1
|
Wang Y, Wu M, Hao Y, Li H, Mo C. Surfactant-mediated transport of polyvinyl chloride nanoplastics in porous media: Influence of natural organic matter, natural inorganic ligands and electrolytes. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 273:104597. [PMID: 40311390 DOI: 10.1016/j.jconhyd.2025.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
This study investigates the transport behavior of polyvinyl chloride nanoplastics (PVC-NPs) in porous media under surfactant-mediated conditions through a combination of column experiments, numerical simulations, and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interaction energy analysis. The effects of different surfactant types, ionic species, ionic strength, humic acid (HA), and phosphate were examined. Results indicate that surfactants enhance the transport of PVC-NPs, with anionic surfactants exhibiting a stronger enhancement effect than cationic ones. Generally, the addition of cations inhibited PVC-NPs transport, with divalent Ca2+ exhibiting a stronger inhibitory effect than monovalent Na+. Interestingly, at low ionic strengths, Na+ had a stronger inhibitory effect than Ca2+. In the presence of anionic surfactants, higher Na+ concentrations promoted PVC-NPs transport. In contrast, both HA and phosphate inhibited PVC-NPs transport under cationic surfactants, with the degree of inhibition positively correlated with their concentrations. However, under anionic surfactants, high concentrations of HA inhibited PVC-NPs transport, while lower concentrations had no significant impact. Phosphate, under anionic surfactant conditions, initially inhibited but subsequently promoted PVC-NPs transport. This study provides a comprehensive understanding of the natural transport and transformation mechanisms of PVC-NPs in the environment under surfactant influence, offering a solid data foundation and theoretical framework for accurately assessing the potential ecological and human health risks posed by nanomaterials.
Collapse
Affiliation(s)
- Yujue Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Gredelj A, Roberts J, Kearney EM, Barrett EL, Haywood N, Sheffield D, Hodges G, Miller MA. Predicting aquatic toxicity of anionic hydrocarbon and perfluorinated surfactants using membrane-water partition coefficients from coarse-grained simulations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1131-1144. [PMID: 40146042 DOI: 10.1039/d4em00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Anionic surfactants are widely used in commercial and industrial applications. For assessment of their environmental fate and effects, it is highly desirable to quantify the membrane-water partition/distribution coefficient (Kmw/Dmw). Here, we further develop a computational route to Dmw for anionic surfactants based on coarse-grained molecular dynamics simulations, validating it against new and existing experimental measurements. Having parameterised molecular fragments for the coarse-grained models, the simulations are used to predict Dmw for molecules where no experimental values are available. This expanded set of simulated Dmw values is then used to derive QSARs for acute toxicity of mono-constituent anionic surfactants in daphnids and fish, allowing for extrapolation to similar compounds without experimental Dmw values. For this study, we have selected hydrocarbon-based (HC) surfactants because of their widespread use, and perfluorinated (FC) surfactants as a challenging case study. Separate daphnid and fish QSARs demonstrate good fits, robustness and predictivity, and highlight differing toxicity relationships for HC and FC surfactants in daphnids. Overall, the combined use of simulated Dmw and derived QSARs is a promising approach for ecotoxicity screening of surfactants.
Collapse
Affiliation(s)
- Andrea Gredelj
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box. 3930 Ullevål Stadion, N-0806 Oslo, Norway.
| | - Jayne Roberts
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Eoin M Kearney
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | - Elin L Barrett
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Nicola Haywood
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - David Sheffield
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Geoff Hodges
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
3
|
Liu L, Liu L, Yuan Z, Zhao W, Huang L, Luo X, Li F, Zheng H. Enantioselective disruption of circadian rhythm behavior in goldfish (Carassius auratus) induced by chiral fungicide triadimefon at environmentally-relevant concentration. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136891. [PMID: 39708603 DOI: 10.1016/j.jhazmat.2024.136891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The pollution of triadimefon (TDF) fungicides significantly hinders the "One Health" frame achievement. However, the enantioselective effects of chiral TDF on the circadian rhythm of fish remained unclear. Herein, TDF enantiomers (R(-)-TDF and S(+)-TDF) and racemic Rac-TDF were selected to investigate their enantioselective effects and mechanisms on circadian rhythm of goldfish (Carassius auratus) at an environmentally-relevant concentration (100 µg L⁻¹). S(+)-TDF reduced the diurnal-nocturnal differences in schooling behavior more strongly than R(-)-TDF, proving the enantioselectively weakened circadian rhythm of goldfish by TDF. S(+)-TDF more preferentially bioaccumulated in goldfish than R(-)-TDF, mainly contributed to the enantioselectively disrupted circadian rhythm. On one hand, TDF enantiomers in brains differentially inhibited neuronal activity, leading to cholinergic system dysfunction. On the other hand, TDF enantiomers in intestines differentially disrupted intestinal barriers, thus potentially dysregulating the "brain-gut" axis. Importantly, the commercial probiotics alleviated the behavioral disorder, indirectly confirming that the dysbiosis of intestinal bacteria contributed to the TDF-induced circadian rhythm disruption. These findings provide novel insights into the enantioselective disruption of fish circadian rhythm behaviors by chiral fungicides at enantiomer levels, and offer novel strategies for early assessing the ecological risks of chiral agrochemicals in aquatic ecosystems.
