1
|
Tang T, Zhao S, Chen K, Liu Y, Mo G, Sun L, Zhu R, Tang X, Yi H. Dual effect of anchored sulphur and activated oxygen in the catalytic oxidation of organic sulfur over Pt single-atom catalysts. J Colloid Interface Sci 2025; 688:264-275. [PMID: 40010091 DOI: 10.1016/j.jcis.2025.02.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Foul-smelling organic sulfur gases removal of which is crucial for improving environmental quality and protecting human health. Herein, in this study, Pt single-atom (SA) loaded magnesium oxide (MgO) nanosheet catalysts were prepared, which exhibited the dual effects of anchored sulfur and activated oxygen that greatly enhanced the catalytic oxidation efficiency of methyl mercaptan (CH3SH), and 90 % complete oxidation of CH3SH could be achieved by Pt SA/MgO at 325 °C, with an oxidation efficiency that was 8 times higher than that of MgO nanosheets. A series of characterization results indicate that the valence state of Pt in the Pt SA/MgO catalyst ranges between 0 and +4, demonstrating its inherent electron-donating capability. Theoretical calculations show that the oxygen vacancy formation energy is reduced to 4.0 eV after the introduction of Pt SA, and the adsorption energy of atomic groups SH and CH3 is reduced to -1.5 and -2.0 eV. And the bond length of the MgO bond in Pt SA/MgO is shortened to 2.083 Å, forming an asymmetric structure with the PtO bond of 2.142 Å, effectively activating the lattice oxygen. Furthermore, A series of activity tests confirmed that the introduction of Pt SA reduced sulfate deposition, while the reaction pathway of CH3SH catalytic oxidation was optimised by changing the oxidation mechanism. The investigation offers a significant experimental foundation and novel viewpoints for the enhancement of high-performance catalytic oxidation catalysts targeting sulfur-containing volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Tian Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Salt Lake Chemical Engineering Research Complex, Qinghai University, China; Key Laboratory of Salt Lake Chemical Material of Qinghai Province, China.
| | - Kai Chen
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunpeng Liu
- Institute of High Energy Physics, Chines Academy of Sciences, Beijing 100049, China
| | - Guang Mo
- Institute of High Energy Physics, Chines Academy of Sciences, Beijing 100049, China
| | - Long Sun
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ronghui Zhu
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Bai X, Qi X, Liu Y, Sun J, Shen T, Pan L. Photothermal Catalytic Degradation of VOCs: Mode, System and Application. Chem Asian J 2025; 20:e202400993. [PMID: 39466004 DOI: 10.1002/asia.202400993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
Human production and living processes emit excessive VOCs into the atmosphere, posing significant threats to both human health and the environment. The photothermal catalytic oxidation process is an organic combination of photocatalysis and thermocatalysis. Utilizing photothermal catalytic degradation of VOCs can achieve better catalytic activity at lower temperatures, resulting in more rapid and thorough degradation of these compounds. Photothermal catalysis has been increasingly applied in the treatment of atmospheric VOCs due to its many advantages. A brief introduction on the three modes of photothermal catalysis is presented. Depending on the main driving force of the reactions, they can be categorized into thermal-assisted photocatalysis (TAPC), photo-assisted thermal catalysis (PATC) and photo-driven thermal catalysis (PDTC). The commonly used catalyst design methods and reactor types for photothermal catalysis are also briefly introduced. This paper then focuses on recent developments in specific applications for photothermal catalytic oxidation of different types of VOCs and their corresponding principles. Finally, the problems and challenges facing VOC degradation through this method are summarized, along with prospects for future research.
Collapse
Affiliation(s)
- Xiang Bai
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Xinyu Qi
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Yunchao Liu
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Tingting Shen
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Lijun Pan
- Shandong Wanjia Environmental Engineering Co., Ltd, Jinan, 250013, China
| |
Collapse
|
3
|
Tang T, Zhao S, Liu Y, Tang X, Sun L, Ma Y, Zhu R, Yi H. Metal-support interaction in supported Pt single-atom catalyst promotes lattice oxygen activation to achieve complete oxidation of acetone at low concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135839. [PMID: 39298965 DOI: 10.1016/j.jhazmat.2024.135839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
A precious metal catalyst with loaded Pt single atoms was prepared and used for the complete oxidation of C3H6O. Detailed results show that the T100 of the 1.5Pt SA/γ-Al2O3 catalyst in the oxidation process of acetone is 250 °C, the TOF of Pt is 1.09 × 10-2 s-1, and the catalyst exhibits good stability. Characterization reveals that the high dispersion of Pt single atoms and strong interaction with the carrier improve the redox properties of the catalyst, enhancing the adsorption and dissociation capability of gaseous oxygen. DFT calculations show that after the introduction of Pt, the oxygen vacancy formation energy on the catalyst surface is reduced to 1.2 eV, and PDOS calculations prove that electrons on Pt atoms can be quickly transferred to O atoms, increasing the number of electrons on the σp * bond and promoting the escape of lattice oxygen. In addition, in situ DRIFTS and adsorption experiments indicate that the C3H6O oxidation process follows the Mars-van Krevelen reaction mechanism, and CH2 =C(CH3)=O(ads), O* (O2-), formate, acetate, and carbonate are considered as the main intermediate species and/or transients in the reaction process. Particularly, the activation rate of O2 and the cleavage of the -C-C- bond are the main rate-determining steps in the oxidation of C3H6O. This work will further enhance the study of the oxidation mechanism of oxygenated volatile organic pollutants over loaded noble metal catalysts.
Collapse
Affiliation(s)
- Tian Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - ShunZheng Zhao
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - YunPeng Liu
- Institure of High Energy Physics, Chines Academy of Sciences, Beijing 100049, China
| | - XiaoLong Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Long Sun
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - YiMing Ma
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - RongHui Zhu
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - HongHong Yi
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Huang W, Li Q, Deng C, Zong Z, Du Y, Lu R, Dong L, Xia D. Unravelling High Water Vapor-Induced Inhibitory Effects on Pt/Co 3O 4 Catalysts toward Benzene Oxidation. Inorg Chem 2024; 63:15516-15526. [PMID: 39102647 DOI: 10.1021/acs.inorgchem.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Water vapor inevitably exists in the environment, which causes adverse impacts on many crucial chemical reactions. However, high water vapor of up to 10 vol %─relevant to a broad spectrum of industrial practices-for catalytic implications has been less investigated or neglected. As such, we explored an industry-relevant, humidity-highly sensitive benzene oxidation only in the presence of 10 vol % water vapor using the well-established Pt/Co3O4 catalysts, to bring such an important yet ignored topic to the forefront. Results revealed that Pt/Co3O4 catalysts possessing higher contents of Pt nanoparticles exhibited marked tolerance to water vapor interference. Under an incomplete benzene conversion condition, the input of 10 vol % water vapor indeed impaired the catalytic performance of Pt/Co3O4 catalyst significantly, which, in fact, was caused by the unfavorable formation of carboxylate species covering the catalyst's surface engendering irrecoverable activity loss, instead of the well-accepted water competitive adsorption. While such activity loss can be restored by elevating the reaction to a higher temperature. This study helps us to understand the compromised catalytic activity caused by high humidity, urging the systematic evaluation of well-established catalyst systems in high water vapor-contained conditions and pressing the development of water-tolerant catalysts for real-life application consideration.
