1
|
Luo ZN, He H, Zhang TY, Wei XL, Dong ZY, Xu MY, Zhao HX, Zheng ZX, Pan RJ, Hu CY, Zeng C, El-Din MG, Xu B. Enhanced iodinated disinfection byproducts formation in iodide/iodate-containing water undergoing UV-chloramine sequential disinfection: Machine learning-aided identification of reaction mechanisms. WATER RESEARCH 2025; 272:122975. [PMID: 39708378 DOI: 10.1016/j.watres.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Restricted to the complex nature of dissolved organic matter (DOM) in various aquatic environments, the mechanisms of enhanced iodinated disinfection byproducts (I-DBPs) formation in water containing both I- and IO3- (designated as I-/IO3- in this study) during the ultraviolet (UV)-chloramine sequential disinfection process remains unclear. In this study, four machine learning (ML) models were established to predict I-DBP formation by using DOM and disinfection features as input variables. Extreme gradient boosting (XGB) algorithm outperformed the others in model development using synthetic waters and in cross-dataset generalization of surface waters. Shapley additive explanation (SHAP) analysis, partial dependence plots (PDPs), and individual conditional expectation (ICE) analysis were then employed to explain the models' workings and feature interactions, aiding in identification and quantification of underlying mechanisms. A type of DOM component (namely DC_b) was found as the greatest contributor and identified as reduced quinones associated with broken-down lignin within higher plant-derived fulvic substance, serving as precursors and electron shuttles for I-DBP formation. Based on the interactional effects acquired from explanation results, the ejection of e-aq from excited DOM and pre-existing I- in the I-/IO3- system were identified responsible for the enhanced generation of I-DBPs compared to that in the I- or IO3- alone systems; extra DOM scavenged reactive iodine species (RIS), contributing to a limited enhancement. These findings and the methodology developed here together enhance our understanding of the mechanisms how DOM limitedly promotes I-DBP formation during UV-chloramine sequential disinfection of I-/IO3--containing water and facilitate effective online monitoring in the future.
Collapse
Affiliation(s)
- Zhen-Ning Luo
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xiu-Li Wei
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zheng-Yu Dong
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Meng-Yuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Heng-Xuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zheng-Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ren-Jie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chen-Yan Hu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Chao Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
2
|
Liao K, You J, Han C, Cheng H, Ren H, Hu H. Dissolved organic nitrogen depresses the expected outcome of wastewater treatment upgrading on effluent eutrophication potential mitigation: Molecular mechanistic insight. WATER RESEARCH 2024; 267:122535. [PMID: 39368189 DOI: 10.1016/j.watres.2024.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Continuously tightening total nitrogen (TN) discharge standards in wastewater treatment plants is a common practice worldwide to mitigate eutrophication. However, given the different bioavailability of effluent dissolved organic nitrogen (DON) and inorganic nitrogen, a great inefficiency of the TN-targeted upgrading might be hidden because of the poor understanding of its impact on effluent eutrophication potential mitigation. Here we show that the tightening TN discharge standards could only considerably promote inorganic nitrogen removal, however, DON concentrations remained constant across different effluent TN levels (p > 0.05, Kruskal-Wallis test). Surprisingly, restricting TN in turn increases the reactivity of DON molecules owing to the accumulation of produced DON by acting on the key biotic and abiotic transformation reactions. The difficulty of removing DON and the increased DON reactivity during wastewater treatment upgrading contribute to the practical elimination effect of effluent eutrophication potential exhibiting lower than expected. This work challenges the rationality of the prevailing pursuit for extreme-low TN discharge, calling for shifting the focus of wastewater treatment upgrading towards the more fundamental eutrophication-targeted perspective.
Collapse
Affiliation(s)
- Kewei Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jiaqian You
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Chenglong Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Huazai Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
3
|
Geng P, Lv J, Zhao L, Wang Y. Online chemiluminescence determination of the hydroxyl radical using coumarin as a probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5233-5238. [PMID: 37782128 DOI: 10.1039/d3ay01476b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The hydroxyl radical (˙OH) is one of the strongest oxidizing species, which can react with a variety of organic and inorganic chemicals. Although ˙OH is widely used for degradation of environmental pollutants, detection of ˙OH remains a major challenge due to its high reactivity and short lifetime, especially online detection. In this study, a novel method for online detection of ˙OH by flow oxidization chemiluminescence (F-OCL) using coumarin as a probe was established. The concentrations of ˙OH determined by this new method were consistent with those determined by HPLC analysis. Because the new method has a short response speed, it was successfully used to quantify the dynamic change of ˙OH in the TiO2 photocatalytic process and Fenton reaction in real time. Furthermore, a combination of two chemiluminescence systems was developed to track the dynamics of ˙OH and hydrogen peroxide (H2O2) in homogeneous or heterogeneous Fenton reactions occurring in soil slurry. The proposed method and strategy have good application potential in online ROS monitoring of both natural and engineered systems.
