1
|
Payne EM, Langelan EG, Linden KG. High absorbance of nitrate leads to surprising effects on hydroxyl radical formation during 222 nm UV treatment. WATER RESEARCH 2025; 283:123754. [PMID: 40349595 DOI: 10.1016/j.watres.2025.123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/19/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Interest in krypton chloride excimer lamps, which emit primarily at 222 nm (UV222), for applications to water treatment has been growing rapidly in the last few years, due to the greater contaminant degradation and pathogen inactivation enabled at this low wavelength. Nitrate absorbs UV very strongly at 222 nm (ε=2747 M-1 cm-1) and is thus of particular interest in KrCl* water treatment. While the ability of nitrate to promote hydroxyl radical formation under UV irradiation from other UV sources has been well-demonstrated, the effect of nitrate on UV222/H2O2 has not been previously investigated. When nitrate is present at 5 mg-N/L or greater, addition of hydrogen peroxide, a common radical promoter in UV advanced oxidation processes, leads to a 7.3 to 20.8 % decrease in degradation of para-chlorobenzoic acid (pCBA), a probe compound for hydroxyl radical formation. This effect is attributed to 1) H2O2 acting solely as a scavenger, rather than source, of hydroxyl radicals due to light screening by nitrate during 222 nm UV and 2) increased formation of nitrite from nitrate photolysis when peroxide is present, leading to more hydroxyl radical scavenging. Nitrite was found to exceed the maximum contaminant level of 1 mg-N/L when nitrate was present at 7.5 mg-N/L, presenting a possible challenge for applications of UV222. However, it was also found that nitrite may act as a source of hydroxyl radicals due to its high absorbance and quantum yield at 222 nm, which can compensate for the increased hydroxyl scavenging by photo-produced nitrite. Lastly, the impact of irradiation path length, an important experimental design parameter, was investigated for the UV222/nitrate process and found to significantly influence chemical degradation results (kpCBA varied by 1.4-1.9 times as a function of path length), due to the high light absorption of nitrate violating several key assumptions in the standard methods for calculating UV fluence. In particular, this work challenges the inclusion of the water factor in calculating UV fluence in 222 nm studies, as the water factor corrects for photon attenuation by the background water matrix but leads to erroneous results when nitrate is present due to both nitrate's impact on the water factor by photon absorption and its role as the primary source of hydroxyl radicals during 222 nm irradiation. This work demonstrates the significant, and unexpected, impact of nitrate on UV222 advanced oxidation, and identifies key issues that researchers of this technology should consider.
Collapse
Affiliation(s)
- Emma M Payne
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO, 80303, United States
| | - Emma G Langelan
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO, 80303, United States
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO, 80303, United States.
| |
Collapse
|
2
|
Wang Y, He GX, Sanchez-Quete F, Loeb SK. Systematic Review and Meta-analysis on the Inactivation Rate of Viruses and Bacteriophage by Solar Wavelength Radiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7421-7439. [PMID: 40210473 DOI: 10.1021/acs.est.4c04766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Sunlight is a known biocide, and photodriven inactivation is an important avenue for controlling viruses in both natural and engineered systems. However, there remain significant unknowns regarding damage to viruses by sunlight, including the impact of wavelength and viral characteristics. Herein, a systematic review of the literature and meta-analysis was conducted to identify inactivation rate constants (k-values) when exposed to solar wavelengths (280-700 nm) for common human viruses and surrogates in natural and synthetic matrices. We identified 457 k-values, with 356 for nonenveloped viruses. Extracted rate constants were transformed into UV fluence-normalized k-values to isolate the most photobiologically relevant wavelengths in the solar spectrum and reported for the first time in terms of energy, rather than time, based units. Each spectral region was assessed independently, with UVB illumination reporting the highest inactivation rates, UVA contributing to inactivation both in the presence and absence of photosensitizers, and visible light demonstrating no biocidal activity. Inactivation mechanisms are reviewed identifying knowledge gaps in translating UVC mechanisms to longer wavelengths. The data compiled in this meta-analysis can be applied to inform the environmental transport of viruses, estimate solar disinfection performance in variable light conditions, or design disinfection systems based on UVA and UVB light.