Collapse
Affiliation(s)
- Wanting Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhiyuan Zong
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| | - Yushan Du
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Ruifang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Dong Xia
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| |
Collapse
|
5
|
Einaga H, Zheng X. Fundamental insights and recent advances in catalytic oxidation processes using ozone for the control of volatile organic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43540-43560. [PMID: 38909152 DOI: 10.1007/s11356-024-34004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The development of technologies for highly efficient treatment of emissions containing low concentrations of volatile organic compounds (VOCs) remains an important challenge. Catalytic oxidation with ozone (catalytic ozonation) is useful for the oxidative decomposition of VOCs, particularly aromatic compounds, under ambient temperature conditions. Only inexpensive transition metal oxides are required as catalysts, and Mn-based catalysts are widely used for catalytic ozonation. This review describes the oxidation reaction mechanisms, reaction pathways of aromatic hydrocarbons, and dependence of the catalytic ozonation activity on the reaction conditions. The reasons why Mn oxides are effective in catalytic ozonation are also explained. The structure of the catalytic active sites and the types of supporting materials contributing to the reaction are also discussed in detail, with the aim of establishing a VOC control technology. In addition, recent progress in catalytic oxidation processes using ozone as an oxidant has been outlined, focusing on catalyst materials and reaction conditions.
Collapse
Affiliation(s)
- Hisahiro Einaga
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan.
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan.
| | - Xuerui Zheng
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
6
|
Li J, Ma Y, Li F, Zeng Z, Zhu H, Wang C, Wang L, Li K, Wang X, Ning P, Wang F. Stable O 3 Decomposition by Layered Double Hydroxides: The Pivotal Role of NiOOH Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10696-10705. [PMID: 38845125 DOI: 10.1021/acs.est.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Because ozone (O3) is a significant air pollutant, advanced O3 elimination technologies, particularly those under high-humidity conditions, have become an essential research focus. In this study, a nickel-iron layered double hydroxide (NiFe-LDH) was modified via intercalation with octanoate to develop an effective hydrophobic catalyst (NiFe-OAa-LDH) for O3 decomposition. The NiFe-OAa-LDH catalyst sustained its O3 decomposition rate of >98% for 48 h under conditions of 90% relative humidity, 840 L/(g·h) space velocity, and 100 ppm inlet O3 concentration. Moreover, it maintained a decomposition rate of 90% even when tested at a higher airflow rate of 2500 L/(g·h). Based on the changes induced by the Ni-OII to Ni-OIII bonds in NiFe-OAa-LDH during O3 treatment, catalytic O3 decomposition was proposed to occur in two stages. The first stage involved the reaction between the hydroxyl groups and O3, leading to the breakage of the O-H bonds, formation of NiOOH, and structural changes in the catalyst. This transformation resulted in the formation of abundant and stable hydrogen vacancies. According to density functional theory calculations, O3 can be effectively decomposed at the hydrogen vacancies with a low energy barrier during the second stage. This study provides new insights into O3 decomposition.
Collapse
Affiliation(s)
- Jiaqi Li
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yixing Ma
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Fengyu Li
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Ziruo Zeng
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Hengxi Zhu
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Chunxue Wang
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Langlang Wang
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Kai Li
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xueqian Wang
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Ping Ning
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Fei Wang
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
7
|
Zeng Y, Zhuo Q, Pan J, Lan Y, Dai L, Guan B. Switching reactive oxygen species reactions derived from Mn-Pt anchored zeolite for selective catalytic ozonation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123747. [PMID: 38460590 DOI: 10.1016/j.envpol.2024.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Rationally switching reactive oxygen species (ROS) reactions in advanced oxidation processes (AOPs) is urgently needed to improve the adaptability and efficiency for the engineering application. Herein we synthesized bimetallic Mn-Pt catalysts based on zeolite to realize the switching of ROS reactions in catalytic ozonation for sustainable degradation of organic pollutants from water. The ROS reactions switched from singlet oxygen (1O2, 71.01%) to radical-dominated (93.79%) pathway by simply introducing defects and changing Pt/Mn ratios. The oxygen vacancy induced by anchoring Mn-Pt species from zeolite external surface (MnPt/H-Beta) to internal framework (MnPt@Si-Beta) exposes more electron-rich Pt2+/Pt4+ redox sites, accelerating the decomposition of O3 to generate •OH via electron transfer and switching ROS reactions. The Mn site acted as a bridge plays a critical role in conducting electrons from organic pollutants to Pt sites, which solidly solves the electron loss of catalysts, facilitating the efficient degradation of pollutants. A 34.7-fold increase in phenol degradation compared with the non-catalytic ozonation and an excellent catalytic stability are achieved by MnPt@Si-Beta/O3. The 1O2-dominated ROS reaction originated from MnPt/H-Beta/O3 exhibits superior performances in anti-interference for Cl-, HCO3-, NO3-, and SO4-. This work establishes a novel strategy for switching ROS reactions to expand the targeted applications of O3 based AOPs for environmental remediation.
Collapse
Affiliation(s)
- Yaxiong Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qizheng Zhuo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Lan
- Zhejiang Zheda Qiushi Property Management Co., Ltd., Logistics Group, Zhejiang University, Hangzhou, 310058, China
| | - Liyan Dai
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Zuo X, Zhang L, Gao G, Xin C, Fu B, Liu S, Ding H. Catalytic Oxidation of Benzene over Atomic Active Site AgNi/BCN Catalysts at Room Temperature. Molecules 2024; 29:1463. [PMID: 38611743 PMCID: PMC11013234 DOI: 10.3390/molecules29071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.
