1
|
Tian W, Wang J, Man Y, Anderson CWN, Feng X. Novel Insights into Hg 0 Oxidation in Rice Leaf: Catalase Functions and Transcriptome Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:478-488. [PMID: 39750150 DOI: 10.1021/acs.est.4c08658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Rice leaves can assimilate atmospheric mercury (Hg0), which is accumulated by grains and causes health risks to rice consumers. However, the molecular mechanisms underlying Hg0 assimilation in rice leaves remain poorly understood. Here, we investigated catalase's (CAT) function in Hg0 oxidation within rice leaves, as well as the Hg speciation and transcriptomic profiles of rice leaves exposed to Hg0. The inactivation of catalase reduced Hg0 oxidation by 91% in the leaf homogenate and the Hg0 oxidation rate increased along with CAT activity, showing the CAT's function in Hg0 oxidation. Hg0 was converted to Hg(cysteine)2 complexes in the leaf. Transcriptomic results revealed that the expression levels of both OsCATA and OsCATB (catalase-encoding genes) increased with Hg concentration, suggesting the involvement of catalase-related molecular network in Hg0 oxidation. Upstream transcription factors, including NAC (NAM-no apical meristem, ATAF-Arabidopsis transcription activation factor, and CUC-cup-shaped cotyledon), and ethylene-responsive transcription factor, are likely involved in catalase expression. Genes related to cysteine metabolism and amino acid transport appeared to regulate Hg accumulation. Our findings demonstrate the important function of catalase in Hg0 oxidation within rice and are fundamental for developing genetically modified rice cultivars to minimize human Hg exposure health risks.
Collapse
Affiliation(s)
- Weijun Tian
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
| | - Christopher W N Anderson
- Soil and Earth Sciences, Institute of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Jing F, Li H, He J, Zhang Q, Gao X, Zhou D. Application of biochar and selenium together at low dose efficiently reduces mercury and methylmercury accumulation in rice grains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176579. [PMID: 39343393 DOI: 10.1016/j.scitotenv.2024.176579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Irrespective of cost and ecological risk, literatures have reported that both biochar and selenium (Se) alone at high application rate exhibited positive effects on decreasing rice mercury (Hg) uptake in high Hg contaminated paddy soil. In this study, we investigated whether biochar and Se together at low dose could efficiently reduce the rice grain Hg and MeHg accumulation in the slight Hg-contaminated soil. Compared with control (CK), the Hg concentration of grains in the BC3, Se0.5, and BC3 + Se0.5 treatments decreased by 5.4 %, 38.3 %, and 48.5 %, respectively. Co-application of biochar and Se also decreased the methylmercury (MeHg) concentration in rice grains by 29.1-91.6 %. The decrease of Hg and MeHg level in rice grains for biochar and Se treatments could be attributed to the following mechanisms: (1) high Hg (primarily inorganic Hg) adsorption on biochar through its high hydroxyl groups and large specific surface area; (2) Increased dissolved organic carbon and cysteine contents in pore water after biochar application, which reduced the availability of soil Hg through complexation; (3) Decreased bioavailability of Hg in soil due to the formation of HgSe precipitation which inhibited Hg uptake and translation by rice plant; (4) Both biochar and Se facilitated the reduction of MeHg in soil. Our results indicate that co-application of biochar and Se at low dose is a promising method to effectively mitigate Hg accumulation in rice grains from the slight Hg-contaminated soil.
Collapse
Affiliation(s)
- Feng Jing
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jianzhou He
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; Department of Biochemistry, Chemistry & Physics, Georgia Southern University, Savannah, GA 31419, USA
| | - Qingya Zhang
- Jiangsu DDBS Environmental Remediation Co., LTD, Nanjing 210012, PR China
| | - Xuezhen Gao
- Jiangsu DDBS Environmental Remediation Co., LTD, Nanjing 210012, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Chen Q, Wang X, Li H, Lou S, An M, Zhi C, Wang C. Possible enrichment process of Cd in the Se-rich soil area of Lanshan District, Shandong Province, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:249. [PMID: 38877343 DOI: 10.1007/s10653-024-02022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 06/16/2024]
Abstract
High cadmium (Cd) concentrations widely occured in selenium (Se)-rich soils, which has been an important obstacle in the usage of Se-rich soils. There is still no special information detailing the enrichment process and mechanism of Cd in Se-rich soils. 4474 soils and 21 rocks in Lanshan District were sampled to detect its enrichment process. The surface soils have Cd concentrations of 0.01-9.41 mg·kg-1 (an average of 0.16 mg·kg-1). The soil Cd concentrations were significantly correlated with soil Se concentrations. The relatively higher-Cd surface soils are distributed in Lower-middle Ordovician carbonate areas with Se-rich soils and Quaternary areas with typical anthropic activities. Surface soils in Ordovician carbonate area have the highest Cd concentrations. Soil Cd concentrations are significantly correlated with sulfophil elements (Zinc (Zn), Copper (Cu), Molybdenum (Mo), Lead (Pb) and Arsenic (As) etc.), Ca (Calcium) concentrations and soil organic carbon (SOC). The soil and rock samples from different geological units also confirmed soil Cd concentrations developing from Ordovician carbonates were higher than those from other rocks. The results indicate the soil Cd concentrations were the complex consequences of bedrock, soil-forming processes and anthropogenic activities. Higher Ca concentrations and more reduction environments result in high-Cd bedrock. CaCO3 leaching and alkaline pH, which are the special soil-forming process of carbonates, enrich Cd in soils. Agricultural and industrial activities also affect soil Cd concentrations. An enrichment model of Cd in Se-rich soils is forwarded.