Collapse
Affiliation(s)
- Linjia Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China.
| | - Zixi Yuan
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Wenting Zhao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Liyan Huang
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| |
Collapse
|
4
|
Xie Z, Pan L, Nie M, Cai G, Liang H, Tang J, Zhao X. Deciphering the inhibitory mechanisms of didecyldimethylammonium chloride on microalgal removal of fluoxetine: Insights from the alterations in cell surface properties and the physio-biochemical and molecular toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177841. [PMID: 39644638 DOI: 10.1016/j.scitotenv.2024.177841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The COVID-19 pandemic has increased the co-occurrence of quaternary ammonium compounds (QACs) and antidepressants in aquatic environments. Microalgae are sustainable and cost-effective candidates for removing emerging pollutants. QACs have a robust ability to adsorb on cell surface and alter membrane permeability, but little is known about the influence of QACs on microalgal bioremediation of co-existing pollutants like antidepressants. In this study, the influence mechanisms of didecyldimethylammonium chloride (DDAC) on the removal of fluoxetine (FLX) by C. pyrenoidosa were explored. The results showed that C. pyrenoidosa exhibited high removal efficiency of single FLX (75.23 %-88.65 %) mainly through biodegradation (57.12 %-67.19 %). However, the coexisting medium and high concentrations of DDAC considerably decreased the biodegradation amount (10.50 %-33.30 %) and removal efficiency (29.47 %-52.89 %) of FLX by C. pyrenoidosa. In contrast, the presence of DDAC increased extracellular and intracellular FLX concentrations due to the enhanced extracellular polymeric substance content, cell surface hydrophobicity, and cell membrane permeability. Meanwhile, DDAC showed synergistic effects with FLX on microalgal growth through exacerbated oxidative damage and photosynthesis inhibition. Moreover, transcriptomics revealed that the dysregulations of key genes involved in the DNA replication and repair, ribosome biogenesis, photosynthesis-antenna proteins, peroxisomes, and glutathione metabolism pathways were important molecular mechanisms underlying the synergistic toxicity. Furthermore, the principal component analysis suggested that the enhancement of extracellular and intracellular FLX concentrations induced by the coexistence of DDAC increased the mixture's toxicity, resulting in the decreased biodegradation amount and ultimately a reduction in the removal efficiency of FLX. Our results highlight the significance of recognizing the influence of QACs on microalgal remediation and ecological risks of antidepressants.
Collapse
Affiliation(s)
- Zhengxin Xie
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lin Pan
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Meng Nie
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guiyuan Cai
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hebin Liang
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Li W, Zhang X, Hao X, Xin R, Zhang Y, Ma Y, Niu Z. Fish skin mucosal surface becomes a barrier of antibiotic resistance genes under apramycin exposure. ENVIRONMENTAL RESEARCH 2024; 252:118930. [PMID: 38615788 DOI: 10.1016/j.envres.2024.118930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Antibiotic resistance genes (ARGs) are a kind of emerging environmental contamination, and are commonly found in antibiotic application situations, attracting wide attention. Fish skin mucosal surface (SMS), as the contact interface between fish and water, is the first line of defense against external pollutant invasion. Antibiotics are widely used in aquaculture, and SMS may be exposed to antibiotics. However, what happens to SMS when antibiotics are applied, and whether ARGs are enriched in SMS are not clear. In this study, Zebrafish (Danio rerio) were exposed to antibiotic and antibiotic resistant bacteria in the laboratory to simulate the aquaculture situation, and the effects of SMS on the spread of ARGs were explored. The results showed that SMS maintained the stability of the bacterial abundance and diversity under apramycin (APR) and bacterial exposure effectively. Until 11 days after stopping APR exposure, the abundance of ARGs in SMS (mean value was 3.32 × 10-3 copies/16S rRNA copies) still did not recover to the initial stage before exposure, which means that enriched ARGs in SMS were persistently remained. Moreover, non-specific immunity played an important role in resisting infection of external contamination. Besides, among antioxidant proteins, superoxide dismutase showed the highest activity. Consequently, it showed that SMS became a barrier of antibiotic resistance genes under APR exposure, and ARGs in SMS were difficult to remove once colonized. This study provided a reference for understanding the transmission, enrichment process, and ecological impact of antibiotics and ARGs in aquatic environments.
Collapse
Affiliation(s)
- Wenpeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaohan Hao
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Balk F, Hüsser B, Hollender J, Schirmer K. Bioconcentration Assessment of Three Cationic Surfactants in Permanent Fish Cell Lines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1452-1461. [PMID: 38214086 DOI: 10.1021/acs.est.3c05360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cationic surfactants are used in many industrial processes and in consumer products with concurrent release into the aquatic environment, where they may accumulate in aquatic organisms to regulatoryly relevant thresholds. Here, we aimed to better understand the bioconcentration behavior of three selected cationic surfactants, namely N,N-dimethyldecylamine (T10), N-methyldodecylamine (S12), and N,N,N-trimethyltetradecylammonium cation (Q14), in the cells of fish liver (RTL-W1) and gill (RTgill-W1) cell lines. We conducted full mass balances for bioconcentration tests with the cell cultures, in which the medium, the cell surface, the cells themselves, and the plastic compartment were sampled and quantified for each surfactant by HPLC MS/MS. Accumulation in/to cells correlated with the surfactants' alkyl chain lengths and their membrane lipid-water partitioning coefficient, DMLW. Cell-derived bioconcentration factors (BCF) of T10 and S12 were within a factor of 3.5 to in vivo BCF obtained from the literature, while the cell-derived BCF values for Q14 were >100 times higher than the in vivo BCF. From our experiments, rainbow trout cell lines appear as a suitable conservative in vitro screening method for bioconcentration assessment of cationic surfactants and are promising for further testing.