Collapse
Affiliation(s)
- Xin Zuo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
- North China Municipal Engineering Design & Research Institute Co., Ltd., Tianjin 300074, China
| | - Lisheng Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Ge Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Changchun Xin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Bingfeng Fu
- Shenzhen Yuanqi Environmental Energy Technology Co., Ltd., Futian District, Shenzhen 518045, China;
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| |
Collapse
|
9
|
Singh A, Majumder A, Saidulu D, Bhattacharya A, Bhatnagar A, Gupta AK. Oxidative treatment of micropollutants present in wastewater: A special emphasis on transformation products, their toxicity, detection, and field-scale investigations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120339. [PMID: 38401495 DOI: 10.1016/j.jenvman.2024.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
10
|
Zhou L, Liu Y, Shi H, Qing Y, Chen C, Shen L, Zhou M, Li B, Lin H. Molecular oxygen activation: Innovative techniques for environmental remediation. WATER RESEARCH 2024; 250:121075. [PMID: 38159543 DOI: 10.1016/j.watres.2023.121075] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Molecular oxygen as a green, non-toxic, and inexpensive oxidant has displayed numerous advantages compared with other oxidants for more sustainable and environmentally benign pollutant degradation. Molecular oxygen activation stands as a groundbreaking approach in advanced oxidation processes, offering efficient environmental remediation with minimal environmental impact with the production of high-oxidation reactive oxygen species (ROS). The adaptability and energy efficiency of molecular oxygen activation significantly contribute to the progression of sustainable water remediation technologies. This review meticulously explores the principles and mechanisms of molecular oxygen activation, shedding light on the diverse ROS production pathways. Subsequently, this review comprehensively details contemporary activation approaches, including photocatalytic activation, electrocatalytic activation, piezoelectric activation, and photothermal activation, explicating their distinct activation mechanisms. Additionally, it delves into the promising applications of molecular oxygen activation in the degradation of water pollutants, primary air pollutants, and volatile organic compounds, providing an in-depth analysis of the associated degradation pathways and mechanisms. Moreover, this review also addresses the imminent challenges and emerging opportunities in environmental remediation. It is envisioned that this comprehensive analysis will spur ongoing exploration and innovation in the use of molecular oxygen activation for environmental remediation and beyond.
Collapse
Affiliation(s)
- Lili Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuting Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hao Shi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yurui Qing
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
11
|
Li Y, Fu M, Zhang X, He C, Chen D, Xiong Y, Guo L, Tian S. Enhanced catalytic ozonation performance by CuO x nanoclusters/TiO 2 nanotube and an insight into the catalytic mechanism. J Colloid Interface Sci 2023; 651:589-601. [PMID: 37562301 DOI: 10.1016/j.jcis.2023.07.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Highly reactive nanoclusters of metal oxides are extremely difficult to be synthesized due to their thermodynamic instability. For the first time, CuOx nanoclusters supported on anatase TiO2 nanotubes (NT) with many defects as anchoring sites were successfully prepared. Although the copper loading reached as high as 2.5 %, the size of CuOx nanoclusters in the sample of 2.5 %CuOx/NT were mainly around 1.0 nm. The aggregation of copper species during the calcination process was undoubtedly hampered by the anchoring effects of the abundant defects in NT support. Due to the highly exposed undercoordinated atoms of CuOx nanoclusters, the mixed valences of copper, and the strong interface interaction between CuOx nanoclusters and NT support, 2.5 %CuOx/NT-catalyzed ozonation showed the highest pseudo-first-order reaction rate constant of 8.5 × 10-2 min-1, 2.2 and 4.0 times that of NT-catalyzed ozonation and ozonation alone, respectively. Finally, the catalytic mechanism was revealed by both experiments and density functional theory calculations (DFT). The results demonstrated that the undercoordinated Cu in CuOx/NT could highly promote the adsorption of ozone with a high adsorption energy of -125.16 eV and the adsorbed ozone was activated immediately, tending to dissociate into a O2 molecule and a surface O atom. Thus, abundant reactive oxygen species, e.g., hydroxyl radical (·OH), superoxide radical (·O2-) and singlet oxygen (1O2), could be generated via chain reactions. Especially, ·OH mainly contributed to the removal of ibuprofen pollutants. This work sheds a light on the design and preparation of highly reactive nanoclusters of metal oxide catalysts for catalytic ozonation of refractory organic pollutants.
Collapse
Affiliation(s)
- Yiqing Li
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Manqin Fu
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaoxia Zhang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun He
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Dingsheng Chen
- Guangdong Province Engineering Laboratory for Air Pollution Control, South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environmental (MEE), Guangzhou 510655, PR China
| | - Ya Xiong
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Liqing Guo
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Shuanghong Tian
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China.
| |
Collapse
|
12
|
Kong X, Garg S, Mortazavi M, Ma J, Waite TD. Heterogenous Iron Oxide Assemblages for Use in Catalytic Ozonation: Reactivity, Kinetics, and Reaction Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18636-18646. [PMID: 36648439 DOI: 10.1021/acs.est.2c07319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterogeneous catalytic ozonation (HCO) has gained increasing attention as an effective process to remove refractory organic pollutants from industrial effluents. However, widespread application of HCO is still limited due to the typically low efficacy of catalysts used and matrix passivation effects. To this end, we prepared an Al2O3-supported Fe catalyst with high reactivity via a facile urea-based heterogeneous precipitation method. Due to the nonsintering nature of the preparation method, a heterogeneous catalytic layer comprised of γ-FeOOH and α-Fe2O3 is formed on the Al2O3 support (termed NS-Fe-Al2O3). On treatment of a real industrial effluent by HCO, the presence of NS-Fe-Al2O3 increased the removal of organics by ∼100% compared to that achieved with a control catalyst (i.e., α-Fe2O3/Al2O3 or γ-FeOOH/Al2O3) that was prepared by a conventional impregnation and calcination method. Furthermore, our results confirmed that the novel NS-Fe-Al2O3 catalyst demonstrated resistance to the inhibitory effect of high concentration of chloride and sulfate ions usually present in industrial effluent. A mathematical kinetic model was developed that adequately describes the mechanism of HCO process in the presence of NS-Fe-Al2O3. Overall, the results presented here provide valuable guidance for the synthesis of effective and robust catalysts that will facilitate the wider industrial application of HCO.
Collapse
Affiliation(s)
- Xiangtong Kong
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Shikha Garg
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Mahshid Mortazavi
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou510006, P.R. China
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu Province214206, P.R. China
| |
Collapse
|
13
|
Ding H, Xue L, Cui J, Wang Y, Zhao D, Zhi X, Liu R, Fu J, Liu S, Fu B, Shi J, Xu X, Li GK. Catalytic degradation of benzene at room temperature over FeN 4O 2 sites embedded in porous carbon. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132520. [PMID: 37703730 DOI: 10.1016/j.jhazmat.2023.132520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Benzene and its aromatic derivatives are typical volatile organic compounds for indoor and outdoor air pollution, harmful to human health and the environment. It has been considered extremely difficult to break down benzene rings at ambient conditions without external energy input, due to the extraordinary stability of the aromatic structure. Here, we show one such solution that can thoroughly degrade benzene to basically water and carbon dioxide at 25 °C in air using atomically dispersed Fe in N-doped porous carbon, with almost 100% benzene conversion. Further experimental studies combined with molecular simulations reveal the mechanism of this catalytic reaction. Hydroxyl radicals (·OH) evolved on the atomically dispersed FeN4O2 catalytic centers were found responsible for initiating and completing the oxidation of benzene. This work provides a new chemistry to degrade aromatics at ambient conditions and also a pathway to generate active ·OH oxidant for generic remediation of organic pollutants.