Collapse
Affiliation(s)
- Pengyu Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Yu S, Lv J, Jiang L, Geng P, Cao D, Wang Y. Changes of Soil Dissolved Organic Matter and Its Relationship with Microbial Community along the Hailuogou Glacier Forefield Chronosequence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4027-4038. [PMID: 36811997 DOI: 10.1021/acs.est.2c08855] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Glacier-retreated areas are ideal areas to study soil biogeochemical processes during vegetation succession, because of the limited effect of other environmental and climatic factors. In this study, the changes of soil dissolved organic matter (DOM) and its relationship with microbial communities along the Hailuogou Glacier forefield chronosequence were investigated. Both microbial diversity and DOM molecular chemodiversity recovered rapidly at the initial stage, indicating the pioneering role of microorganisms in soil formation and development. The chemical stability of soil organic matter enhanced with vegetation succession due to the retaining of compounds with high oxidation state and aromaticity. The molecular composition of DOM affected microbial communities, while microorganisms tended to utilize labile components to form refractory components. This complex relationship network between microorganisms and DOM components played an important role in the development of soil organic matter as well as the formation of stable soil carbon pool in glacier-retreated areas.
Collapse
Affiliation(s)
- Shiyang Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyu Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhu X, Wang K, Liu Z, Wang J, Wu E, Yu W, Zhu X, Chu C, Chen B. Probing Molecular-Level Dynamic Interactions of Dissolved Organic Matter with Iron Oxyhydroxide via a Coupled Microfluidic Reactor and an Online High-Resolution Mass Spectrometry System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2981-2991. [PMID: 36749182 DOI: 10.1021/acs.est.2c06816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interactions between dissolved organic matter (DOM) and iron (Fe) oxyhydroxide are crucial in regulating the biogeochemical cycling of nutrients and elements, including the preservation of carbon in soils. The mechanisms of DOM molecular assembly on mineral surfaces have been extensively studied at the mesoscale with equilibrium experiments, yet the molecular-level evolution of the DOM-mineral interface under dynamic interaction conditions is not fully understood. Here, we designed a microfluidic reactor coupled with an online solid phase extraction (SPE)-LC-QTOF MS system to continually monitor the changes in DOM composition during flowing contact with Fe oxyhydroxide at circumneutral pH, which simulates soil minerals interacting with constant DOM input. Time-series UV-visible absorption spectra and mass spectrometry data showed that after aromatic DOM moieties were first preferentially sequestered by the pristine Fe oxyhydroxide surface, the adsorption of nonaromatic DOM molecules with greater hydrophobicity, lower acidity, and lower molecular weights (<400) from new DOM solutions was favored. This is accompanied by a transition from mineral surface chemistry-dominated adsorption to organic-organic interaction-dominated adsorption. These findings provide direct molecular-level evidence to the zonal model of DOM assembly on mineral surfaces by taking the dynamics of interfacial interactions into consideration. This study also shows that coupled microfluidics and online high-resolution mass spectrometry (HRMS) system is a promising experimental platform for probing microscale environmental carbon dynamics by integrating in situ reactions, sample pretreatment, and automatic analysis.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310012, China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310012, China
| | - Enhui Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Wentao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
6
|
Yan W, Chen Y, Han L, Sun K, Song F, Yang Y, Sun H. Pyrogenic dissolved organic matter produced at higher temperature is more photoactive: Insight into molecular changes and reactive oxygen species generation. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127817. [PMID: 34883369 DOI: 10.1016/j.jhazmat.2021.127817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Pyrogenic dissolved organic matter (pyDOM) is the photolabile fraction in the dissolved organic matter pool. However, the molecular changes and reactive oxygen species generation of pyDOMs under continuous irradiation, and how these vary with feedstock type and pyrolysis temperature, are not well understood. In this study, the soluble fractions of 300 and 450 ºC biochars (pyDOM300 and pyDOM450) were subjected to photo-irradiation. PyDOM450 was of higher aromaticity, molecular variety, but lower unsaturation than pyDOM300. The molecular weight, aromaticity, and double bond equivalents of pyDOMs generally decreased after photo-irradiation. The degradation pattern of pyDOMs can be divided into two stages. In the initial 24 h, pyDOM300 degraded faster than pyDOM450, with the more profound transformation of condensed aromatics and carbohydrate into aliphatic/proteins, lignins, and tannins in pyDOM300. After 720 h irradiation, however, the degradation ratio of pyDOM450 (36.2-43.9%) exceeded that of pyDOM300 (23.7-30.3%), with the initially preserved condensed aromatics in pyDOM450 further transforming into aliphatic/proteins and tannins. This was potentially attributed to the generation of more reactive oxygen species (·OH and 1O2) in pyDOM450. This study uncovered the photodegradation mechanisms of pyDOMs at molecular scale and helped to understand their cycling and effects on environment.