Collapse
Affiliation(s)
- Qiao Chen
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xuewenyu Wang
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Haibo Li
- The Fourth Prospecting of Shandong Coal Geology Bureau, No. 88, Fenghuang Street, Fangzi, Weifang, 261200, Shandong Province, China.
| | - Shuwen Lou
- The Fourth Prospecting of Shandong Coal Geology Bureau, No. 88, Fenghuang Street, Fangzi, Weifang, 261200, Shandong Province, China
| | - Maoguo An
- Shandong Provincial No.3 Exploration Institute of Geology and Mineral Resources, Yantai, 264004, China
| | - Chenglong Zhi
- Shandong Provincial Lunan Geology and Exploration Institute, Yanzhou, 272100, China
| | - Cai Wang
- Shandong Provincial Lunan Geology and Exploration Institute, Yanzhou, 272100, China
| |
Collapse
|
4
|
Ali W, Mao K, Shafeeque M, Aslam MW, Li W. Effects of selenium on biogeochemical cycles of cadmium in rice from flooded paddy soil systems in the alluvial Indus Valley of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168896. [PMID: 38042182 DOI: 10.1016/j.scitotenv.2023.168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
This study delves into the pollution status, assesses the effects of Se on Cd biogeochemical pathways, and explores their interactions in nutrient-rich paddy soil-rice ecosystems through 500 soil-rice samples in Pakistan. The results showed that 99.6 % and 12.8 % of soil samples exceeded the World Health Organization (WHO) allowable Se and Cd levels (7 and 0.35 mg/kg). In comparison, 23 % and 6 % of the grain samples exceeded WHO's allowable Se and Cd levels (0.3 and 0.2 mg/kg), respectively. Geographically Weighted Regression (GWR) model results further revealed spatial nonstationarity, confirming diverse associations between dependent variables (Se and Cd in rice grain) and independent variables from paddy soil and plant tissues (root and shoot), such as Soil Organic Matter (SOM), pH, Se, and Cd concentrations. High Se:Cd molar ratios (>1) and a negative correlation (r = -0.16, p < 0.01) between the Cd translocation factor (Cd in rice grain/Cd in root) and Se in roots suggest that increased root Se levels inhibit the transfer of Cd from roots to grains. The inverse correlation between Se and Cd in paddy grains was further characterized as Se deficiency, no risk, high Cd risk, Se risk, Cd risk, and Se-Cd co-exposure risk. There was no apparent risk for human co-consumption in 42.6 % of grain samples with moderate Se and low Cd. The remaining categories indicate differing degrees of risk. In the study area, 31 % and 20 % of grain samples with low Se and Cd indicate Se deficiency and risk, respectively. High Se and low Cd levels in rice samples suggest a potential hazard for severe Se exposure due to frequent rice consumption. This study not only systematically evaluates the pollution status of paddy-soil systems in Pakistan but also provides a reference to thoroughly contemplate the development of a scientific approach for evaluating human risks and the potential dangers associated with paddy soils and rice, specifically in regions characterized by low Se and low Cd concentrations, as well as those with moderate Se and high Cd concentrations. SYNOPSIS: This study is significant for understanding the effects of Se on Cd geochemical cycles and their interactions in paddy soil systems in Pakistan.
Collapse
Affiliation(s)
- Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | | | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Li
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China; Chongqing Field Observation Station for River and Lake Ecosystems, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
5
|
Chen M, Kong Y, Zheng W, Liu J, Wang Y, Wang Y. Accumulation and risk assessment of mercury in soil as influenced by mercury mining/smelting in Tongren, Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:83. [PMID: 38367093 DOI: 10.1007/s10653-024-01860-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
To investigate the influence of mercury (Hg) mining/smelting on the surrounding soil environment, ninety soil samples were collected around Hg mining/smelting areas in Tongren city, Guizhou Province, Southwest China. The total mercury (THg), methylmercury (MeHg), bioavailability and fractions of Hg in the soil and their potential risk were evaluated. The results showed that Hg mining/smelting significantly increased the soil pH and decreased the soil organic matter content (p < 0.05). The THg content in the surrounding soil was much higher than that at the control site, with almost all the samples exceeding the national standard in China (3.4 mg/kg, GB15618-2018). Similarly, the concentrations of MeHg (0.09-2.74 μg/kg) and bioavailable Hg (0.64-62.94 μg/kg) in these soil samples were also significantly higher than those in the control site. However, the MeHg/THg ratio was significantly lower in mining/smelting influenced soils (0.01-0.68%) than in control soils (0.60-3.72%). Fraction analysis revealed that residual (RES-Hg) and organic matter-bounded (OM-Hg) Hg accounted for more than 50% of the THg. Ecological risk assessment revealed that the potential ecological risk for most of the Hg mining/smelting-influenced soils (30.16 ≤ Er ≤ 2280.02) were higher than those at the control site (15.12 ≤ Er ≤ 27.1). In addition, these Hg mining/smelting-influenced soils posed acceptable noncarcinogenic risks to adults (except for two soil samples), with hazard indices (HIs) ranging from 0.04 to 1.11 and a mean HI of 0.44. However, children suffer serious noncarcinogenic risks, with HIs ranging from 0.34 to 7.43 and a mean HI of 3.10.