Collapse
Affiliation(s)
- Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Lingxiao Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, China
| | - Jiahao Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yongqiang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Dan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xing Zhi
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jianfeng Fu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Bingfeng Fu
- Shenzhen Yuanqi Environmental Energy Technology Co., Ltd., Futian District, Shenzhen, China
| | - Jiahui Shi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Ximeng Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
14
|
Yang Y, Zhang Z, Zhang L, Song F, Ren Y, Zhang X, Zhang J, Liew RK, Foong SY, Chong WWF, Lam SS, Verma M, Ng HS, Sonne C, Ge S. Recent advances in the control of volatile organic compounds emissions from indoor wood-based panels: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163741. [PMID: 37120025 DOI: 10.1016/j.scitotenv.2023.163741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.
Collapse
Affiliation(s)
- Yang Yang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Zhongfeng Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China.
| | - Lei Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Feifei Song
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Yi Ren
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Xu Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Jijuan Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Rock Keey Liew
- NV WESTERN PLT, No. 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
15
|
Liu L, Shao G, Ma C, Nikiforov A, De Geyter N, Morent R. Plasma-catalysis for VOCs decomposition: A review on micro- and macroscopic modeling. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131100. [PMID: 36893595 DOI: 10.1016/j.jhazmat.2023.131100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Plasma-catalysis has been recognized as a promising method to decompose hazardous volatile organic compounds (VOCs) since many years ago. To understand the fundamental mechanisms of VOCs decomposition by plasma-catalysis systems, both experimental and modeling studies have been extensively carried out. However, literature on summarized modeling methodologies is still scarce. In this short review, we therefore present a comprehensive overview of modeling methodologies ranging from microscopic to macroscopic modeling in plasma-catalysis for VOCs decomposition. The modeling methods of VOCs decomposition by plasma and plasma-catalysis are classified and summarized. The roles of plasma and plasma-catalyst interactions in VOCs decomposition are also critically examined. Taking the current advances in understanding the decomposition mechanisms of VOCs into account, we finally provide our perspectives for future research directions. This short review aims to stimulate the further development of plasma-catalysis for VOCs decomposition in both fundamental studies and practical applications with advanced modeling methods.
Collapse
Affiliation(s)
- Lu Liu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Guangcai Shao
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuanlong Ma
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Wan X, Shi K, Li H, Shen F, Gao S, Duan X, Zhang S, Zhao C, Yu M, Hao R, Li W, Wang G, Peressi M, Feng Y, Wang W. Catalytic Ozonation of Polluter Benzene from -20 to >50 °C with High Conversion Efficiency and Selectivity on Mullite YMn 2O 5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37225661 DOI: 10.1021/acs.est.3c01557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Catalytic decomposition of aromatic polluters at room temperature represents a green route for air purification but is currently challenged by the difficulty of generating reactive oxygen species (ROS) on catalysts. Herein, we develop a mullite catalyst YMn2O5 (YMO) with dual active sites of Mn3+ and Mn4+ and use ozone to produce a highly reactive O* upon YMO. Such a strong oxidant species on YMO shows complete removal of benzene from -20 to >50 °C with a high COx selectivity (>90%) through the generated reactive species O* on the catalyst surface (60 000 mL g-1 h-1). Although the accumulation of water and intermediates gradually lowers the reaction rate after 8 h at 25 °C, a simple treatment by ozone purging or drying in the ambient environment regenerates the catalyst. Importantly, when the temperature increases to 50 °C, the catalytic performance remains 100% conversion without any degradation for 30 h. Experiments and theoretical calculations show that such a superior performance stems from the unique coordination environment, which ensures high generation of ROS and adsorption of aromatics. Mullite's catalytic ozonation degradation of total volatile organic compounds (TVOC) is applied in a home-developed air cleaner, resulting in high efficiency of benzene removal. This work provides insights into the design of catalysts to decompose highly stable organic polluters.
Collapse
Affiliation(s)
- Xiang Wan
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Kai Shi
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Huan Li
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Fangxie Shen
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Shan Gao
- Physics Department, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xiangmei Duan
- Physics Department, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Shen Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Chunning Zhao
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Meng Yu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Ruiting Hao
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, Yunnan Province, China
| | - Weifang Li
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
| | - Maria Peressi
- Department of Physics, University of Trieste, Trieste 34151, Italy
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
17
|
Guo WB, Wu C, Pan K, Yang L, Miao AJ. Pre-exposure to Fe 2O 3 or TiO 2 Nanoparticles Inhibits Subsequent Biological Uptake of 55Fe-Labeled Fe 2O 3 Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4831-4840. [PMID: 36938933 DOI: 10.1021/acs.est.2c08747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aquatic organisms are frequently exposed to various nanoparticles (NPs) in the natural environment. Thus, studies of NP bioaccumulation should include organisms that have been previously exposed to NPs. Our study investigated the effects of pre-exposure of Tetrahymena thermophila (T. thermophila) to Fe2O3 or TiO2 NPs on the protozoan's subsequent uptake of 55Fe-labeled Fe2O3 (55Fe2O3) NPs. Molecular mechanisms underlying the pre-exposure effects were explored in transcriptomic and metabolomic experiments. Pre-exposure to either NPs inhibited the subsequent uptake of 55Fe2O3 NPs. The results of the transcriptomic experiment indicated that NP pre-exposure influenced the expression of genes related to phagosomes and lysosomes and physiological processes such as glutathione and lipid metabolism, which are closely associated with the endocytosis of 55Fe2O3 NPs. The differentially expressed metabolites obtained from the metabolomic experiments showed an enrichment of energy metabolism and antioxidation pathways in T. thermophila pre-exposed to NPs. Together, these results demonstrate that the pre-exposure of T. thermophila to Fe2O3 or TiO2 NPs inhibited the protozoan's subsequent uptake of 55Fe2O3 NPs, possibly by mechanisms involving the alteration of endocytosis-related organelles, the induction of oxidative stress, and a lowering of the intracellular energy supply. Thus, NP pre-exposure represents a scenario which can inform increasingly realistic estimates of NP bioaccumulation.