Collapse
Affiliation(s)
- Wenhui Yan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yalan Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haoran Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Nashat M, Mossad M, El-Etriby HK, Gar Alalm M. Optimization of electrochemical activation of persulfate by BDD electrodes for rapid removal of sulfamethazine. CHEMOSPHERE 2022; 286:131579. [PMID: 34311399 DOI: 10.1016/j.chemosphere.2021.131579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Boron-doped diamond electrodes have been employed for the removal of sulfamethazine (SMZ) from water by electrochemical activation of persulfate (EO/BDD-PS). A set of experiments with a central composite design (CCD) was conducted to optimize the operating parameters such as persulfate dose, solution pH, and current density by response surface methodology (RSM). The experimental results indicated a rapid degradation of SMZ even at high initial concentrations. For instance, complete degradation of 50 mg L-1 of SMZ was attained after 15 min at the optimum operating conditions (persulfate loading = 0.40 g L-1, pH = 4, and current density = 21 mA cm-2). The oxidation mechanism of EO/BDD-PS process was studied based on the reactive oxidant species (ROS) revealing that both (OH) and contributed to the degradation of SMZ in the EO/BDD-PS system. Furthermore, the oxidation pathway has been proposed by the suspect screening and tandem mass spectrometry analysis. The performance of EO/BDD-PS showed faster SMZ degradation than electro-Fenton and anodic oxidation processes using the same BDD electrochemical reactor under the same conditions. Furthermore, we provided a cost estimation study revealing that a full-scale application of the EO/BDD-PS system for the treatment of similar contaminated water costs about $2.23 m-3.
Collapse
Affiliation(s)
- Mohamed Nashat
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Mossad
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Hisham Kh El-Etriby
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Gar Alalm
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt; Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Montréal, H3C 3A7, Québec, Canada.
| |
Collapse
|
8
|
Negassa W, Eckhardt KU, Regier T, Leinweber P. Dissolved organic matter concentration, molecular composition, and functional groups in contrasting management practices of peatlands. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1364-1380. [PMID: 34403153 DOI: 10.1002/jeq2.20284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
About 91,300 ha of peatlands has been rewetted in western Europe since the mid-1990s. Still, it is unknown how long-term rewetting alters the dissolved organic matter (DOM) concentration, molecular composition, and functional groups. We examined these DOM characteristics in three peatland types subjected to 47- to 231-yr drainage and 18- to 24-yr rewetting to address this knowledge gap. Cold water-extractable DOM was characterized by pyrolysis field ionization mass spectrometry (Py-FIMS) and X-ray absorption near-edge structure (XANES) spectroscopy. The dissolved organic carbon (DOC) concentration in the rewetted forest peatland was 2.7 times higher than in the drained forest peatland. However, rewetting decreased the DOC concentrations by 1.5 and 4 times in the coastal peatland and percolation mire, respectively, compared with their respective drained peatlands at the topsoil horizons. The Py-FIMS analysis revealed that all nine DOM compound classes' relative abundances differed between the rewetted and drained forest peatland with the lower relative abundances of the labile DOM compound classes in the rewetted forest peatlands. However, most DOM compound classes' relative abundances were similar between the rewetted and drained coastal peatlands and percolation mires. The XANES also revealed nine carbon and seven nitrogen functional groups with no apparent differences between the two contrasting management practices. The influence of drainage and rewetting on DOC concentration and molecular composition depends on peatland type, drainage period, rewetting intensity, and peat degradation status that should be considered in future research for understanding DOM transformation and transportation from degraded and restored peatland ecosystems.