Collapse
Affiliation(s)
- Ming Chen
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yuke Kong
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Wenxiu Zheng
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Jinhui Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yong Wang
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China.
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
7
|
Cao H, Mao K, Zhang H, Wu Q, Ju H, Feng X. Thermal stability and micrdose-based coupling CRISPR/Cas12a biosensor for amplification-free detection of hgcA gene in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168536. [PMID: 37977400 DOI: 10.1016/j.scitotenv.2023.168536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The lack of point-of-use (POU) methods hinders the utilization of the hgcA gene to rapidly evaluate methylmercury risks. CRISPR/Cas12a is a promising technology, but shortcomings such as low sensitivity, a strict reaction temperature and high background signal limit its further utilization. Here, a thermally stable microsystem-based CRISPR/Cas12a biosensor was constructed to achieve POU analysis for hgcA. First, three target gRNAs were designed to recognize hgcA. Then, a microsystem was developed to eliminate the background signal. Next, the effect of temperature on the activity of the Cas12a-gRNA complex was explored and its thermal stability was discovered. After that, coupling gRNA assay was introduced to improve sensitivity, exhibiting a limit of detection as low as 0.49 pM with a linear range of 0.98-125 pM, and a recovery rate between 90 and 110 % for hgcA. The biosensor was finally utilized to assess hgcA abundance in paddy soil, and high abundance of hgcA was found in these paddy soil samples. This study not only systematically explored the influence of temperature and microsystem on CRISPR/Cas12a, providing vital references for other novel CRISPR-based detection methods, but also applied the CRISPR-based analytical method to the field of environmental geochemistry for the first time, demonstrating enormous potential for POU detection in this field.
Collapse
Affiliation(s)
- Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
8
|
Manivannan N, Subirana MA, Boada R, Marini C, Llugany M, Valiente M, Simonelli L. Mercury speciation in selenium enriched wheat plants hydroponically exposed to mercury pollution. Sci Rep 2023; 13:21132. [PMID: 38036518 PMCID: PMC10689832 DOI: 10.1038/s41598-023-46056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Mercury (Hg) pollution in agricultural soils and its potential pathway to the human food chain can pose a serious health concern. Understanding the pathway of Hg in plants and how the speciation may change upon interaction with other elements used for biofortification can be critical to assess the real implications for the final plant-based product. In that respect, selenium (Se) biofortification of crops grown in Se-poor soil regions is becoming a common practice to overcome Se deficient diets. Therefore, it is important to assess the interplay between these two elements since Se may form complexes with Hg reducing its bioavailability and toxicity. In this work, the speciation of Hg in wheat plants grown hydroponically under the presence of Hg (HgCl2) and biofortified with Se (selenite, selenate, or a 1:1 mixture of both) has been investigated by X-ray absorption spectroscopy at the Hg L3-edge. The main Hg species found in wheat grains was the highly toxic methylmercury. It was found that the Se-biofortification of wheat did not prevent, in general, the Hg translocation to grains. Only the 1:1 mixture treatment seemed to have an effect in reducing the levels of Hg and the presence of methylmercury in grains.
Collapse
Affiliation(s)
- Nithyapriya Manivannan
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Maria Angels Subirana
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Roberto Boada
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Carlo Marini
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Manuel Valiente
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Simonelli
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain.
| |
Collapse
|
9
|
Zhang J, Ge W, Xing C, Liu Y, Shen X, Zhao B, Chen X, Xu Y, Zhou S. Ecological risk assessment of potentially toxic elements in selenium-rich soil with different land-use types. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01574-z. [PMID: 37131113 DOI: 10.1007/s10653-023-01574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 05/04/2023]
Abstract
Dashan Village area is one of the representative areas in China with high selenium concentration in the natural environment. A total of 133 topsoil samples have been collected in the Dashan Village area to explore the potential toxic elements (PTEs) background concentrations in soils under different land-use types for a comprehensive PTEs risk assessment (arsenic, cadmium, chromium, copper, mercury, nickel, lead, selenium and zinc). The results show that the geometric mean concentrations of As, Cr, Cu, Hg, Ni, Pb, Se and Zn found in the soil of the Dashan Village area were lower than the control standard for soil contamination risk in agricultural land. However, the geometric mean concentrations of Cd exceeded their corresponding standard values. For different land-use types, geometric mean concentrations of As, Cd, Cu, Hg, Ni and Pb in the arable soils were higher than in woodland soils and tea garden soils. Based on the potential ecological risk assessment, the woodland, arable and tea garden were at low-risk levels. Cadmium posed the highest ecological risk, while the other PTEs were of low risk in soils. Multiple statistical analyses and geostatistical analysis indicated that the concentrations of Cr, Ni, Pb, Cu, Zn and Se originated mainly from natural sources, while the concentrations of Cd, As and Hg could be influenced by anthropogenic activities. These results provide scientific support for the safe utilization and ecological sustainability of selenium-rich land resources.
Collapse
Affiliation(s)
- Jinming Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Wen Ge
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Chen Xing
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Yuan Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaofei Shen
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Bing Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Xinyu Chen
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Yaping Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Shoubiao Zhou
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui, China.