Collapse
Affiliation(s)
- Yiding Wang
- Department of Civil Engineering, McGill University, 817 Sherbrooke St. W, Montreal, Quebec H3A OC3, Canada
| | - Greyson Xinghan He
- Department of Civil Engineering, McGill University, 817 Sherbrooke St. W, Montreal, Quebec H3A OC3, Canada
| | - Fernando Sanchez-Quete
- Department of Civil Engineering, McGill University, 817 Sherbrooke St. W, Montreal, Quebec H3A OC3, Canada
| | - Stephanie K Loeb
- Department of Civil Engineering, McGill University, 817 Sherbrooke St. W, Montreal, Quebec H3A OC3, Canada
| |
Collapse
|
3
|
Lu YH, Shi XR, Li WS, Lai ACK. Wavelength-specific inactivation mechanisms and efficacies of germicidal UVC for airborne human coronavirus. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136666. [PMID: 39637803 DOI: 10.1016/j.jhazmat.2024.136666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Ultraviolet germicidal irradiation (UVGI) technology can inhibit the environmental transmission of airborne pathogens, but the dose-response behavior of airborne human coronavirus and wavelength-specific inactivation mechanisms are not well understood. This study investigated three competitive UVC sources for their inactivation efficacy and mechanisms against human coronavirus OC43 (HCoV-OC43). Results showed the following order of inactivation efficacy: 222-nm KrCl excimer lamp > 263-nm UV-LEDs > 254-nm low-pressure mercury lamp. The 222-nm KrCl excimer lamp achieved a 5-log inactivation of aerosolized HCoV-OC43 with a dose of less than 1 mJ/cm², while the 263-nm UV-LEDs had the highest genome damage rate constant at 7.08 ± 0.85 mJ/cm². Although 222-nm Far-UVC caused less genome damage, it affected viral proteins more significantly, specifically the nucleocapsid (N) and spike (S) proteins, which lead to compromising capsid integrity and binding ability to host cells. Capsid integrity RT-qPCR and binding assay RT-qPCR used in this study could better monitor infectivity of airborne coronavirus than standard RT-qPCR. Additionally, significant lipid oxidation of HCoV-OC43 was observed under 222-nm irradiation, potentially impacting overall inactivation efficacy. This study provides detailed evidence on the effects of different UVC wavelengths on airborne HCoV-OC43, contributing to the optimization of UVC irradiation for indoor bioaerosol disinfection.
Collapse
Affiliation(s)
- Y H Lu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - X R Shi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - W S Li
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - A C K Lai
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Raza S, Bończak B, Atamas N, Karpińska A, Ratajczyk T, Łoś M, Hołyst R, Paczesny J. The activity of indigo carmine against bacteriophages: an edible antiphage agent. Appl Microbiol Biotechnol 2025; 109:24. [PMID: 39862274 PMCID: PMC11762416 DOI: 10.1007/s00253-025-13414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC50 values ranging from 0.105 to 0.006 mg/mL while showing no activity against the RNA phage MS2. Fluorescence correlation spectroscopy (FCS) revealed that IC selectively binds to dsDNA, demonstrated by a significant reduction in the diffusion coefficient, whereas no binding was observed with ssDNA or RNA. Mechanistically, IC permeates the phage capsid, leading to genome ejection and capsid deformation, as confirmed by TEM imaging. Under optimal conditions (50 °C, 220 rpm), IC achieved up to a 7-log reduction in phage titer, with kinetic theory supporting the enhanced collision frequency induced by agitation. Additionally, IC protected E. coli cultures from phage-induced lysis without affecting bacterial growth or protein production, as demonstrated by GFP expression assays. IC's effectiveness and environmental safety, combined with its FDA approval and cost-effectiveness, make it a promising antiphage agent for industrial applications. KEY POINTS: • Indigo carmine effectively inactivates a broad spectrum of bacteriophages, offering protection to bacteria in industrial cultures. • A novel application of indigo carmine as a food-grade, environmentally safe, and FDA-approved antiphage agent protecting bacterial cultures. • Antiphage activity arises from indigo carmine's interaction with DNA within the phage capsid without harming bacterial cells or compromising protein production in bacterial cultures.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Bartłomiej Bończak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Nataliia Atamas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, Kiev, 03127, Ukraine
| | - Aneta Karpińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marcin Łoś
- Department of Molecular Genetics of Bacteria, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Phage Consultants, Partyzantów 10/18, 80-254, Gdańsk, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