Collapse
Affiliation(s)
- Fabian Balk
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Bastian Hüsser
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
- ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Liao M, Wei S, Zhao J, Wang J, Fan G. Risks of benzalkonium chlorides as emerging contaminants in the environment and possible control strategies from the perspective of ecopharmacovigilance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115613. [PMID: 37862750 DOI: 10.1016/j.ecoenv.2023.115613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
An unprecedented increase in the use of disinfection products triggered by the coronavirus disease 2019 (COVID-19) pandemic is resulting in aggravating environmental loads of disinfectants as emerging contaminants, which has been considered a cause for worldwide secondary disasters. This review analyzed the literature published in the last decade about occurrence, bioaccumulation, and possible environmental risks of benzalkonium chlorides (BKCs) as emerging contaminants. Results indicated that BKCs globally occurred in municipal wastewater, surface water, groundwater, reclaimed water, sludge, sediment, soil, roof runoff, and residential dust samples across 13 countries. The maximum residual levels of 30 mg/L and 421 μg/g were reported in water and solid environmental samples, respectively. Emerging evidences suggested possible bioaccumulation of BKCs in plants, even perhaps humans. Environmentally relevant concentrations of BKCs exert potential adverse impacts on aquatic and terrestrial species, including genotoxicity, respiratory toxicity, behavioural effects and neurotoxicity, endocrine disruption and reproductive impairment, phytotoxicity, etc. Given the intrinsic biocidal and preservative properties of disinfectants, the inductive effects of residual BKCs in environment in terms of resistance and imbalance of microorganisms have been paid special attention. Considering the similarities of disinfectants to pharmaceuticals, from the perspective of ecopharmacovigilance (EPV), a well-established strategy for pharmaceutical emerging contaminants, we use the control of BKC pollution as a case, and provide some recommendations for employing the EPV measures to manage environmental risks posed by disinfectant emerging contaminants.
Collapse
Affiliation(s)
- Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Songyi Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Guangquan Fan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
8
|
Sousa B, Domingues I, Nunes B. A fish perspective on SARS-CoV-2: Toxicity of benzalkonium chloride on Danio rerio. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104200. [PMID: 37394081 DOI: 10.1016/j.etap.2023.104200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
SARS-CoV-2 outbreak led to an increased marketing of disinfectants, creating a potential environmental problem. For instance, pre-pandemic environmental levels of the disinfectant benzalkonium chloride (BAC) ranging from 0.5 to 5 mgL-1 in effluents were expected to further increase threatening aquatic life. Our aim was to characterize potential adverse effects after an acute exposure of zebrafish to different concentrations of BAC. An increase in the overall swimming activity, thigmotaxis behavior, and erratic movements were observed. An increase in CYP1A1 and catalase activities, but inhibitions of CY1A2, GSTs and GPx activities were also noticed. BAC is metabolized by CYP1A1, increasing the production of H2O2, thereby activating the antioxidant enzyme CAT. Data also showed an increase of AChE activity. Our study highlights adverse embryonic, behavioral, and metabolic effects of noteworthy environmental significance, especially considering that the use and release of BAC is most likely to increase in a near future.
Collapse
Affiliation(s)
- Beatriz Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
McLachlan MS, Ebert A, Armitage JM, Arnot JA, Droge STJ. A framework for understanding the bioconcentration of surfactants in fish. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1238-1251. [PMID: 37350243 DOI: 10.1039/d3em00070b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Surfactants are a class of chemicals released in large quantities to water, and therefore bioconcentration in fish is an important component of their safety assessment. Their structural diversity, which encompasses nonionic, anionic, cationic and zwitterionic molecules with a broad range of lipophilicity, makes their evaluation challenging. A strong influence of environmental pH adds a further layer of complexity to their bioconcentration assessment. Here we present a framework that penetrates this complexity. Using simple equations derived from current understanding of the relevant underlying processes, we plot the key bioconcentration parameters (uptake rate constant, elimination rate constant and bioconcentration factor) as a function of its membrane lipid/water distribution ratio and the neutral fraction of the chemical in water at pH 8.1 and at pH 6.1. On this chemical space plot, we indicate boundaries at which four resistance terms (perfusion with water, transcellular, paracellular, and perfusion with blood) limit transport of surfactants across the gills. We then show that the bioconcentration parameters predicted by this framework align well with in vivo measurements of anionic, cationic and nonionic surfactants in fish. In doing so, we demonstrate how the framework can be used to explore expected differences in bioconcentration behavior within a given sub-class of surfactants, to assess how pH will influence bioconcentration, to identify the underlying processes governing bioconcentration of a particular surfactant, and to discover knowledge gaps that require further research. This framework for amphiphilic chemicals may function as a template for improved understanding of the accumulation potential of other ionizable chemicals of environmental concern, such as pharmaceuticals or dyes.