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, 241002, Anhui, China.
| |
Collapse
|
10
|
Wang S, Yao H, Li L, Du H, Guo P, Wang D, Rennenberg H, Ma M. Differentially-expressed genes related to glutathione metabolism and heavy metal transport reveals an adaptive, genotype-specific mechanism to Hg 2+ exposure in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121340. [PMID: 36828354 DOI: 10.1016/j.envpol.2023.121340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Rice consumption is an essential cause of mercury (Hg) exposure for humans in Asia. However, the mechanism of Hg transport and accumulation in rice plants (Oryza sativa L.) remains unclear. Here, rice genotypes with contrasting Hg uptake and translocation abilities, i.e. H655 (high Hg-accumulator) and H767 (low Hg-accumulator), were selected from 261 genotypes. Through comparative physiological and transcriptome analyses, we investigated the processes responsible for the relationship between Hg accumulation, transport and tolerance. The results showed significant stimulation of antioxidative metabolism, particularly glutathione (GSH) accumulation, and up-regulated expression of regulatory genes of glutathione metabolism for H655, but not for H767. In addition, up-regulated expression of GSH S-transferase (GST) and OsPCS1 in H655 that catalyzes the binding of Hg and GSH, enhances the Hg detoxification capacity, while high-level expression of YSL2 in H655 enhances the transport ability for Hg. Conclusively, Hg accumulation in rice is a consequence of enhanced expression of genes related to Hg binding with GSH and Hg transport. With these results, the present study contributes to the selection of rice genotypes with limited Hg accumulation and to the mitigation of Hg migration in food chains thereby enhancing nutritional safety of Hg-polluted rice fields.
Collapse
Affiliation(s)
- Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hesheng Yao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lingyi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing 400715, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Hong X, Yang K, Liang H, Wang X. Enrichment of Sulfate, Acidity and Mercury in Native outcrop coal, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63368-63381. [PMID: 37060416 DOI: 10.1007/s11356-023-26791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
The coal found in the Longtan Formation of the Late Permian is widely distributed in Southwest China, including the northwestern Guizhou, southeastern Sichuan, and northern Yunnan regions. This coal typically has a high sulfur content. Eighty-two coal samples were collected from the coal strata in 11 counties spanning this area, including underground mine coal, native outcrop coal and man-made outcrop coal. The mercury, total fluorine, total sulfur, and sulfate contents and pH values were determined. The results showed that the average mercury content in native outcrop coal was 2233 ng/g, whereas that in underground mine coal was 306 ng/g, and the relative enrichment factor could reach 6.6. There was no significant difference in the total fluorine content among the three types of coals; furthermore, the total sulfur content in native outcrop coal and man-made outcrop coal was higher than that in underground mine coal because of the local policy, which strictly prohibits the mining of high-sulfur coal. Native outcrop coal is acidic, with a total average pH of 3.54 and an average sulfate content as high as 13,390 μg/g. In contrast, underground coal is almost neutral (average pH 7.33), with a low sulfate content (average 3221 μg/g). These characterizations indicate that native outcrop coal has been subjected to long-term weathering and the mercury enrichment is likely due to migration, oxidation, and precipitation of Hg from the underground coal seam and enriched in loose and pulverized coal particles. Further investigation is needed to determine whether other outcrop areas are affected by this phenomenon.
Collapse
Affiliation(s)
- Xiuping Hong
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, China
| | - Kang Yang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Handong Liang
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, 100083, China
| | - Xin Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, China
| |
Collapse
|
12
|
Mi Y, Bai X, Li X, Zhou M, Liu X, Wang F, Su H, Chen H, Wei Y. Soil Mercury Pollution Changes Soil Arbuscular Mycorrhizal Fungal Community Composition. J Fungi (Basel) 2023; 9:jof9040395. [PMID: 37108850 PMCID: PMC10143163 DOI: 10.3390/jof9040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Remediation of mercury (Hg)-contaminated soil by mycorrhizal technology has drawn increasing attention because of its environmental friendliness. However, the lack of systematic investigations on arbuscular mycorrhizal fungi (AMF) community composition in Hg-polluted soil is an obstacle for AMF biotechnological applications. In this study, the AMF communities within rhizosphere soils from seven sites from three typical Hg mining areas were sequenced using an Illumina MiSeq platform. A total of 297 AMF operational taxonomic units (OTUs) were detected in the Hg mining area, of which Glomeraceae was the dominant family (66.96%, 175 OTUs). AMF diversity was significantly associated with soil total Hg content and water content in the Hg mining area. Soil total Hg showed a negative correlation with AMF richness and diversity. In addition, the soil properties including total nitrogen, available nitrogen, total potassium, total phosphorus, available phosphorus, and pH also affected AMF diversity. Paraglomeraceae was found to be negatively correlated to Hg stress. The wide distribution of Glomeraceae in Hg-contaminated soil makes it a potential candidate for mycorrhizal remediation.