5
|
Monika, Damle EA, Kondabagil K, Kunwar A. Comparative study of inactivation efficacy of far-UVC (222 nm) and germicidal UVC (254 nm) radiation against virus-laden aerosols of artificial human saliva. Photochem Photobiol 2025. [PMID: 39828932 DOI: 10.1111/php.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Virus-laden aerosols play a substantial role in the spread of numerous infectious diseases, particularly in enclosed indoor settings. Ultraviolet-C (UVC) disinfection is known to be a highly efficient method for disinfecting pathogenic airborne viruses. Recent recommendations suggest using far-UVC radiation (222 nm) emitted by KrCl* (krypton-chloride) excimer lamps to disinfect high-risk public spaces due to lower exposure risks than low-pressure (LP) mercury lamps (254 nm). This study experimentally explored the comparative effectiveness of far-UVC (222 nm) and germicidal UVC (254 nm) in inactivating virus-laden aerosols of different protective vector media in an air disinfection chamber. The UVC inactivation performances of individual filtered KrCl* excimer lamp and LP mercury lamp were determined for inactivating the bacteriophages, MS2 (icosahedral and non-enveloped ssRNA virus) and Phi6 (spherical and enveloped dsRNA virus) aerosolized from artificial human saliva or sodium chloride and magnesium sulfate (SM) buffer as a vector media. Disinfection efficacy of filtered KrCl* excimer lamp (222 nm) and LP mercury lamp (254 nm) were evaluated for highly concentrated viral aerosols, which replicate those exhaled from infected individuals and remain suspended in air or deposited on surfaces as fomites. Our results show that using individual filtered KrCl* excimer lamp (222 nm) and LP mercury lamp (254 nm) could greatly accelerate the inactivation of the viral bioaerosols formed from artificial human saliva and SM buffer. In the case of 222 nm exposure, Phi6 exhibited significantly more susceptibility in artificial human saliva than in SM buffer whereas MS2 showed comparable vulnerability in both artificial human saliva and SM buffer. However, in the case of 254 nm exposure, both Phi6 and MS2 demonstrated significantly greater susceptibility in artificial human saliva than in SM buffer. This study offers valuable insights and improves our understanding of the influence of different vector media on UVC disinfection of exhaled virus-laden aerosols in indoor environments. These findings can guide the deployment of UVC devices which could greatly contribute to mitigating the transmission of exhaled bioaerosols in public settings.
Collapse
Affiliation(s)
- Monika
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Eeshan Ajay Damle
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- Koita Centre for Digital Health (KCDH), Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Monika, Madugula SK, Kondabagil K, Kunwar A. Far-UVC (222 nm) irradiation effectively inactivates ssRNA, dsRNA, ssDNA, and dsDNA viruses as compared to germicidal UVC (254 nm). Photochem Photobiol 2025; 101:147-156. [PMID: 38736273 DOI: 10.1111/php.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Ultraviolet-C (UVC) irradiation is being used as an effective approach for the disinfection of pathogenic viruses present in air, surfaces, and water. Recently, far-UVC radiation (222 nm) emitted by KrCl* (krypton-chloride) excimer lamps have been recommended for disinfecting high-risk public spaces to reduce the presence and transmission of infectious viruses owing to limited human health exposure risks as compared to germicidal UVC (254 nm). In this study, the UVC inactivation performances of individual filtered KrCl* excimer lamp (222 nm) and germicidal UVC lamp (254 nm) were determined against four viruses, bacteriophages MS2, Phi6, M13, and T4, having different genome compositions (ssRNA, dsRNA, ssDNA and dsDNA, respectively) and shapes (i.e., spherical (Phi6), linear (M13), and icosahedral (MS2 and T4)). Here, the disinfection efficacies of filtered KrCl* excimer lamp (222 nm) and germicidal UVC lamp (254 nm) were evaluated for highly concentrated virus droplets that mimic the virus-laden droplets released from the infected person and deposited on surfaces as fomites. Filtered KrCl* excimer (222 nm) showed significantly better inactivation against all viruses having different genome compositions and structures compared to germicidal UVC (254 nm). The obtained sensitivity against the filtered KrCl* excimer (222 nm) was found to be in the order, T4 > M13 > Phi6 > MS2 whereas for the germicidal UVC (254 nm) it was T4 > M13 > MS2 > Phi6. These results provide a strong basis to promote the use of filtered KrCl* excimer lamps (222 nm) in disinfecting contagious viruses and to limit the associated disease spread in public places and other high-risk areas.