Collapse
Affiliation(s)
- Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China PRC
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| |
Collapse
|
18
|
Wang L, Gao L, Li A, Wen T, Zhang J, Long C. Insights into the influence of water molecules on selective catalytic ozonation of gaseous ammonia into nitrogen on cryptomelane-type manganese oxide using in-situ DRIFTS. CHEMOSPHERE 2023; 313:137521. [PMID: 36513199 DOI: 10.1016/j.chemosphere.2022.137521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Catalytic ozonation is an environmentally friendly technology for the removal of gaseous NH3 due to high NH3 conversion and high N2 selectivity at ambient temperature. However, the influence mechanism of ubiquitous water vapor on catalytic ozonation of NH3 is unclear. In this study, cryptomelane-type manganese oxide (OMS-2) catalyst was prepared and tested for catalytic ozonation of NH3 in different relative humidity. The results showed that water vapor significantly decreased the catalytic activity, which was due to the inhibition of water on NH3 adsorption on Lewis acid sites and O3 decomposition on oxygen vacancies, as well as the combination of water with active oxygen species (O22- and Oatom). And the effect of water vapor on NH3 conversion was more significant than O3 decomposition because more Mn-OH were involved in the O3 decomposition under humid conditions. Combining in-situ DRIFTS results with the performance of NH3 oxidation, it is found that L-2 acid sites (the peak of NH3 adsorption on Lewis acid sites at 1188 cm-1) were the main active sites for adsorption and activation of NH3 in the early stage of catalytic reaction; as the reaction progressed, L-2 acid sites were gradually occupied by water and more Brønsted acid sites participated in the catalytic reaction. This work deepened the understanding of the reaction process for selective catalytic ozonation of NH3, and provided theoretical guidance for the design of efficient hydrophobic catalysts to eliminate gaseous NH3 pollution.
Collapse
Affiliation(s)
- Lisha Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou, 362000, China.
| |
Collapse
|
19
|
Shi J, Liu Q, Liu R, Zhao D, Xu X, Cui J, Ding H. Low-temperature degradation of toluene over Ag-MnO x-ACF composite catalyst. ENVIRONMENTAL TECHNOLOGY 2023; 44:647-658. [PMID: 34516339 DOI: 10.1080/09593330.2021.1980830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) have caused a serious threat to the atmosphere and human health. Therefore, it is of great significance to exploit effective catalytic materials for the safe and effective catalytic elimination of VOCs. Herein, Ag-MnOx-ACF composite catalysts were constructed via a two-step impregnation strategy and used for catalytic toluene degradation. A remarkable low-temperature catalytic activity (T100 = 50℃), excellent stability, as well as CO2 selectivity (80%) were achieved over the Ag-MnOx-ACF catalyst. A series of characterizations indicated that the unique manganese defects structure of birnessite phase manganese oxide played an essential role for toluene oxidation, which was conducive to generating surface adsorbed oxygen. The higher ratio of Mn3+/Mn4+, abundant surface adsorbed oxygen and highly dispersed Ag species were determined to significantly facilitate toluene degradation. The mechanism of efficient degradation of toluene at low temperature was proposed. O3 and H2O molecules were activated via surface hydroxyl and Mn defects on Ag-MnOx-ACF to produce sufficient •OH, enhancing the degradation performance of toluene. We provide a new idea for the catalytic oxidation of benzene VOCs at low even room temperatures.
Collapse
Affiliation(s)
- Jiahui Shi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Qiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Rui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Dan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ximeng Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Jiahao Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
20
|
Shao Q, Wei S, Hu X, Dong H, Wen T, Gao L, Long C. Tuning the Micro-coordination Environment of Al in Dealumination Y Zeolite to Enhance Electron Transfer at the Cu-Mn Oxides Interface for Highly Efficient Catalytic Ozonation of Toluene at Low Temperatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15449-15459. [PMID: 36254461 DOI: 10.1021/acs.est.2c05766] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of stable, highly active, and inexpensive catalysts for the ozone catalytic oxidation of volatile organic compounds (VOCs) is challenging but of great significance. Herein, the micro-coordination environment of Al in commercial Y zeolite was regulated by a specific dealumination method and then the dealuminated Y zeolite was used as the support of Cu-Mn oxides. The optimized catalyst Cu-Mn/DY exhibited excellent performance with around 95% of toluene removal at 30 °C. Besides, the catalyst delivered satisfactory stability in both high-humidity conditions and long-term reactions, which is attributed to more active oxygen vacancies and acidic sites, especially the strong Lewis acid sites newly formed in the catalyst. The decrease in the electron cloud density around aluminum species enhanced electron transfer at the interface between Cu-Mn oxides. Moreover, extra-framework octahedrally coordinated Al in the support promoted the electronic metal-support interaction (EMSI). Compared with single Mn catalysts, the incorporation of the Cu component changed the degradation pathway of toluene. Benzoic acid, as the intermediate of toluene oxidation, can directly ring-open on Cu-doped catalysts rather than being further oxidized to other byproducts, which increased the rate of the catalytic reaction. This work provides a new insight and theoretical guidance into the rational design of efficient catalysts for the catalytic ozonation of VOCs.
Collapse
Affiliation(s)
- Qi Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shuangshuang Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xueyu Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hao Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou 362000, China
| |
Collapse
|
21
|
Zhao R, Wang H, Zhao D, Liu R, Liu S, Fu J, Zhang Y, Ding H. Review on Catalytic Oxidation of VOCs at Ambient Temperature. Int J Mol Sci 2022; 23:ijms232213739. [PMID: 36430218 PMCID: PMC9697337 DOI: 10.3390/ijms232213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
As an important air pollutant, volatile organic compounds (VOCs) pose a serious threat to the ecological environment and human health. To achieve energy saving, carbon reduction, and safe and efficient degradation of VOCs, ambient temperature catalytic oxidation has become a hot topic for researchers. Firstly, this review systematically summarizes recent progress on the catalytic oxidation of VOCs with different types. Secondly, based on nanoparticle catalysts, cluster catalysts, and single-atom catalysts, we discuss the influence of structural regulation, such as adjustment of size and configuration, metal doping, defect engineering, and acid/base modification, on the structure-activity relationship in the process of catalytic oxidation at ambient temperature. Then, the effects of process conditions, such as initial concentration, space velocity, oxidation atmosphere, and humidity adjustment on catalytic activity, are summarized. It is further found that nanoparticle catalysts are most commonly used in ambient temperature catalytic oxidation. Additionally, ambient temperature catalytic oxidation is mainly applied in the removal of easily degradable pollutants, and focuses on ambient temperature catalytic ozonation. The activity, selectivity, and stability of catalysts need to be improved. Finally, according to the existing problems and limitations in the application of ambient temperature catalytic oxidation technology, new prospects and challenges are proposed.