Collapse
Affiliation(s)
- Yidong Mi
- College of Environment, Hohai University, Nanjing 210098, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xue Bai
- Department of Administration Service, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100006, China
| | - Xinru Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Min Zhou
- College of Environment, Hohai University, Nanjing 210098, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
13
|
Cui L, Tian X, Xie H, Cong X, Cui L, Wu H, Wang J, Li B, Zhao J, Cui Y, Feng X, Li YF. Cardamine violifolia as a potential Hg hyperaccumulator and the cellular responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160940. [PMID: 36528102 DOI: 10.1016/j.scitotenv.2022.160940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Cardamine violifolia belongs to the Brassicaceae family and is a selenium (Se) hyperaccumulator found in Enshi, China. In this study, C. violifolia was found to accumulate mercury (Hg) in its roots and aboveground parts at concentrations up to 6000 μg/g. In the seedling and mature stages, the bioaccumulation factors (BAFS) of Hg reached 1.8-223, while the translocation factor (TF) for Hg reached 1.5. We observed a significant positive correlation between THg concentrations in plant tissues and those in the soil (r2 = 0.71-0.84). Synchrotron radiation X-ray fluorescence with focused X-ray (μ-SRXRF) showed that Hg was translocated from the roots to shoots through the vascular bundle and was transported through the leaf veins in leaves. Transmission electron microscopy showed that root cells were more tolerant to Hg than leaf cells. These findings provide insights into the mechanisms of Hg hyperaccumulation in C. violifolia. Overall, we demonstrated that C. violifolia is a promising Hg hyperaccumulator that may be used for phytoremediating Hg-contaminated farmlands.
Collapse
Affiliation(s)
- Liwei Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xue Tian
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxin Xie
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, Hubei, China; National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lihong Cui
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Han Wu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Xie H, He L, Tian X, Zhang W, Cui L, Shang L, Zhao J, Li B, Li YF. Nano mercury selenide as a source of mercury for rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120918. [PMID: 36563986 DOI: 10.1016/j.envpol.2022.120918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) is a persistent and toxic metal while mercury selenide (HgSe) is generally considered as the environmental sink of Hg in its biogeochemical cycle. Recent studies found nano-sized HgSe (nano-HgSe) could be transformed by certain bacteria. This raises safety concerns about the application of selenium (Se) to curb Hg contamination in farmlands. Therefore, hydroponic experiments were performed in which rice plants were cultured with different concentrations of nano-HgSe and micro-sized HgSe (micro-HgSe) to explore their bioavailability and toxicity. It was found that both nano-HgSe and micro-HgSe did not affect the germination of rice seeds but affected the growth of rice seedlings. However, nano-HgSe could be more readily absorbed by roots and transferred to the aboveground parts compared to micro-HgSe. The highest Hg and Se levels were found to be 5255.67 ± 2496.14 μg/g and 1743.75 ± 61.87 μg/g, respectively in roots when exposed to 5000 mg/L nano-HgSe. Besides, small portion (1.2%) of methylmercury (MeHg) to total Hg was found accumulated in rice stem when exposed to 100 mg/L nano-HgSe, suggesting that nano-HgSe could be decomposed. Furthermore, nano-HgSe exposure brought oxidative damage to rice with decreased chlorophyll content and GSH-Px activity. In all, nano-HgSe was found to be more absorbable, transportable and methylated in rice plant compared to micro-HgSe. This suggests that although Se application in Hg contaminated farmland is an effective way to reduce the bioavailability of Hg, the risk of the possible remobilization of HgSe should not be neglected. Besides, the finding that nano-HgSe can act as an environmental source of Hg for plants deepens the understanding of biogeochemical cycle of Hg. More works are required to study the factors affecting the formation of nano-HgSe in the environment and the mechanisms of Hg methylation in rice plants after exposure to nano-HgSe.
Collapse
Affiliation(s)
- Hongxin Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Xue Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China; Shandong Police College, Jinan, 250200, Shandong, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Liu B, Tian K, He Y, Hu W, Huang B, Zhang X, Zhao L, Teng Y. Dominant roles of torrential floods and atmospheric deposition revealed by quantitative source apportionment of potentially toxic elements in agricultural soils around a historical mercury mine, Southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113854. [PMID: 35816843 DOI: 10.1016/j.ecoenv.2022.113854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Hg pollution in soils surrounding the Wanshan mercury mine (WMM), once the largest Hg-producing center in China, has been confirmed, neglecting other potential toxic elements (PTEs). Better understanding of the sources and transport pathways of soil PTEs remains insufficient. To response these limitations, eight soil PTEs (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) at two typical agricultural sites, namely AZ and WW that are located near and far from the WMM, respectively, were systemically investigated. The results showed that AZ exhibited significantly higher concentrations of all the PTEs in the surface soil than WW (p < 0.01). Hg and Cd were recognized as the priority control PTEs, with their average concentrations of 21.54 and 1.21 mg kg-1 at AZ, and 15.79 and 0.48 mg kg-1 at WW. Those affected PTEs tended to enrich in near-river areas. Atmospheric deposition contributed more to soil Hg than did regular irrigation, but these two sources could not explain the considerable soil Hg accumulation. Three sources, including natural sources, hydraulic transport (torrential floods and regular irrigation) and atmospheric deposition, were identified and quantified based on the positive matrix factorization model, statistical methods and various auxiliary information. Hydraulic transport (mainly torrential floods) dominated the soil Hg input, which could explain 83.8% and 69.8% of the soil Hg input at AZ and WW, respectively. Atmospheric deposition dominated the soil Cd input, explaining 44.3% and 59.9% of the soil Cd input at AZ and WW, respectively. More attention should be given to the safe utilization of agricultural land and long-term monitoring of atmospheric deposition of Hg and Cd. This study could provide insights to prevent PTE diffusion along the above dominant transportation pathways while developing similar mine regions.