Collapse
Affiliation(s)
- Wakene Negassa
- Soil Science, Univ. of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Kai-Uwe Eckhardt
- Soil Science, Univ. of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Tom Regier
- Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Peter Leinweber
- Soil Science, Univ. of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| |
Collapse
|
9
|
Teng C, Zhou K, Peng C, Chen W. Characterization and treatment of landfill leachate: A review. WATER RESEARCH 2021; 203:117525. [PMID: 34384952 DOI: 10.1016/j.watres.2021.117525] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Landfill leachate is a complicated organic wastewater generated in the sanitary landfilling process. Landfill leachate must be appropriately disposed to avoid ecotoxicity and environmental damage. An in depth understanding of the physiochemical characteristics and environmental behaviors of landfill leachate is essential for its effective treatment. In this study, recent advances on the properties of landfill leachate, its characterization methods and treatment techniques are critically reviewed. Specifically, the up-to-date spectroscopic techniques for landfill leachate characterization and advanced oxidation treatment techniques are highlighted. Moreover, the drawbacks and challenges of current techniques for landfill leachate characterization and treatment are discussed, along with the future perspectives in the development of characterization and treatment approaches for landfill leachate.
Collapse
Affiliation(s)
- Chunying Teng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Kanggen Zhou
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Changhong Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
10
|
Abstract
Recently, we have witnessed a booming development of composites and multi-dopant metal oxides to be employed as novel photocatalysts. Yet the practical application of photocatalysis for environmental purposes is still elusive. Concerns about the unknown fate and toxicity of nanoparticles, unsatisfactory performance in real conditions, mass transfer limitations and durability issues have so far discouraged investments in full-scale applications of photocatalysis. Herein, we provide a critical overview of the main challenges that are limiting large-scale application of photocatalysis in air and water/wastewater purification. We then discuss the main approaches reported in the literature to tackle these shortcomings, such as the design of photocatalytic reactors that retain the photocatalyst, the study of degradation of micropollutants in different water matrices, and the development of gas-phase reactors with optimized contact time and irradiation. Furthermore, we provide a critical analysis of research–practice gaps such as treatment of real water and air samples, degradation of pollutants with actual environmental concentrations, photocatalyst deactivation, and cost and environmental life-cycle assessment.
Collapse
|
11
|
Fouad M, Gar Alalm M, El-Etriby HK, Boffito DC, Ookawara S, Ohno T, Fujii M. Visible-light-driven photocatalytic disinfection of raw surface waters (300-5000 CFU/mL) using reusable coated Ru/WO 3/ZrO 2. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123514. [PMID: 32717546 DOI: 10.1016/j.jhazmat.2020.123514] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/23/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We selected ruthenium (Ru) to improve the photocatalytic activity of a WO3/ZrO2 composite. The synthesized Ru/WO3/ZrO2 was then compared to a benchmark photocatalyst (S-TiO2) in terms of photocatalytic disinfection of raw surface waters collected from the Nile Delta region, Egypt. The photocatalysts were immobilized on aluminum plates with polysiloxane to test them in repetitive cycles under the irradiation of a metal-halide lamp. Bacterial concentrations in the raw waters ranged from 300 to 5000 CFU/mL (CFU: colony-forming units) and different species and genus were detected including gram-negative (e.g., shigella, salmonella, vibrio parahaemolyticus, and vibrio cholera) and gram-positive bacteria (e.g., enterococcus). Ru/WO3/ZrO2 deactivated over 90 % of the bacterial content within 120 min for most sources, whereas S-TiO2 did not perform as highly. The bacterial count after 240 min of irradiation was below the detection limit for all different water sources. Moreover, the inhabitation of photocatalytic disinfection by natural organic matter (NOM) was investigated. Ru/WO3/ZrO2 was stable for four continuous cycles (960 min in total), suggesting the viability for practical application.
Collapse
Affiliation(s)
- Mohamed Fouad
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Gar Alalm
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan.
| | - Hisham Kh El-Etriby
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV Montréal, H3C 3A7 Québec, Canada
| | - Shinichi Ookawara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Teruhisa Ohno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|