Collapse
Affiliation(s)
- Rui Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Han Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Rui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianfeng Fu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Correspondence:
| |
Collapse
|
22
|
Wei Z, He Y, Xiao X, Huang Z, Jiao H. Coupled catalytic-biodegradation of toluene over manganese oxide-coated catalytic membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73552-73562. [PMID: 35624373 DOI: 10.1007/s11356-022-20697-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) harm human health and the ecological environment. This work demonstrated manganese oxide catalytic membrane coupled to biodegradation of toluene in a catalytic membrane biofilm rector (CMBfR). Toluene removal efficiency in CMBfR was up to 91% in a 200-day operation. Manganese oxide combined to membrane biofilm reactor could promote degradation of toluene. Manganese oxide catalysts were characterized by XRD, Raman, XPS, and FT-IR. Raman and XPS spectra verified the existence of Mn defects, adsorbed oxygen species, and the oxygen vacancy, which was catalytic of toluene on the Mn oxides coated membranes significantly. Pseudomonas, Hydrogenophaga, Flavobacterium, Bacillus, Clostridium and Prosthecobacter were the dominant bacteria of toluene degradation. Mn oxides catalysis could degrade toluene into intermediate products; these products were entered into the biological phase eventually metabolized to CO2 and H2O. These results show that the catalytic membrane biofilm reactor is achievable and opens new possibilities for applying the catalytic membrane biofilm reactor to VOCs treatment.
Collapse
Affiliation(s)
- Zaishan Wei
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yiming He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaoliang Xiao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhenshan Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huaiyong Jiao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
23
|
PtPd/Molecular sieve as dual-functional monolithic adsorbent/catalyst for effective removal of trace toluene at low-temperature and their electric-heating performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Abstract
In this study, the ability of ozone to oxidise toluene present in low levels into CO and CO2 was studied. The catalytic ozonation of toluene was carried out in a micro-fixed bed reactor. The oxidation was done in two steps: toluene adsorption on the catalyst followed by sequential ozone desorption. Toluene breakdown by ozone at low temperature and atmospheric pressure was achieved using γ-Al2O3 supported transition metal oxides impregnated with a reduced noble metal. The catalyst Ag–CoOx/γ-Al2O3 efficiently oxidised and transformed toluene into products (52.4% COx yield). This catalyst has a high surface area, more acidic sites, and lattice oxygens for better toluene oxidation. The addition of Ag to the CoOx/γ-Al2O3 catalyst surface improved toluene adsorption on the catalyst surface, resulting in improved product yield, selectivity, and carbon balance.
Collapse
|
25
|
Wu M, Huang H, Leung DYC. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114559. [PMID: 35066195 DOI: 10.1016/j.jenvman.2022.114559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Volatile organic compounds (VOCs), one of the most important gaseous air pollutants, are getting more and more attention, and a lot of technologies have been studied and applied to eliminate VOCs emissions. Advanced oxidation processes (AOPs) are considered as one of the most promising techniques used for the degradation of VOCs. Vacuum ultraviolet (VUV) catalytic oxidation system is a typical composite AOPs system involving several processes such as VUV photodegradation, photocatalytic oxidation (PCO), ozone catalytic oxidation (OZCO) and their combinations. VUV based catalytic oxidation processes have been intensively studied for degrading VOCs. This review summarizes the recent studies on the use of VUV catalytic oxidation for degrading VOCs. All the processes involved in VUV catalytic oxidation and their combinations have been reviewed. Studies of VOCs degradation by VUV catalytic oxidation can be generally divided into two aspects: developments of catalysts and mechanistic studies. Principles of different processes, strategies of catalyst development and reaction mechanism are summarized in this review. Two directions of prospective future work were also proposed.
Collapse
Affiliation(s)
- Muyan Wu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
26
|
Liu B, Ji J, Zhang B, Huang W, Gan Y, Leung DYC, Huang H. Catalytic ozonation of VOCs at low temperature: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126847. [PMID: 34416698 DOI: 10.1016/j.jhazmat.2021.126847] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
VOCs abatement has attracted increasing interest because of the detrimental effects on both atmospheric environment and human beings of VOCs. The assistance of ozone has enabled efficient VOCs removal at low temperature. Thereby, catalytic ozonation is considered as one of the most feasible and effective methods for VOCs elimination. This work systematically reviews the emerging advances of catalytic ozonation of different VOCs (i.e., aromatic hydrocarbons, oxygenated VOCs, chlorinated VOCs, sulfur-containing VOCs, and saturated alkanes) over various functional catalysts. General reaction mechanism of catalytic ozonation including both Langmuir-Hinshelwood and Mars-van-Krevelen mechanisms was proposed depending on the reactive oxygen species involving the reactions. The influence of reaction conditions (water vapor and temperature) is fully discussed. This review also introduces the enhanced VOCs oxidation via catalytic ozonation in the ozone-generating systems including plasma and vacuum ultraviolet. Lastly, the existing challenges of VOCs catalytic ozonation are presented, and the perspective of this technology is envisioned.
Collapse
Affiliation(s)
- Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Ji
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Boge Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanling Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Indoor Air Pollution Control Engineering Research Center, Guangzhou 510006, China.
| |
Collapse
|
27
|
Uniform platinum nanoparticles loaded on Universitetet i Oslo-66 (UiO-66): Active and stable catalysts for gas toluene combustion. J Colloid Interface Sci 2022; 606:1811-1822. [PMID: 34507172 DOI: 10.1016/j.jcis.2021.08.127] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
Highly dispersed Pt nanoparticles supported UiO-66 catalysts were successfully prepared by the incipient wetness impregnation method. Their thermal catalytic performances were evaluated by toluene degradation. The physicochemical properties of the samples were characterized using a series of characterization methods. The catalytic activity of catalysts remained essentially unchanged in the high weight hourly space velocity, stability and water resistance test, which also indicated good catalytic performance. In the reusability test, the catalytic performance was found to be enhanced after the reaction, because of the catalyst might follow a Pt0-PtO synergistic catalytic mechanism (similar to Mars-van Krevelen mechanism) and there was a phase transition between Pt0 and PtO during the reaction. Firstly, the toluene adsorbed on the catalyst surface was oxidized by the activated lattice oxygen of the PtO. Then, consumption of oxygen atoms led to formation of oxygen vacancies, and finally the molecular oxygen adsorbed by Pt0 was activated and passed to the PtO to supplement the oxygen vacancies, forming a redox cycle. In addition, the possible catalytic oxidation mechanism of toluene was also revealed.