Collapse
Affiliation(s)
- Benle Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Tian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yue He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Wenyou Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Biao Huang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaohui Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ling Zhao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
16
|
Liu C, Long L, Yang Y, Zhang Y, Wang J, Sun R. The mechanisms of iron modified montmorillonite in controlling mercury release across mercury-contaminated soil-air interface in greenhouse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152432. [PMID: 34942243 DOI: 10.1016/j.scitotenv.2021.152432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Montmorillonite was modified with iron (Fe-MMT) for controlling mercury release across mercury-contaminated soil-air interface in greenhouse. With addition of Fe-MMT, although the root Hg contents in Brassica Pekinensis increased, the edible part (leaf) Hg concentrations decreased significantly, even achieved the Tolerance Limit of Mercury in Foods. The decrease of leaf Hg concentrations was attributed to the lower atmospheric Hg concentrations, which is caused by the lower soil Hg0 release fluxes. Besides the Fe-MMT can direct adsorb soil Hg0, it can also immobilize ionic Hg and decrease soil Hg reactivity via surface adsorption, chemical complexation, and situ co-precipitation. Then the contents of leachable Hg and the percentages of bioavailable speciation in soil were reduced, resulting in the soil Hg0 generation was inhibited and soil Hg0 release fluxes declined. Applying Fe-MMT to soil enhanced the diversity indexes of Streptomyces, which could promote the oxidation of soil Hg0 to Hg2+; subsequently, the soil Hg0 release fluxes decreased. After amending with Fe-MMT, the root Hg contents in Brassica Pekinensis increased because both the soil Hg and microorganisms loaded Hg could be adsorbed by iron oxides and retained on the root surface. This work can provide research basis for Fe-MMT application in Hg-contaminated soil in greenhouse.
Collapse
Affiliation(s)
- Chaoshu Liu
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Liuyan Long
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Yang Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Yutao Zhang
- Engineering Technology Center for Control and Remediation of Soil Contamination, Anshun University, Anshun 561000, China
| | - Jun Wang
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Rongguo Sun
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
17
|
Wang Q, Wang D, Li Z, Wang Y, Yang Y, Liu M, Li D, Sun G, Zeng B. Concentrations, leachability, and health risks of mercury in green tea from major production areas in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113279. [PMID: 35121251 DOI: 10.1016/j.ecoenv.2022.113279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Green tea has many health benefits and is the most consumed type in China. However, the heavy metals and contaminants in tea can also pose a great risk to human health. In this study, mercury (Hg) concentration in green tea collected from 11 provinces in China was examined. The leaching characteristics of Hg during brewing and the associated exposure to drinkers were also evaluated. Results indicated a low potential of Hg accumulation in green tea. The Hg content of green tea from Wanshan District, Guizhou Province-which has the largest Hg mine in China and is severely contaminated by Hg-could be limited by controlling the harvest time of tea leaves. The average Hg content of green tea from 43 tea production sites in China was only 6.3 ± 6.4 µg/kg dry weight. The brewing experiments of green tea showed that the leaching ratio of Hg was 22.61 ± 7.58% for 40 min of a single brew, and increased to 32.83 ± 12.37% after four rounds (3 min/ round) of brewing. The leaching of Hg from tea leaves was significantly affected by leaching time, temperature, and solid-liquid ratio but not by water hardness. The risk of Hg exposure from green tea intake was found to be very low, with an average hazard quotient (HQ) value of only 1.82 ± 1.85% for a single brew in 40 min and 2.64 ± 2.68% after four rounds of brewing. However, in some highly contaminated areas, with HQ values as high as 43.12 ± 2.41%, green tea intake may still pose a high risk of Hg exposure, and this risk should not be ignored.
Collapse
Affiliation(s)
- Qingfeng Wang
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Dan Wang
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China
| | - Zhonggen Li
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China
| | - Yuyu Wang
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China
| | - Yan Yang
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China
| | - Mengxun Liu
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China
| | - Dadong Li
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Boping Zeng
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China
| |
Collapse
|
18
|
Chang C, Yin R, Huang F, Wang R, Chen C, Mao K, Feng X, Zhang H. A new method of predicting the contribution of TGM to Hg in white rice: Using leaf THg and implications for Hg risk control in Wanshan Hg mine area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117727. [PMID: 34329067 DOI: 10.1016/j.envpol.2021.117727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Rice plants accumulate Hg from the soil and ambient air, however, evaluating the contribution of Hg from these two sources remains challenging. Here, we proposed a practical method to predict the contribution of total gaseous mercury (TGM) to Hg in white rice in Wanshan Hg mine area (WMM). In this study, rice was planted in the same low-Hg soil at different sites of WMM with varying TGM levels. Comparing to the control sites at IG (Institute of Geochemistry, Guiyang), TGM is the dominant source of Hg in rice leaves and white rice at TB (Tianba) and ZJW (Zhangjiawan) sites of WMM. Subsequently, a good correlation between the Hg concentrations in rice leaves and the concentration contributions of TGM to Hg in white rice was obtained. Such a correlation enabled feasible quantification of the contribution of TGM to Hg in white rice collected from the Wanshan Hg mine. The contribution of TGM to Hg in white rice across the WMM area was also estimated, demonstrating that white rice receives 14-83% of Hg from the air. Considering the high contribution of TGM to Hg in white rice, we compared the relative health risks of Hg via inhalation and rice consumption and found that inhalation, rather than rice consumption, was the major pathway for bioaccessible Hg exposure in adults at high-TGM sites. This study provides new knowledge of Hg biogeochemistry in Hg-mining areas.