Collapse
Affiliation(s)
- Michael S McLachlan
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden.
| | - Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, D-04318 Leipzig, Germany
| | - James M Armitage
- AES Armitage Environmental Sciences, Inc., Ottawa, Ontario K1L 8C3, Canada
| | - Jon A Arnot
- ARC Arnot Research and Consulting Inc., Toronto, Ontario M4M 1W4, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Steven T J Droge
- Wageningen Environmental Research, Team Environmental Risk Assessment, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
10
|
Balk F, Hollender J, Schirmer K. Investigating the bioaccumulation potential of anionic organic compounds using a permanent rainbow trout liver cell line. ENVIRONMENT INTERNATIONAL 2023; 174:107798. [PMID: 36965398 DOI: 10.1016/j.envint.2023.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Permanent rainbow trout (Oncorhynchus mykiss) cell lines represent potential in vitro alternatives to experiments with fish. We here developed a method to assess the bioaccumulation potential of anionic organic compounds in fish, using the rainbow trout liver-derived RTL-W1 cell line. Based on the availability of high quality in vivo bioconcentration (BCF) and biomagnification (BMF) data and the substances' charge state at physiological pH, four anionic compounds were selected: pentachlorophenol (PCP), diclofenac (DCF), tecloftalam (TT) and benzotriazol-tert-butyl-hydroxyl-phenyl propanoic acid (BHPP). The fish cell line acute toxicity assay (OECD TG249) was used to derive effective concentrations 50 % and non-toxic exposure concentrations to determine exposure concentrations for bioaccumulation experiments. Bioaccumulation experiments were performed over 48 h with a total of six time points, at which cell, medium and plastic fractions were sampled and measured using high resolution tandem mass spectrometry after online solid phase extraction. Observed cell internal concentrations were over-predicted by KOW-derived predictions while pH-dependent octanol-water partitioning (DOW) and membrane lipid-water partitioning (DMLW) gave better predictions of cell internal concentrations. Measured medium and cell internal concentrations at steady state were used to calculate RTL-W1-based BCF, which were compared to DOW- or DMLW-based model approaches and in vivo data. With the exception of PCP, the cell-derived BCF best compared to DOW-based model predictions, which were higher than predictions based on DMLW. All methods predicted the in vivo BCF for diclofenac well. For PCP, the cell-derived BCF was lowest although all BCF predictions underestimated the in vivo BCF by ≥ 1 order of magnitude. The RTL-W1 cells, and all other prediction methods, largely overestimated in vivo BMF, which were available for PCP, TT and BHPP. We conclude that the RTL-W1 cell line can supplement BCF predictions for anionic compounds. For BMF estimations, however, in vitro-in vivo extrapolations need adaptation or a multiple cell line approach.
Collapse
Affiliation(s)
- Fabian Balk
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland.
| |
Collapse
|
11
|
Maculewicz J, Świacka K, Stepnowski P, Dołżonek J, Białk-Bielińska A. Ionic liquids as potentially hazardous pollutants: Evidences of their presence in the environment and recent analytical developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129353. [PMID: 35738170 DOI: 10.1016/j.jhazmat.2022.129353] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are considered to be very promising group of chemicals and the number of their potential applications is growing rapidly. However, while these compounds were originally proposed as a green alternative to classical solvents, there are certain doubts as to whether this classification is correct. Although in recent years there have been first reports published proving the presence of some ILs in the environment and even in human blood, at this point the scale of this possible problem is not yet fully understood. However, there is no doubt that as the number of ILs applications increases, analytical capabilities for rapid detection of possible environmental contamination should be also considered. Therefore, in this review paper, recent evidences for the ILs environmental contamination as well as analytical achievements related to the extraction of ILs from various environmental matrices have been summarized and important gaps and future perspectives have been pointed out. Based on the presented data it might be concluded that there is the urgent need for further development towards risk assessment of these potential environmental contaminants.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
12
|
Analysis of imidazolium ionic liquids in biological matrices: A novel procedure for the determination of trace amounts in marine mussels. Talanta 2022; 252:123790. [DOI: 10.1016/j.talanta.2022.123790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/23/2023]
|
13
|
Ribbenstedt A, Armitage JM, Günther F, Arnot JA, Droge STJ, McLachlan MS. In Vivo Bioconcentration of 10 Anionic Surfactants in Rainbow Trout Explained by In Vitro Data on Partitioning and S9 Clearance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6305-6314. [PMID: 35467837 PMCID: PMC9118553 DOI: 10.1021/acs.est.1c05543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bioconcentration factors (BCFs) in rainbow trout were measured for 10 anionic surfactants with a range of alkyl chain lengths and different polar head groups. The BCFs ranged from 0.04 L kg-1 ww (for C10SO3) to 1370 L kg-1 ww (C16SO3). There was a strong correlation between the log BCF and log membrane lipid-water distribution ratio (DMLW, r2 = 0.96), and biotransformation was identified as the dominant elimination mechanism. The strong positive influence of DMLW on BCF was attributed to two phenomena: (i) increased partitioning from water into the epithelial membrane of the gill, leading to more rapid diffusion across this barrier and more rapid uptake, and (ii) increased sequestration of the surfactant body burden into membranes and other body tissues, resulting in lower freely dissolved concentrations available for biotransformation. Estimated whole-body in vivo biotransformation rate constants kB-BCF are within a factor three of rate constants estimated from S9 in vitro assays for six of the eight test chemicals for which kB-BCF could be determined. A model-based assessment indicated that the hepatic clearance rate of freely dissolved chemicals was similar for the studied surfactants. The dataset will be useful for evaluation of in silico and in vitro methods to assess bioaccumulation.