Collapse
|
28
|
Efficient ozone decomposition over bifunctional Co3Mn-layered double hydroxide with strong electronic interaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Huang Y, Ma D, Liu W, Xia D, Hu L, Yang J, Liao P, He C. Enhanced Catalytic Ozonation for Eliminating CH 3SH via Graphene-Supported Positively Charged Atomic Pt Undergoing Pt 2+/Pt 4+ Redox Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16723-16734. [PMID: 34882404 DOI: 10.1021/acs.est.1c06938] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Constructing catalysts with electronic metal-support interaction (EMSI) is promising for catalytic reactions. Herein, graphene-supported positively charged (Pt2+/Pt4+) atomically dispersed Pt catalysts (AD-Pt-G) with PtxC3 (x = 1, 2, and 4)-based EMSI coordination structures are achieved for boosting the catalytic ozonation for odorous CH3SH removal. A CH3SH removal efficiency of 91.5% can be obtained during catalytic ozonation using optimum 0.5AD-Pt-G within 12 h under a gas hourly space velocity of 60,000 mL h-1 g-1, whereas that of pure graphene is 40.4%. Proton transfer reaction time-of-flight mass spectrometry, in situ diffuse reflectance infrared Fourier transform spectroscopy/Raman, and electron spin resonance verify that the PtxC3 coordination structure with atomic Pt2+ sites on AD-Pt-G can activate O2 to generate peroxide species (*O2) for partial oxidation of CH3SH during the adsorption period and trigger O3 into surface atomic oxygen (*Oad), *O2, and superoxide radicals (·O2-) to accomplish a stable, high-efficiency, and deeper oxidation of CH3SH during the catalytic ozonation stage. Moreover, the results of XPS and DFT calculation imply the occurrence of Pt2+ → Pt4+ → Pt2+ recirculation on PtxC3 for AD-Pt-G to maintain the continuous catalytic ozonation for 12 h, i.e., Pt2+ species devote electrons in 5d-orbitals to activate O3, while Pt4+ species can be reduced back to Pt2+ via capturing electrons from CH3SH. This study can provide novel insights into the development of atomically dispersed Pt catalysts with a strong EMSI effect to realize excellent catalytic ozonation for air purification.
Collapse
Affiliation(s)
- Yajing Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dingren Ma
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiqi Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingling Yang
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
30
|
Synthesis of Rod-Like Co3O4 Catalyst Derived from Co-MOFs with Rich Active Sites for Catalytic Combustion of Toluene. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Selective 5-Hydroxymethylfurfural Hydrogenolysis to 2,5-Dimethylfuran over Bimetallic Pt-FeOx/AC Catalysts. Catalysts 2021. [DOI: 10.3390/catal11080915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The selective hydrogenolysis of 5-hydroxymethylfurfural (HMF) platform molecule to 2,5-dimethylfuran (DMF) has attracted increasing attention due to its broad range of applications. However, HMF, with multiple functional groups, produces various byproducts, hindering its use on an industrial scale. Herein, a bimetallic Pt-FeOx/AC catalyst with low Pt and FeOx loadings for selective HMF hydrogenolysis to DMF was prepared by incipient wetness impregnation. The structures and properties of different catalysts were characterized by XRD, XPS, TEM, ICP-OES and Py-FTIR techniques. The addition of FeOx enhanced Pt dispersion and the Lewis acidic site density of the catalysts, and was found to be able to inhibit C=C hydrogenation, thereby im-proving DMF yield. Moreover, the presence of Pt promoted the reduction of iron oxide, creating a strong interaction between Pt and FeOx. This synergistic effect originated from the activation of the C–O bond over FeOx species followed by hydrogenolysis over the adjacent Pt, and played a critical role in hydrogenolysis of HMF to DMF, achieving a yield of 91% under optimal reaction conditions. However, the leaching of Fe species caused a metal–acid imbalance, which led to an increase in ring hydrogenation products.
Collapse
|
32
|
Liu Y, Liu L, Wang Y. A Critical Review on Removal of Gaseous Pollutants Using Sulfate Radical-based Advanced Oxidation Technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9691-9710. [PMID: 34191483 DOI: 10.1021/acs.est.1c01531] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excessive emissions of gaseous pollutants such as SO2, NOx, heavy metals (Hg, As, etc.), H2S, VOCs, etc. have triggered a series of environmental pollution incidents. Sulfate radical (SO4•-)-based advanced oxidation technologies (AOTs) are one of the most promising gaseous pollutants removal technologies because they can not only produce active free radicals with strong oxidation ability to simultaneously degrade most of gaseous pollutants, but also their reaction processes are environmentally friendly. However, so far, the special review focusing on gaseous pollutants removal using SO4•--based AOTs is not reported. This review reports the latest advances in removal of gaseous pollutants (e.g., SO2, NOx, Hg, As, H2S, and VOCs) using SO4•--based AOTs. The performance, mechanism, active species identification and advantages/disadvantages of these removal technologies using SO4•--based AOTs are reviewed. The existing challenges and further research suggestions are also commented. Results show that SO4•--based AOTs possess good development potential in gaseous pollutant control field due to simple reagent transportation and storage, low product post-treatment requirements and strong degradation ability of refractory pollutants. Each SO4•--based AOT possesses its own advantages and disadvantages in terms of removal performance, cost, reliability, and product post-treatment. Low free radical yield, poor removal capacity, unclear removal mechanism/contribution of active species, unreliable technology and high cost are still the main problems in this field. The combined use of multiactivation technologies is one of the promising strategies to overcome these defects since it may make up for the shortcomings of independent technology. In order to improve free radical yield and pollutant removal capacity, enhancement of mass transfer and optimization design of reactor are critical issues. Comprehensive consideration of catalytic materials, removal chemistry, mass transfer and reactor is the promising route to solve these problems. In order to clarify removal mechanism, it is essential to select suitable free radical sacrificial agents, probes and spin trapping agents, which possess high selectivity for target specie, high solubility in water, and little effect on activity of catalyst itself and mass transfer/diffusion parameters. In order to further reduce investment and operating costs, it is necessary to carry out the related studies on simultaneous removal of more gaseous pollutants.