Collapse
Affiliation(s)
- Chuanyu Chang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Ruirui Wang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Chongying Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
19
|
Yang R, He Y, Luo L, Zhu M, Zan S, Guo F, Wang B, Yang B. The interaction between selenium and cadmium in the soil-rice-human continuum in an area with high geological background of selenium and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112516. [PMID: 34273847 DOI: 10.1016/j.ecoenv.2021.112516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Natural selenium (Se)-rich areas in China are generally characterized by high geological background of cadmium (Cd). However, the interaction between Se and Cd in the soil-rice-human continuum in such areas remains elusive. The concentrations, bioaccessibilities, and biomarkers of Se and Cd in a typical Se-Cd rich area were determined through chemical analysis, in vitro digestion model and cross-sectional study, respectively. The results showed that the molar ratio of available Se/Cd in the soil was averaged at 0.55 and soil Se did not reduce Cd accumulation and transportation in rice. Se bioaccessibility increased from the gastric phase to the intestinal phase, but the opposite was the case for Cd bioaccessibility. Moreover, bioaccessible concentration of Cd was positively correlated to corresponding total concentration in rice but negatively associated with the logarithm of molar ratio of Se/Cd. The risk of Cd-induced nephrotoxicity for the exposure group was not higher than the reference group, which could be ascribed to the mitigative effect of Se. Males and elders were at higher risk of Cd-induced injury owing to higher urinary Cd (U-Cd) and β2-microglobulin (U-β2-MG), and lower urinary Se (U-Se). Our results suggested that Cd-induced health risk should be assessed from a soil-rice-human perspective and the interaction between Se and Cd should be taken into account.
Collapse
Affiliation(s)
- Ruyi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China.
| | - Yuhuan He
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Linfeng Luo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Meng Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Shuting Zan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Fuyu Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Bo Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Beibei Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
20
|
Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. BIOSENSORS-BASEL 2021; 11:bios11100352. [PMID: 34677308 PMCID: PMC8533700 DOI: 10.3390/bios11100352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Environmental contaminants are a global concern, and an effective strategy for remediation is to develop a rapid, on-site, and affordable monitoring method. However, this remains challenging, especially with regard to the detection of various contaminants in complex water environments. The application of molecular methods has recently attracted increasing attention; for example, rolling circle amplification (RCA) is an isothermal enzymatic process in which a short nucleic acid primer is amplified to form a long single-stranded nucleic acid using a circular template and special nucleic acid polymerases. Furthermore, this approach can be further engineered into a device for point-of-need monitoring of environmental pollutants. In this paper, we describe the fundamental principles of RCA and the advantages and disadvantages of RCA assays. Then, we discuss the recently developed RCA-based tools for environmental analysis to determine various targets, including heavy metals, organic small molecules, nucleic acids, peptides, proteins, and even microorganisms in aqueous environments. Finally, we summarize the challenges and outline strategies for the advancement of this technique for application in contaminant monitoring.
Collapse
|
21
|
Tang X, Wu X, Xia P, Lin T, Huang X, Zhang Z, Zhang J. Health risk assessment of heavy metals in soils and screening of accumulating plants around the Wanshan mercury mine in Northeast Guizhou Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48837-48850. [PMID: 33929664 DOI: 10.1007/s11356-021-14145-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The Wanshan mercury mine, which is an abandoned mine located in northeastern Guizhou Province in Southwest China, has introduced serious Hg pollution to the local ecosystem resulting from previous mining and smelting activities. However, it is not clear to date whether soil pollution has actually improved after treatment by related departments. Therefore, the present study investigates the vegetation community and heavy metal contents of the soil and plants in the Wanshan mercury mining area. The results showed that most of Hg, Cd, As, Cu, and Zn contents in soil samples were higher than those of Soil Environment Quality Risk Control Standard for Soil Contamination of Agricultural Land in China (GB15618-2018). The observed plant species mainly consisted of Compositae, followed by Leguminosae. Unfortunately, this investigation found that heavy metal concentrations in these plants were not extremely high and far below the standard of hyperaccumulator. Despite all this, the maximum values of bioaccumulation factor for Pb, Cd, Hg, As, Cu and Zn were Serissa japonica (Thunb.) Thunb., Rhus chinensis Mill., Potentilla sibbaldii Haller f., Erigeron canadensis L., Clerodendrum bungei var. bungei. and Rhus chinensis Mill., respectively. Regardless of the carcinogenic or noncarcinogenic risk index, the potential risk to urban children is higher. Our results suggest that heavy metal pollution was indeed relieved since their contents in soil significantly decreased in comparison with those reported in other previous studies. This finding provides a reference for the long-term treatment of heavy metal pollution in the local environment and other areas employing analogous environmental protection measures.
Collapse
Affiliation(s)
- Xiangchen Tang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Xianliang Wu
- Guizhou Institute of Biology, Guiyang, 550009, Guizhou, China
| | - Pinhua Xia
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Tao Lin
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, 550001, Guizhou, China.
| | - Zhenming Zhang
- Guizhou Institute of Biology, Guiyang, 550009, Guizhou, China.
| | - Jiachun Zhang
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang, 550004, Guizhou, China
| |
Collapse
|
22
|
Jiang H, Lin W, Jiao H, Liu J, Chan L, Liu X, Wang R, Chen T. Uptake, transport, and metabolism of selenium and its protective effects against toxic metals in plants: a review. Metallomics 2021; 13:6310585. [PMID: 34180517 DOI: 10.1093/mtomcs/mfab040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Selenium (Se) is an essential trace element of fundamental importance to humans, animals, and plants. However, the uptake, transport, and metabolic processes of Se and its underlying mechanisms in plants have not been well characterized. Here, we review our current understanding of the adsorption and assimilation of Se in plants. First, we discussed the conversion of Se from inorganic Se into organic forms, the mechanisms underlying the formation of seleno-amino acids, and the detoxification of Se. We then discussed the ways in which Se protects plants against toxic metal ions in the environment, such as by alleviating oxidative stress, regulating the activity of antioxidant enzymes, sequestering metal ions, and preventing metal ion uptake and accumulation. Generally, this review will aid future research examining the molecular mechanisms underlying the antagonistic relationships between Se and toxic metals in plants.