Collapse
Affiliation(s)
- Monika
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Santhosh Kumar Madugula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- Koita Centre for Digital Health (KCDH), Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Yin R, Dao PU, Zhao J, Wang K, Lu S, Shang C, Ren H. Reactive Nitrogen Species Generated from Far-UVC Photolysis of Nitrate Contribute to Pesticide Degradation and Nitrogenous Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20676-20686. [PMID: 39504477 DOI: 10.1021/acs.est.4c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Climate change has resulted in increased use of pesticides and fertilizers in agriculture, leading to elevated pesticide and nitrate levels in aquatic ecosystems that receive agricultural runoff. In this study, we demonstrate that far-UVC (UV222) photolysis of nitrate rapidly degrades four pesticides in surface water, with a degradation rate constant 37.1-144.75 times higher than that achieved by UV254 photolysis of nitrate. The improved pesticide degradation is due not only to the enhanced direct photolysis by UV222 compared to UV254 but also to the increased generation of hydroxyl radicals (HO•) and reactive nitrogen species (e.g., NO2• and ONOO-) in the UV222/nitrate process. We determined the innate quantum yields of nitrate photolysis at 222 nm and incorporated these values into a kinetic model, allowing for the accurate prediction of nitrate photodecay and reactive species generation. While reactive nitrogen species predominantly contribute to pesticide degradation in the UV222/nitrate process, they also lead to the formation of nitration byproducts. Using stable isotope-labeled nitrate (15NO3-) combined with mass spectrometry, we confirmed that the nitration byproducts are formed from the reactive nitrogen species generated from nitrate photolysis. Additionally, we demonstrate that the UV222/nitrate process increases the formation potential of highly toxic nitrogenous chlorinated products (e.g., trichloronitromethane) during postchlorination in real surface water.
Collapse
Affiliation(s)
- Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Phuong Uyen Dao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Kun Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| |
Collapse
|
8
|
Sørensen SB, Dalby FR, Olsen SK, Kristensen K. Influence of Germicidal UV (222 nm) Lamps on Ozone, Ultrafine Particles, and Volatile Organic Compounds in Indoor Office Spaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20073-20080. [PMID: 39467664 PMCID: PMC11562711 DOI: 10.1021/acs.est.4c03903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Germicidal ultraviolet lamps with a peak emission at 222 nm (GUV222) are gaining prominence as a safe and effective solution to reduce disease transmission in occupied indoor environments. While previous studies have reported O3 production from GUV222, less is known about their impact on other indoor constituents affecting indoor air quality, especially in real occupied environments. In this study, the effects of GUV222 on the levels of ozone (O3), ultrafine particles (UFPs), and volatile organic compounds (VOCs) were investigated across multiple offices with varying occupancies. O3 from the GUV222 operation was observed to increase linearly (∼300 μg h-1 m-1) with a UV light path length from 0 to 3 m beyond which it stabilized. When applied in offices, the O3 production models based on continuous measurements revealed O3 production rates of 1040 ± 87 μg h-1. The resulting increases in steady-state concentrations of 5-21 μg m-3 were highly dependent on the number of office occupants. UFP production occurred during both unoccupied and occupied conditions but predominantly in newly renovated offices. Time-resolved measurements with a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) revealed clear alterations in office VOC concentrations. Unsurprisingly, O3 oxidation chemistry was observed, including monoterpene deprivation and 4-oxopentanal (4-OPA) production. But additionally, significant alterations from unidentified mechanisms occurred, causing increased levels of various PTR-TOF-MS signals including C2H5O2+ and C4H9+ hypothesized to arise from photoinduced formation or off-gassing during the GUV222 lamp operation.