Collapse
Affiliation(s)
- Yangxian Liu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Liu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
33
|
Tian S, Zhan S, Lou Z, Zhu J, Feng J, Xiong Y. Electrodeposition synthesis of 3D-NiO1-δ flowers grown on Ni foam monolithic catalysts for efficient catalytic ozonation of VOCs. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Shao Q, Dong H, Zhang J, Xu B, Wu Y, Long C. Manganese supported on controlled dealumination Y-zeolite for ozone catalytic oxidation of low concentration toluene at low temperature. CHEMOSPHERE 2021; 271:129604. [PMID: 33460898 DOI: 10.1016/j.chemosphere.2021.129604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Low-temperature catalytic degradation of VOCs with ozone has received widespread attention recently. In this work, a combination method of steam and nitric acid was used to control the dealuminization of Y zeolite, and then manganese oxide was loaded on the Y zeolite by impregnation method. It was found that MnOx was highly dispersed in the dealumination zeolite, and the adsorbed oxygens were more easily activated in the active oxygen vacancies. The MnOx supported on dealumination Y zeolite showed better catalytic effect than that supported on the parent Y. At low humidity (0.8%) in 30 °C, the degradation efficiency of toluene reached above 94% by using the catalyst with mild dealumination. When more water vapor was introduced, the degradation of toluene was inhibited. However, the catalytic performance of the catalyst with deep dealumination was not affected. With the help of in-situ DRIFTS, it was observed that the intermediates and reaction by-products had changed under different humidity conditions.
Collapse
Affiliation(s)
- Qi Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Hao Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Bowen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yuhao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou, 362000, China.
| |
Collapse
|
35
|
Liu R, Liu S, Ding H, Zhao D, Fu J, Zhang Y, Huo W, Li G“K. Unveiling the Role of Atomically Dispersed Active Sites over Amorphous Iron Oxide Supported Pt Catalysts for Complete Catalytic Ozonation of Toluene at Low Temperature. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Liu
- School of Environmental Science & Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
| | - Shejiang Liu
- School of Environmental Science & Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
| | - Hui Ding
- School of Environmental Science & Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Dan Zhao
- School of Environmental Science & Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
| | - Jianfeng Fu
- School of Environmental Science & Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
| | - Yuxin Zhang
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Wangchen Huo
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Gang “Kevin” Li
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
36
|
Lin F, Wang Z, Zhang Z, Xiang L, Yuan D, Yan B, Wang Z, Chen G. Comparative Investigation on Chlorobenzene Oxidation by Oxygen and Ozone over a MnO x/Al 2O 3 Catalyst in the Presence of SO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3341-3351. [PMID: 33605716 DOI: 10.1021/acs.est.0c07862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catalytic oxidation of volatile organic compounds (VOCs) usually encounters complicated components in flue gas causing severe deactivation that restrict its application in specific conditions. The Cl substitution in chlorobenzene further increases poisoning risks. Ozone assistance has unique superiority that can overcome these bottleneck problems. Herein, this study performs a comparative investigation of CB oxidation by oxygen and ozone over a simple Mn/Al2O3 catalyst. CB conversion suffered from slight deactivation in oxygen atmosphere (from 90 to 70%) and more severe deactivation in the presence of SO2 (from 90 to 45%) at 480 °C. Introduction of ozone successfully attained high CB conversion at low temperature (120 °C) with excellent stability and less byproducts. Especially, CB oxidation by ozone maintained its original conversion in the presence of SO2. The deactivation process was simulated by synthesizing several sulfated catalysts. Direct sulfation on Mn/Al2O3 attained more severe deactivation in CB conversion and CO2 formation than sulfation on the Al2O3 support. Ozone with a strong oxidation property promoted the CB oxidation cycle, facilitated desorption of carbonaceous intermediates, and protected MnOx species from severe erosion, thus exhibiting high and stable performance in CB oxidation.
Collapse
Affiliation(s)
- Fawei Lin
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Zhi Wang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Zhiman Zhang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Li Xiang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Dingkun Yuan
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310000, P. R. China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Zhihua Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, P. R. China
| |
Collapse
|
37
|
Yan P, Chen Z, Wang S, Zhou Y, Li L, Yuan L, Shen J, Jin Q, Zhang X, Kang J. Catalytic ozonation of iohexol with α-Fe 0.9Mn 0.1OOH in water: Efficiency, degradation mechanism and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123574. [PMID: 32759003 DOI: 10.1016/j.jhazmat.2020.123574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Iohexol, a widely used iodinated X-ray contrast media, is difficult to completely degrade with the traditional water treatment process. Catalytic ozonation with synthesized α-Fe0.9Mn0.1OOH as the catalyst can significantly promote the degradation of iohexol relative to that with ozonation alone. Hydroxyl radicals play a predominant role during the degradation of iohexol. The effect of various factors, including catalyst dose, ozone dose, iohexol concentration and water matrix factors, on the catalytic performance were investigated. The presence of α-Fe0.9Mn0.1OOH in the catalytic system can significantly promote the removal of iohexol and mineralization of the dissolved organic carbon in real water samples. The intermediate products were determined by high-resolution liquid chromatography, and the reaction site was predicted by frontier electron density (FED) calculations. The degradation mechanism of iohexol followed the processes of H-abstraction, amide hydrolysis, amide oxidation, and ·OH substitution. Higher exposure concentrations of iohexol had a negative effect on the survival and hatching rates in the development of zebrafish embryos. The autonomic movement process and heartbeat rate of the zebrafish larvae showed significant differences as the exposure concentration of iohexol increased. The catalytic ozonation process with α-Fe0.9Mn0.1OOH can decrease the toxicity of iohexol containing water.
Collapse
Affiliation(s)
- Pengwei Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shuyu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yanchi Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Li Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Lei Yuan
- National and Provincial Joint Engineering Laboratory of Wetland Ecological Conservation, Heilongjiang Academy of Science, Harbin, 150040, PR China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Qianqian Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
38
|
Shen Y, Deng J, Impeng S, Li S, Yan T, Zhang J, Shi L, Zhang D. Boosting Toluene Combustion by Engineering Co-O Strength in Cobalt Oxide Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10342-10350. [PMID: 32668146 DOI: 10.1021/acs.est.0c02680] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exploring active and low-cost transition metal oxides (TMOs) based catalysts for volatile organic compounds (VOCs) abatement is vital for air pollution control technologies. Since 18 oxygen atoms are required for the complete mineralization of a toluene molecule, the participation of a large amount of active oxygen is a key requirement for the catalytic oxidation of toluene. Here, toluene degradation was improved by weakening the Co-O bond strength on the surface of cobalt oxide, so as to increase the amount of active oxygen species, while maintaining the high stability of the catalyst for toluene combustion. The bond strength of Co-O and the amount of surface active O2 was regulated by tuning the pyrolysis temperature. The catalyst's redox ability and surface oxygen species activity are improved due to the weakening of the Co-O bond strength. It has been demonstrated that active oxygen plays a crucial role in boosting toluene combustion by engineering Co-O strength in cobalt oxide catalysts. This work provides a new understanding of the exploration and development of high-performance TMO catalysts for VOCs abatement.
Collapse
Affiliation(s)
- Yongjie Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Sarawoot Impeng
- National Nanotechnology Center, National Science and Technology Development Agency, Bangkok 12120, Pathum Thani, Thailand
| | - Shuangxi Li
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jianping Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Liyi Shi
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|