Collapse
Affiliation(s)
- Anton Ribbenstedt
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - James M. Armitage
- AES
Armitage Environmental Sciences, Inc., Ottawa, Ontario K1L 8C3, Canada
| | - Felix Günther
- Department
of Mathematics, Stockholm University, 106 91 Stockholm, Sweden
| | - Jon A. Arnot
- ARC
Arnot Research and Consulting Inc., Toronto, Ontario M4M 1W4, Canada
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Steven T. J. Droge
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Michael S. McLachlan
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Gheorghe S, Stan MS, Mitroi DN, Staicu AC, Cicirma M, Lucaciu IE, Nita-Lazar M, Dinischiotu A. Oxidative Stress and Histopathological Changes in Gills and Kidneys of Cyprinus carpio following Exposure to Benzethonium Chloride, a Cationic Surfactant. TOXICS 2022; 10:227. [PMID: 35622641 PMCID: PMC9147585 DOI: 10.3390/toxics10050227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
One cationic surfactant with a wide spectrum of microbiocidal activity is benzethonium chloride (BEC). Despite being widely used, the toxicity data on vertebrate organisms are limited. Therefore, we aimed to evaluate within this study the acute toxicity of BEC on the gills and kidneys of Cyprinus carpio (European carp). An alteration of the antioxidant enzymes activities (glutathione reductase, glutathione peroxidase and glutathione S-transferase) was noticed after 96 h of exposure, along with an elevation of lipid peroxidation and decreased concentration of reduced glutathione, which confirmed that BEC was able to induce toxicity to these tissues. These metabolic effects were correlated with unspecific structural changes observed in gills and kidneys, having moderate degree of severity (such as an increase of melanomacrophages aggregation incidence and cytoplasm vacuolation of goblet cells in collecting tubules) and generally being compatible with life for the exposure time studied. The most severe structural effects were observed in gills after 96 h, noticing a lamellar aneurysm, hemorrhages and lamellar epithelium disruption due to the blood vessels and pillar cells damages and increased blood flow inside the lamellae. By our research we can confirm the utility of biochemical and histological analyses in the fish organs as tools for monitoring the water quality and ecotoxicological potential of chemicals.
Collapse
Affiliation(s)
- Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology (ECOIND), 71–73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (S.G.); (I.E.L.); (M.N.-L.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Daniel N. Mitroi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
- AbbVie Inc., 2525 DuPont Dr, Irvine, CA 92612, USA
| | - Andrea C. Staicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
| | - Marius Cicirma
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
| | - Irina E. Lucaciu
- National Research and Development Institute for Industrial Ecology (ECOIND), 71–73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (S.G.); (I.E.L.); (M.N.-L.)
| | - Mihai Nita-Lazar
- National Research and Development Institute for Industrial Ecology (ECOIND), 71–73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (S.G.); (I.E.L.); (M.N.-L.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
| |
Collapse
|
15
|
Wang JX, Cheng YF, Pan XH, Luo P. Tissue-specific accumulation, transformation, and depuration of fipronil in adult crucian carp (Carassius auratus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113234. [PMID: 35085889 DOI: 10.1016/j.ecoenv.2022.113234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Accumulation and biotransformation of pesticides in fish tissues are essential to assess their toxicity and associated human exposure risk. The mechanisms on time-dependent and tissue-specific accumulation and transformation of fipronil in adult fish are limited. An experiment consisting of 25-d uptake of fipronil at two levels (10 and 50 μg/L) and 25-d depuration in adult crucian carp (Carassius auratus) was conducted. Fipronil concentration at 25-d exposure was tissue-specific with the order of liver > kidney > blood > muscle. The uptake rate constant of fipronil in the liver (low exposure group: 2.38 ± 0.27 L/kg/d; high exposure group: 1.10 ± 0.11 L/kg/d) was significantly higher than that in other tissues (p < 0.05), and the lowest in muscle (low exposure group: 0.10 ± 0.01 L/kg/d; high exposure group: 0.16 ± 0.11 L/kg/d). The bioconcentration factors of fipronil in different tissues were 1.04-12.7 L/kg wet weight and 177-4268 L/kg lipid. The tissue-blood distribution coefficients of the liver and kidney were lower than 1 based on lipid normalized concentration but higher than 1 based on wet weight concentration, suggesting fipronil was dispersed into other tissues mainly via blood in the lipid-combination pattern. Fipronil sulfone had 1.2-32 times higher concentration and longer depuration time than fipronil, implying fipronil sulfone was more retender in fish bodies. The estimated daily intake of fipronil via fish muscle consumption at 25-d exposure was 8.5-101 and 27-320 ng/kg bw/d for adults and children, respectively. Overall, the human health risk of fipronil and its metabolites with consumption of the polluted fish cannot be negligible.