Collapse
Affiliation(s)
- Sara Bjerre Sørensen
- Department of Biological
and Chemical Engineering, Aarhus University, Aarhus C 8000, Denmark
| | - Frederik Rask Dalby
- Department of Biological
and Chemical Engineering, Aarhus University, Aarhus C 8000, Denmark
| | - Søren Kristian Olsen
- Department of Biological
and Chemical Engineering, Aarhus University, Aarhus C 8000, Denmark
| | - Kasper Kristensen
- Department of Biological
and Chemical Engineering, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
9
|
Cai Y, Zhao Y, Wang C, Yadav AK, Wei T, Kang P. Ozone disinfection of waterborne pathogens: A review of mechanisms, applications, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60709-60730. [PMID: 39392580 DOI: 10.1007/s11356-024-34991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Water serves as a critical vector for the transmission of pathogenic microorganisms, playing a pivotal role in the emergence and propagation of numerous diseases. Ozone (O3) disinfection technology offers promising potential for mitigating the spread of these pathogens in aquatic environments. However, previous studies have only focused on the inactivated effect of O3 on a single pathogenic microorganism, lacking a comprehensive comparative analysis of various influencing factors and different types of pathogens, while the cost-effectiveness of O3 technology has not been mentioned. This review synthesized the migration characteristics of various pathogenic microorganisms in water bodies and examined the properties, mechanisms, and influencing factors of O3 inactivation. It evaluated the efficacy of O3 against diverse pathogens, namely bacteria, viruses, protozoa, and fungi, and provided a comparative analysis of their sensitivities to O3. The formation and impact of harmful disinfection by-products (DBPs) during the O3 inactivation process were assessed, alongside an analysis of the cost-effectiveness of this method. Additionally, potential synergistic treatment processes involving O3 were proposed. Based on these findings, recommendations were made for optimizing the utilization of O3 in water inactivation in order to formulate better inactivation strategies in the post-pandemic eras.
Collapse
Affiliation(s)
- Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China.
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China.
| | - Cong Wang
- Xi'an Aerospace City Water Environment Co., Ltd., Xi'an, 710199, P.R. China
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
- Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751 013, Odisha, India
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
| |
Collapse
|
10
|
Zhang X, Zhang X, Li H, Ao X, Sun W, Li Z. Reactive Oxygen Species Generated in Situ During Carbamazepine Photodegradation at 222 nm Far-UVC: Unexpected Role of H 2O Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19070-19079. [PMID: 39382092 DOI: 10.1021/acs.est.4c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
When 222 nm far-UVC is used to drive AOPs, photolysis emerges as a critical pathway for the degradation of numerous organic micropollutants (OMPs). However, the photodegradation mechanisms of the asymmetrically polarized OMPs at 222 nm remain unclear, potentially posing a knowledge barrier to the applications of far-UVC. This study selected carbamazepine (CBZ), a prevalent aquatic antiepileptic drug that degrades negligibly at 254 nm, to investigate its photodegradation mechanisms at 222 nm. Accelerated CBZ treatment by 222 nm far-UVC was mainly attributed to in situ ROS generation via self-sensitized photodegradation of CBZ. By quenching experiments and EPR tests, •OH radicals were identified as the major contributor to the CBZ photodegradation, whereas O2•- played a minor role. By deoxygenation and solvent exchange experiments, the H2O molecules were demonstrated to play a crucial role in deactivating the excited singlet state of CBZ (1CBZ*) at 222 nm: generating •OH radicals via electron transfer interactions with 1CBZ*. In addition, 1CBZ* could also undergo a photoionization process. The transformation products and pathways of CBZ at 222 nm were proposed, and the toxicities of CBZ's products were predicted. These findings provide valuable insights into OMPs' photolysis with 222 nm far-UVC, revealing more mechanistic details for far-UVC-driven systems.
Collapse
Affiliation(s)
- Xi Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xintong Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Haoxin Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
11
|
Hu CY, Hu LL, Dong ZY, Yang XY, Liu H, Chen JN, Gao LM. Enhanced degradation of emerging contaminants by Far-UVC photolysis of peracetic acid: Synergistic effect and mechanisms. WATER RESEARCH 2024; 260:121943. [PMID: 38909423 DOI: 10.1016/j.watres.2024.121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
Krypton chloride (KrCl*) excimer lamps (222 nm) are used as a promising irradiation source to drive ultraviolet-based advanced oxidation processes (UV-AOPs) in water treatment. In this study, the UV222/peracetic acid (PAA) process is implemented as a novel UV-AOPs for the degradation of emerging contaminants (ECs) in water. The results demonstrate that UV222/PAA process exhibits excellent degradation performance for carbamazepine (CBZ), with a removal rate of 90.8 % within 45 min. Notably, the degradation of CBZ in the UV222/PAA process (90.8 %) was significantly higher than that in the UV254/PAA process (15.1 %) at the same UV dose. The UV222/PAA process exhibits superior electrical energy per order (EE/O) performance while reducing resource consumption associated with the high-energy UV254/PAA process. Quenching experiments and electron paramagnetic resonance (EPR) detection confirm that HO• play a dominant role in the reaction. The contributions of direct photolysis, HO•, and other active species (RO• and 1O2) are estimated to be 5 %, 88 %, and 7 %, respectively. In addition, the effects of Cl-, HCO3-, and humic acid (HA) on the degradation of CBZ are evaluated. The presence of relatively low concentrations of Cl-, HCO3-, and HA can inhibit CBZ degradation. The UV222/PAA oxidation process could also effectively degrade several other ECs (i.e., iohexol, sulfamethoxazole, acetochlor, ibuprofen), indicating the potential application of this process in pollutant removal. These findings will propel the development of the UV222/PAA process and provide valuable insights for its application in water treatment.
