strongly sensitive to both the operation conditions of the reactor and to the state of the instrument. Therefore, most studies use them as qualitative descriptors of the performance of catalytic reaction systems. The purpose of this work was to develop an accurate method for the quantification of gaseous effluents from catalytic reactors. For this purpose, the mathematical expressions from the so-called external and internal standard calibration methods for MS were coupled to the typical metrics used for studying catalytic reactions, namely, conversion, selectivity, and carbon mass balances. The catalytic combustion of methane was selected as a model reaction to test the developed approach. The accuracy of the developed method was validated by comparison with results obtained in a separate reaction system coupled online to a gas chromatograph. The closure of the carbon mass balance was used as control metrics allowing for the assessment of the physical meaning of the method. In general, the internal standard method of calibration was found to be best for the accurate quantification of gaseous streams by online mass spectrometry. In general, the results of this investigation may be of use to researchers in the field of catalysis as well as to research workers using mass spectrometry for various purposes.
Collapse
Affiliation(s)
- Edwing Alexander Velasco-Rozo
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681011, Colombia
| | - Luz Marina Ballesteros-Rueda
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681011, Colombia
| | - Víctor Gabriel Baldovino-Medrano
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681011, Colombia
- Laboratorio de Ciencia de Superficies (SurfLab), Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681011, Colombia
| |
Collapse
|
16
|
Wünsch R, Mayer C, Plattner J, Eugster F, Wülser R, Gebhardt J, Hübner U, Canonica S, Wintgens T, von Gunten U. Micropollutants as internal probe compounds to assess UV fluence and hydroxyl radical exposure in UV/H 2O 2 treatment. WATER RESEARCH 2021; 195:116940. [PMID: 33735627 DOI: 10.1016/j.watres.2021.116940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Organic micropollutants (MPs) are increasingly detected in water resources, which can be a concern for human health and the aquatic environment. Ultraviolet (UV) radiation based advanced oxidation processes (AOP) such as low-pressure mercury vapor arc lamp UV/H2O2 can be applied to abate these MPs. During UV/H2O2 treatment, MPs are abated primarily by photolysis and reactions with hydroxyl radicals (•OH), which are produced in situ from H2O2 photolysis. Here, a model is presented that calculates the applied UV fluence (Hcalc) and the •OH exposure (CT•OH,calc) from the abatement of two selected MPs, which act as internal probe compounds. Quantification of the UV fluence and hydroxyl radical exposure was generally accurate when a UV susceptible and a UV resistant probe compound were selected, and both were abated at least by 50 %, e.g., iopamidol and 5-methyl-1H-benzotriazole. Based on these key parameters a model was developed to predict the abatement of other MPs. The prediction of abatement was verified in various waters (sand filtrates of rivers Rhine and Wiese, and a tertiary wastewater effluent) and at different scales (laboratory experiments, pilot plant). The accuracy to predict the abatement of other MPs was typically within ±20 % of the respective measured abatement. The model was further assessed for its ability to estimate unknown rate constants for direct photolysis (kUV,MP) and reactions with •OH (k•OH,MP). In most cases, the estimated rate constants agreed well with published values, considering the uncertainty of kinetic data determined in laboratory experiments. A sensitivity analysis revealed that in typical water treatment applications, the precision of kinetic parameters (kUV,MP for UV susceptible and k•OH,MP for UV resistant probe compounds) have the strongest impact on the model's accuracy.
Collapse
Affiliation(s)
- Robin Wünsch
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstr. 30, 4132, Muttenz, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Carina Mayer
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstr. 30, 4132, Muttenz, Switzerland; RWTH Aachen University, Aachener Verfahrenstechnik, Chemical Process Engineering, Forckenbeckstrasse 51, 52074, Aachen, Germany
| | - Julia Plattner
- IWB (Industrielle Werke Basel), Margarethenstrasse 40, 4002, Basel, Switzerland
| | - Fabienne Eugster
- IWB (Industrielle Werke Basel), Margarethenstrasse 40, 4002, Basel, Switzerland
| | - Richard Wülser
- IWB (Industrielle Werke Basel), Margarethenstrasse 40, 4002, Basel, Switzerland
| | - Jens Gebhardt
- Xylem Services GmbH, Boschstraße 4, 32051, Herford, Germany
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Thomas Wintgens
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstr. 30, 4132, Muttenz, Switzerland
| | - Urs von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
17
|
Hasani M, Wu F, Warriner K. Validation of a vapor-phase advanced oxidation process for inactivating Listeria monocytogenes, its surrogate Lactobacillus fructivorans, and spoilage molds associated with green or red table grapes. J Food Sci 2020; 85:2645-2655. [PMID: 32839995 DOI: 10.1111/1750-3841.15387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022]
Abstract
A method based on vapor-phase advanced oxidation process (AOP) for decontaminating red or green grapes was validated for inactivating Listeria monocytogenes and spoilage molds. A Central Composite Design (CCD) and Response Surface Methodology (RSM) were applied to determine the contribution of UV-C (254 nm) dose, hydrogen peroxide, and ozone concentration on the lethality toward Aspergillus niger spores (biodensiometer) and changes to the grape quality (firmness and color over 14-day post-treatment storage at 4 °C). A high UV-C dose (>129 mJ/cm2 ) or >4.0 % v/v hydrogen peroxide induced-blistering and darkening of grapes at the end of the storage period. Yet, an optimized AOP treatment (with regards to preserving grape quality) was derived to be 1.3% v/v hydrogen peroxide (5 mL/10 berries) with 9-mg ozone gas and a UV-C dose of 123 mJ/cm2 (10 s at UV-C intensity of 12 mW/cm2 ). A predictive model was constructed and verified based on the log reduction of A. niger spores and changes in quality characteristics of red grapes. The optimal AOP treatment supported a 1.6-log CFU/g reduction of Aspergillus spores and decreased L. monocytogenes counts by 3.92 ± 0.17 and 4.77 ± 0.30 log CFU/g on green and red grapes, respectively, that were not significantly different to the surrogate, Lactobacillus fructivorans. There was no significant difference in the reduction of L. monocytogenes with grapes arranged in a single or double layer. Botrytis cinerea counts were reduced by 1.08 to 1.35 log CFU/g using the optimized AOP treatment with no change in grape color or firmness during storage. A sensory panel could not differentiate AOP-treated grapes from nontreated controls although 3 of 15 panelists did note subtle flavor notes. PRACTICAL APPLICATION: Postharvest washing of fresh produce has limited efficacy in removing foodborne pathogens and spoilage microbes. This is especially relevant to berries, such as grapes, that are susceptible to spoilage following washing. The vapor-phase AOP treatment provides a supplemental or alternative approach for produce decontamination. However, the operating parameters need to be optimized to ensure that decontamination of grapes is not at the expense of quality. In the current study, this was achieved by ensuring a balance between hydrogen peroxide, ozone, and UV-C dose that form the elements of an AOP treatment.
Collapse
Affiliation(s)
- Mahdiyeh Hasani
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Fan Wu
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|