Collapse
Affiliation(s)
- Jing-Xin Wang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yan-Fang Cheng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xin-Hong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Pei Luo
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
16
|
Droge STJ, Scherpenisse P, Arnot JA, Armitage JM, McLachlan MS, Ohe PCVD, Hodges G. Screening the baseline fish bioconcentration factor of various types of surfactants using phospholipid binding data. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1930-1948. [PMID: 34787154 DOI: 10.1039/d1em00327e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fish bioconcentration factors (BCFs) are commonly used in chemical hazard and risk assessment. For neutral organic chemicals BCFs are positively correlated with the octanol-water partition ratio (KOW), but KOW is not a reliable parameter for surfactants. Membrane lipid-water distribution ratios (DMLW) can be accurately measured for all kinds of surfactants, using phospholipid-based sorbents. This study first demonstrates that DMLW values for ionic surfactants are more than 100 000 times higher than the partition ratio to fish-oil, representing neutral storage lipid. A non-ionic alcohol ethoxylate surfactant showed almost equal affinity for both lipid types. Accordingly, a baseline screening BCF value for surfactants (BCFbaseline) can be approximated for ionic surfactants by multiplying DMLW by the phospholipid fraction in tissue, and for non-ionic surfactants by multiplying DMLW by the total lipid fraction. We measured DMLW values for surfactant structures, including linear and branched alkylbenzenesulfonates, an alkylsulfoacetate and an alkylethersulfate, bis(2-ethylhexyl)-surfactants (e.g., docusate), zwitterionic alkylbetaines and alkylamine-oxides, and a polyprotic diamine. Together with sixty previously published DMLW values for surfactants, structure-activity relationships were derived to elucidate the influence of surfactant specific molecular features on DMLW. For 23 surfactant types, we established the alkyl chain length at which BCFbaseline would exceed the EU REACH bioaccumulation (B) threshold of 2000 L kg-1, and would therefore require higher tier assessments to further refine the BCF estimate. Finally, the derived BCFbaseline are compared with measured literature in vivo BCF data where available, suggesting that refinements, most notably reliable estimates of biotransformation rates, are needed for most surfactant types.
Collapse
Affiliation(s)
- Steven T J Droge
- Institute for Biodiversity and Ecosystem Dynamics, Department Freshwater and Marine Ecology, University of Amsterdam, The Netherlands.
| | - Peter Scherpenisse
- Institute for Risk Assessment Sciences, Utrecht University, The Netherlands
| | - Jon A Arnot
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
| | | | | | | | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
17
|
Beil S, Markiewicz M, Pereira CS, Stepnowski P, Thöming J, Stolte S. Toward the Proactive Design of Sustainable Chemicals: Ionic Liquids as a Prime Example. Chem Rev 2021; 121:13132-13173. [PMID: 34523909 DOI: 10.1021/acs.chemrev.0c01265] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The tailorable and often unique properties of ionic liquids (ILs) drive their implementation into a broad variety of seminal technologies. The modular design of ILs allows in this context a proactive selection of structures that favor environmental sustainability─ideally without compromising their technological performance. To achieve this objective, the whole life cycle must be taken into account and various aspects considered simultaneously. In this review, we discuss how the structural design of ILs affects their environmental impacts throughout all stages of their life cycles and scrutinize the available data in order to point out knowledge gaps that need further research activities. The design of more sustainable ILs starts with the selection of the most beneficial precursors and synthesis routes, takes their technical properties and application specific performance into due account, and considers its environmental fate particularly in terms of their (eco)toxicity, biotic and abiotic degradability, mobility, and bioaccumulation potential. Special emphasis is placed on reported structure-activity relationships and suggested mechanisms on a molecular level that might rationalize the empirically found design criteria.
Collapse
Affiliation(s)
- Stephan Beil
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jorg Thöming
- Chemical Process Engineering, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
18
|
Droge ST, Armitage JM, Arnot JA, Fitzsimmons PN, Nichols JW. Biotransformation Potential of Cationic Surfactants in Fish Assessed with Rainbow Trout Liver S9 Fractions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3123-3136. [PMID: 34379820 PMCID: PMC9187044 DOI: 10.1002/etc.5189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 05/13/2023]
Abstract
Biotransformation may substantially reduce the extent to which organic environmental contaminants accumulate in fish. Presently, however, relatively little is known regarding the biotransformation of ionized chemicals, including cationic surfactants, in aquatic organisms. To address this deficiency, a rainbow trout liver S9 substrate depletion assay (RT-S9) was used to measure in vitro intrinsic clearance rates (CLint ; ml min-1 g liver-1 ) for 22 cationic surfactants that differ with respect to alkyl chain length and degree of methylation on the charged nitrogen atom. None of the quaternary N,N,N-trimethylalkylammonium compounds exhibited significant clearance. Rapid clearance was observed for N,N-dimethylalkylamines, and slower rates of clearance were measured for N-methylalkylamine analogs. Clearance rates for primary alkylamines were generally close to or below detectable levels. For the N-methylalkylamines and N,N-dimethylalkylamines, the highest CLint values were measured for C10 -C12 homologs; substantially lower clearance rates were observed for homologs containing shorter or longer carbon chains. Based on its cofactor dependency, biotransformation of C12 -N,N-dimethylamine appears to involve one or more cytochrome P450-dependent reaction pathways, and sulfonation. On a molar basis, N-demethylation metabolites accounted for up to 25% of the N,N-dimethylalkylamines removed during the 2-h assay, and up to 55% of the removed N-methylalkylamines. These N-demethylation products possess greater metabolic stability in the RT-S9 assay than the parent structures from which they derive and may contribute to the overall risk of ionizable alkylamines. The results of these studies provide a set of consistently determined CLint values that may be extrapolated to whole trout to inform in silico bioaccumulation assessments. Environ Toxicol Chem 2021;40:3123-3136. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Steven T.J. Droge
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Jon A. Arnot
- ARC Arnot Research and ConsultingTorontoOntarioCanada
| | - Patrick N. Fitzsimmons
- Great Lakes Toxicology and Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentUS Environmental Protection AgencyDuluthMinnesota