Collapse
Affiliation(s)
- Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Li-Li Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Zheng-Yu Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China.
| | - Xin-Yu Yang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Hao Liu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Jia-Nan Chen
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Ling-Mei Gao
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China
| |
Collapse
|
12
|
Xu J, Kann RJ, Mohammed D, Huang CH. Far-UVC 222 nm Treatment: Effects of Nitrate/Nitrite on Disinfection Byproduct Formation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39133232 PMCID: PMC11360365 DOI: 10.1021/acs.est.4c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Irradiation at far ultraviolet C (far-UVC) 222 nm by krypton chloride (KrCl*) excilamps can enhance microbial disinfection and micropollutant photolysis/oxidation. However, nitrate/nitrite, which absorbs strongly at 222 nm, may affect the formation of disinfection byproducts (DBPs). Herein, we evaluated model organic matter and real water samples and observed a substantial increase in the formation potential for trichloronitromethane (chloropicrin) (TCNM-FP), a nitrogenous DBP, by nitrate or nitrite after irradiation at 222 nm. At a disinfection dose of 100 mJ·cm-2, TCNM-FP of humic acids and fulvic acids increased from ∼0.4 to 25 and 43 μg·L-1, respectively, by the presence of 10 mg-N·L-1 nitrate. For the effect of nitrate concentration, the TCNM-FP peak was observed at 5-10 mg-N·L-1. Stronger fluence caused a greater increase of TCNM-FP. Similarly, the increase of TCNM-FP was also observed for wastewater and drinking water samples containing nitrate. Pretreatment using ozonation and coagulation, flocculation, and filtration or the addition of H2O2 can effectively control TCNM-FP. The formation potential of other DBPs was minorly affected by irradiation at 222 nm regardless of whether nitrate/nitrite was present. Overall, far-UVC 222 nm treatment poses the risk of increasing TCNM-FP of waters containing nitrate or nitrite at environmentally relevant concentrations and the mitigation strategies merit further research.
Collapse
Affiliation(s)
- Jiale Xu
- Department
of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, United States
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan J. Kann
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Dauda Mohammed
- Department
of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
van der Schans M, Yu J, de Vries A, Martin G. Estimation of the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm irradiation using CFD-based room disinfection simulations. Sci Rep 2024; 14:15963. [PMID: 38987323 PMCID: PMC11237116 DOI: 10.1038/s41598-024-63472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
The recent COVID-19 pandemic has raised interest in efficient air disinfection solutions. The application of germicidal ultraviolet (GUV) irradiation is an excellent contender to prevent airborne transmission of COVID-19, as well as other existing and future infectious airborne diseases. While GUV has already been proven effective in inactivating SARS-CoV-2, quantitative data on UV susceptibility and dose requirements, needed to predict and optimize the performance of GUV solutions, is still limited. In this study, the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm ultraviolet (UV) irradiation is investigated. This is done by employing 3D computational fluid dynamics based simulations of SARS-CoV-2 inactivation in a test chamber equipped with an upper-room UV-C luminaire and comparing the results to previously published measurements performed in the same test chamber. The UV susceptibility found in this study is (0.6 ± 0.2) m2/J, which is equivalent to a D90 dose between 3 and 6 J/m2. These values are in the same range as previous estimations based on other corona viruses and inactivation data reported in literature.