Collapse
Affiliation(s)
- Haiyan Jiang
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hongpeng Jiao
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Jinggong Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Rd, Guangzhou 510120, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaoying Liu
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Rui Wang
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
23
|
Du H, Guo P, Wang T, Ma M, Wang D. Significant bioaccumulation and biotransformation of methyl mercury by organisms in rice paddy ecosystems: A potential health risk to humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116431. [PMID: 33453697 DOI: 10.1016/j.envpol.2021.116431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/13/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Rice has been confirmed as one of the principal intake pathways for methylmercury (MeHg) in human, however, the impact of edible organisms, such as snails, loaches and eels, living in the rice-based ecosystem to the overall MeHg intake has been overlooked. Here, we conducted a cross-sectional ecological study, and the results showed that bioaccumulation of MeHg in these edible organisms was significantly higher than in paddy soils and rice roots (p < 0.001), even though rice roots and grains have significantly higher total Hg (THg) (p < 0.001). The MeHg/THg ratios were consistently and significantly higher in those edible organisms than in rice grains, suggesting a potential elevated MeHg exposure risk through consumption. Based on results of bioaccumulation factors (BAFs) for MeHg, it was clear that MeHg was bioaccumulated and biotransformed from paddy soils to earthworms and then to eels, as well as from paddy soils to snails and then to eels and loaches, potentially indicating that the consumption of eels and loaches was absolutely pernicious to people regularly feeding on them. Overall, MeHg was biomagnified along the food chain of the paddy ecosystem from soil to the organisms, and it was of potential higher risks for local residents to eat them, especially eels and loaches. Therefore, it is intensely indispensable for people fond of such diets to attenuate their consumption of rice, eels and loaches, thus mitigating their MeHg exposure risks.
Collapse
Affiliation(s)
- Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
24
|
Zhou X, Yang J, Kronzucker HJ, Shi W. Selenium Biofortification and Interaction With Other Elements in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:586421. [PMID: 33224171 PMCID: PMC7674621 DOI: 10.3389/fpls.2020.586421] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 05/16/2023]
Abstract
Selenium (Se) is an essential element for humans and animals and its deficiency in the diet is a global problem. Crop plants are the main source of Se for consumers. Therefore, there is much interest in understanding the factors that govern the accumulation and distribution of Se in the tissues of crop plants and the mechanisms of interaction of Se absorption and accumulation with other elements, especially with a view toward optimizing Se biofortification. An ideal crop for human consumption is rich in essential nutrient elements such as Se, while showing reduced accumulation of toxic elements in its edible parts. This review focuses on (a) summarizing the nutritional functions of Se and the current understanding of Se uptake by plant roots, translocation of Se from roots to shoots, and accumulation of Se in grains; and (b) discussing the influence of nitrogen (N), phosphorus (P), and sulfur (S) on the biofortification of Se. In addition, we discuss interactions of Se with major toxicant metals (Hg, As, and Cd) frequently present in soil. We highlight key challenges in the quest to improve Se biofortification, with a focus on both agronomic practice and human health.
Collapse
Affiliation(s)
- Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jing Yang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Herbert J. Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
25
|
Wu Q, Hu H, Meng B, Wang B, Poulain AJ, Zhang H, Liu J, Bravo AG, Bishop K, Bertilsson S, Feng X. Methanogenesis Is an Important Process in Controlling MeHg Concentration in Rice Paddy Soils Affected by Mining Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13517-13526. [PMID: 33084323 DOI: 10.1021/acs.est.0c00268] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice paddies are agricultural sites of special concern because the potent toxin methylmercury (MeHg), produced in rice paddy soils, accumulates in rice grains. MeHg cycling is mostly controlled by microbes but their importance in MeHg production and degradation in paddy soils and across a Hg concentration gradient remains unclear. Here we used surface and rhizosphere soil samples in a series of incubation experiments in combination with stable isotope tracers to investigate the relative importance of different microbial groups on MeHg production and degradation across a Hg contamination gradient. We showed that sulfate reduction was the main driver of MeHg formation and concentration at control sites, and that methanogenesis had an important and complex role in MeHg cycling as Hg concentrations increased. The inhibition of methanogenesis at the mining sites led to an increase in MeHg production up to 16.6-fold and a decrease in MeHg degradation by up to 77%, suggesting that methanogenesis is associated with MeHg degradation as Hg concentrations increased. This study broadens our understanding of the roles of microbes in MeHg cycling and highlights methanogenesis as a key control of MeHg concentrations in rice paddies, offering the potential for mitigation of Hg contamination and for the safe production of rice in Hg-contaminated areas.
Collapse
Affiliation(s)
- Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Baolin Wang
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Alexandre J Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Jinling Liu
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, P. R. China
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, Barcelona E08003, Catalunya, Spain
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, P. R. China
| |
Collapse
|