| | - John W. Nichols
- Great Lakes Toxicology and Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentUS Environmental Protection AgencyDuluthMinnesota
| |
Collapse
|
19
|
Wang R, Fu M, Yang J, Zhong Y, Zhang R, Zhang Q, Liu Y, Zhou Y. Surface Charge Regulation of MIL-100(Fe) by Anion Exchange for Demulsifying the Cationic Surfactant-Stabilized O/W Emulsion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49964-49973. [PMID: 34652892 DOI: 10.1021/acsami.1c14602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Demulsifying ionic surfactant-stabilized emulsions remains an emerging issue due to the stringent electrostatic barriers. In this work, a phosphate-mediated anion exchange strategy was proposed to fabricate a metal-organic framework, MIL-100(Fe), with adjustable surface charge for effective demulsification toward a cationic surfactant-stabilized emulsion. By adjusting the pH of the phosphate precursor solution, the surface charge of MIL-100(Fe) can be fine-tuned. At pH 3.0, the phosphate-exchanged MIL-100(Fe) with the zeta potential decreasing from 21.4 to 6.1 mV exhibited a significant enhancement of the demulsification efficiency (DE) from 35 to 91%. Further elevating the pH to 9.0 results in the zeta potential of the phosphate-exchanged MIL-100(Fe) to be reversed to -2.0 mV, and the DE can be optimized to 96% within 5 min. The demulsification mechanism was systematically explored based on the zeta potential, distribution of the surfactant, viscoelastic modulus evaluation, and morphological characterization of the emulsion in combination with monitoring of the dynamics process of demulsification. It was found that the phosphate-exchanged MIL-100(Fe) captured by the emulsion can lead to the release of the surfactant and heterogenization of the interfacial film, causing the elasticity of the emulsion to decrease and the irreversible deformation of emulsion droplets. Consequently, the destabilized emulsion could be subjected to the effective demulsification either by the fusion pathway mediated by the phosphate-exchanged MIL-100(Fe) or direct rupture. This work emphasized a facile and promising approach to deal with the cationic surfactant-emulsified oily wastewater and disclosed the fundamental demulsification process.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
- Carbon Neutralization Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
| | - Miao Fu
- Carbon Neutralization Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
| | - Juncai Yang
- Carbon Neutralization Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
| | - Yunqian Zhong
- Carbon Neutralization Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
| | - Ruiyang Zhang
- Carbon Neutralization Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
| | - Qian Zhang
- Carbon Neutralization Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
- Carbon Neutralization Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan Province 610500, China
| |
Collapse
|
20
|
Kierkegaard A, Sundbom M, Yuan B, Armitage JM, Arnot JA, Droge STJ, McLachlan MS. Bioconcentration of Several Series of Cationic Surfactants in Rainbow Trout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8888-8897. [PMID: 34133133 PMCID: PMC8277129 DOI: 10.1021/acs.est.1c02063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 06/07/2021] [Indexed: 05/03/2023]
Abstract
Cationic surfactants have a strong affinity to sorb to phospholipid membranes and thus possess an inherent potential to bioaccumulate, but there are few measurements of bioconcentration in fish. We measured the bioconcentration of 10 alkylamines plus two quaternary ammonium compounds in juvenile rainbow trout at pH 7.6, and repeated the measurements at pH 6.2 for 6 of these surfactants. The BCF of the amines with chain lengths ≤ C14 was positively correlated with chain length, increasing ∼0.5 log units per carbon. Their BCF was also pH dependent and approximately proportional to the neutral fraction of the amine in the water. The BCFs of the quaternary ammonium compounds showed no pH dependence and were >2 orders of magnitude less than for amines of the same chain length at pH 7.6. This indicates that systemic uptake of permanently charged cationic surfactants is limited. The behavior of the quaternary ammonium compounds and the two C16 amines studied was consistent with previous observations that these surfactants accumulate primarily to the gills and external surfaces of the fish. At pH 7.6 the BCF exceeded 2000 L kg-1 for 4 amines with chains ≥ C13, showing that bioconcentration can be considerable for some longer chained cationic surfactants.
Collapse
Affiliation(s)
- Amelie Kierkegaard
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Marcus Sundbom
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Bo Yuan
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - James M. Armitage
- AES
Armitage Environmental Sciences, Incorporated, Ottawa, Ontario K1L 8C3, Canada
| | - Jon A. Arnot
- ARC
Arnot Research and Consulting, Incorporated, Toronto, Ontario M4M 1W4, Canada
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario MM1C 1A4, Canada
| | - Steven T. J. Droge
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam 1090 GE, The Netherlands
- Dutch
Board
for the Authorisation of Plant Protection Products and Biocides (Ctgb), Ede 6717 LL, The Netherlands
| | - Michael S. McLachlan
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
21
|
Xin X, Huang G, Zhang B, Zhou Y. Trophic transfer potential of nTiO 2, nZnO, and triclosan in an algae-algae eating fish food chain. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105824. [PMID: 33857870 DOI: 10.1016/j.aquatox.2021.105824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 05/15/2023]
Abstract
Little is known about the trophic transfer of nanoparticles and personal care products via dietary exposure in an algae-algae eating fish food chain. The bioaccumulation of nano-TiO2 (P25 - nTiO2), nano-ZnO (nZnO), and triclosan (TCS) in eight different combinations were explored in this study through algae, Asterococcus superbus, to fish, Gyrinocheilus aymonieri. Results found the bioaccumulation of TCS changed with algal biomass, while the bioaccumulation of Ti and Zn varied with the amount of lipids and proteins in algal cells. In algae, Ti was in the form of nTiO2 and Zn in the form of zinc ion. Due to dietary exposure, Ti and Zn quantity in fish was closely related to that in algae. The quantity of Ti and Zn in algae and fish exposed to the interaction of nTiO2 * nZnO* TCS was higher than that in other treatments. The uptake of Ti and Zn in algae exposed to the interaction of nTiO2 * nZnO had been inhibited, and the corresponding fish also had less Ti and Zn in their tissues. nTiO2-containing treatments had higher Ti proportion in muscle than gill in fish. Treatment nZnO had the most Zn in gill, whereas nZnO * TCS-containing treatments had higher Zn proportion in gut than other tissues. No observation of TCS in fish in all treatments suggested the removal and metabolism of TCS might be induced by tissue recovery and acclimation. This is the first report on trophic transfer of mixed nanoparticles and personal care product in an algae-algae eating fish two-stage food chain.
Collapse
Affiliation(s)
- Xiaying Xin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada
| | - Guohe Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
22
|
Mesnage R, Mazzacuva F, Caldwell A, Halket J, Antoniou MN. Urinary excretion of herbicide co-formulants after oral exposure to roundup MON 52276 in rats. ENVIRONMENTAL RESEARCH 2021; 197:111103. [PMID: 33811865 DOI: 10.1016/j.envres.2021.111103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of surfactants, which are an integral component of glyphosate-formulated products is an underexplored and highly debated subject. Since biomonitoring human exposure to glyphosate co-formulants is considered as a public health priority, we developed and validated a high-resolution mass spectrometry method to measure the urinary excretion of surfactants present in Roundup MON 52276, the European Union (EU) representative formulation of glyphosate-based herbicides. Quantification was performed measuring the 5 most abundant compounds in the mixture. We validated the method and showed that it is highly accurate, precise and reproducible with a limit of detection of 0.0004 μg/mL. We used this method to estimate the oral absorption of MON 52276 surfactants in Sprague-Dawley rats exposed to three concentrations of MON 52276 via drinking water for 90 days. MON 52276 surfactants were readily detected in urine of rats administered with this commercial Roundup formulation starting from a low concentration corresponding to the EU glyphosate acceptable daily intake. Our results provide a first step towards the implementation of surfactant co-formulant biomonitoring in human populations.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | - Francesca Mazzacuva
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street, London, SE1 9NH, UK
| | - Anna Caldwell
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street, London, SE1 9NH, UK
| | - John Halket
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street, London, SE1 9NH, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
23
|
Adsorption of 17α-Ethinyl Estradiol and Bisphenol A to Graphene-Based Materials: Effects of Configuration of Adsorbates and the Presence of Cationic Surfactant. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9970268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) have attracted much attention in recent years. Graphene-based materials (GMs) have been deemed as excellent adsorbents for the removal of EDCs. The objective of the present study was to understand how the cationic surfactants (CTAB; cetyltrimethylammonium nitrate) affect the adsorption of EDCs (17α-ethinyl estradiol (EE2) and bisphenol A (BPA)) on graphene oxide (GO), reduced graphene oxides (RGOs), and the few-layered commercial graphene (CG). It was observed that the presence of CTAB showed different effects on the adsorption of EDCs to different GMs. The adsorption of EDCs on GO was enhanced because of the enhanced hydrophobicity of GMs after the adsorption of CTAB and the newly formed hemimicelles by the adsorbed CTAB, which could serve as the partition phase for EDCs. Moreover, the electron donor-acceptor interaction and cation bridging effect of the –NH4+ group of the adsorbed CTAB between EDCs and GMs could also enhance the adsorption of EDCs to GMs. With the increase of the extent of GM reduction, the adsorption enhancement by the presence of CTAB weakened. This could be attributed to the competition and pore blockage effect caused by the adsorbed CTAB. It is worth noting that the enhancement of CTAB on the adsorption of BPA to GMs was more profound than that of EE2. This is likely because the pore blockage effect plays a less important role in the adsorption of BPA due to its smaller molecular diameter and deformable structure.
Collapse
|
24
|
Evaluation of Sub-Lethal Toxicity of Benzethonium Chloride in Cyprinus carpio Liver. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Benzenthonium chloride (BEC, Hyamine 1622) is a quaternary ammonium surfactant with cationic properties widely used in cleaning, sanitation, and medical products that can become harmful to humans and also to the environment. This study aimed to evaluate its acute effects on Cyprinus carpio fish in terms of oxidative stress and morphological changes on hepatic tissue in order to show the sub-lethal toxicity of BEC. Fish were exposed to 1 mg/L BEC for 24, 48, and 96 h, and the liver samples were collected. The most significant changes were noticed after 96 h of exposure when the entire antioxidant enzyme system was affected. The activities of catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase decreased by 44%, 31%, 30%, and 45%, respectively, compared to control. Glucose-6-phosphate dehydrogenase activity decreased by 29% after 96 h of control, inducing a reduction of NADPH formation which decreased by half the level of reduced glutathione, the main non-enzymatic antioxidant. These effects correlated with the raised value of lipid peroxidation after 96 h and the morphology changes on hepatic tissue, such as cytoplasmic vacuolization and nuclear hypertrophy that could affect the normal function of the liver. All of these results showed acute toxicity of BEC on C. carpio after 96 h of exposure, causing oxidative stress response at the hepatic level.
Collapse
|