Collapse
Affiliation(s)
| | - Joan Yu
- Signify, High Tech Campus 7, 5656AE, Eindhoven, The Netherlands
| | - Adrie de Vries
- Signify, High Tech Campus 7, 5656AE, Eindhoven, The Netherlands
| | | |
Collapse
|
14
|
Jing ZB, Wang WL, Nong YJ, Peng L, Yang ZC, Ye B, Lee MY, Wu QY. Suppression of photoreactivation of E. coli by excimer far-UV light (222 nm) via damage to multiple targets. WATER RESEARCH 2024; 255:121533. [PMID: 38569359 DOI: 10.1016/j.watres.2024.121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Low-pressure mercury lamps emitting at 254 nm (UV254) are used widely for disinfection. However, subsequent exposure to visible light results in photoreactivation of treated bacteria. This study employed a krypton chloride excimer lamp emitting at 222 nm (UV222) to inactivate E. coli. UV222 and UV254 treatment had similar E. coli-inactivation kinetics. Upon subsequent irradiation with visible light, E. coli inactivated by UV254 was reactivated from 2.71-log to 4.75-log, whereas E. coli inactivated by UV222 showed negligible photoreactivation. UV222 treatment irreversibly broke DNA strands in the bacterium, whereas UV254 treatment primarily formed nucleobase dimers. Additionally, UV222 treatment caused cell membrane damage, resulting in wizened, pitted cells and permeability changes. The damage to the cell membrane was mainly due to the photolysis of proteins and lipids by UV222. Furthermore, the photolysis of proteins by UV222 destroyed enzymes, which blocked photoreactivation and dark repair. The multiple damages can be further evidenced by 4.0-61.1 times higher quantum yield in the photolysis of nucleobases and amino acids for UV222 than UV254. This study demonstrates that UV222 treatment damages multiple sites in bacteria, leading to their inactivation. Employing UV222 treatment as an alternative to UV254 could be viable for inhibiting microorganism photoreactivation in water and wastewater.
Collapse
Affiliation(s)
- Zi-Bo Jing
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Yu-Jia Nong
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lu Peng
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zi-Chen Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bei Ye
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Seogu, Incheon, 22689, Republic of Korea
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
15
|
Petersen C, Buonanno M, Guan L, Hinzer A, Urbano J, Hashmi R, Shuryak I, Parker C, Welch D. Susceptibility of extremophiles to far-UVC light for bioburden reduction in spacecraft assembly facilities. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:56-63. [PMID: 38670653 DOI: 10.1016/j.lssr.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 04/28/2024]
Abstract
The prevention and reduction of microbial species entering and leaving Earth's biosphere is a critical aspect of planetary protection research. While various decontamination methods exist and are currently utilized for planetary protection purposes, the use of far-UVC light (200-230 nm) as a means for microbial reduction remains underexplored. Unlike conventional germicidal ultraviolet at 254 nm, which can pose a health risk to humans even with small exposure doses, far-UVC light poses minimal health hazard making it a suitable candidate for implementation in occupied areas of spacecraft assembly facilities. This study investigates the efficacy of far-UVC 222-nm light to inactivate bacteria using microbial species which are relevant to planetary protection either in vegetative cell or spore form. All the tested vegetative cells demonstrated susceptibility to 222-nm exposure, although susceptibility varied among the tested species. Notably, Deinococcus radiodurans, a species highly tolerant to extreme environmental conditions, exhibited the most resistance to far-UVC exposure with a dose of 112 mJ/cm2 required for a 1-log reduction in survival. While spore susceptibility was similar across the species tested, Bacillus pumilus spores were the most resistant of the tested spores when analyzed with a bi-exponential cell killing model (D90 of 6.8 mJ/cm2). Overall, these results demonstrate the efficacy of far-UVC light for reducing microbial bioburden to help ensure the success and safety of future space exploration missions.
Collapse
Affiliation(s)
- Camryn Petersen
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Lisa Guan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Akemi Hinzer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Joshua Urbano
- California State Polytechnic University, Pomona, CA, United States
| | - Raabia Hashmi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Ceth Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
16
|
Lu YH, Wang RX, Liu HL, Lai ACK. Evaluating the Performance of UV Disinfection across the 222-365 nm Spectrum against Aerosolized Bacteria and Viruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6868-6877. [PMID: 38593035 DOI: 10.1021/acs.est.3c08675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Bioaerosols play a significant role in the transmission of many infectious diseases, especially in enclosed indoor environments. Ultraviolet (UV) disinfection has demonstrated a high efficacy in inactivating microorganisms suspended in the air. To develop more effective and efficient UV disinfection protocols, it is necessary to evaluate and optimize the effectiveness of UV disinfection against aerosolized bacteria and viruses across the entire UV spectrum. In this study, we evaluated the performance of UV disinfection across the UV spectrum, ranging from 222 to 365 nm, against aerosolized bacteria and viruses, including Escherichia coli, Staphylococcus epidermidis, Salmonella enterica, MS2, P22, and Phi6. Six commonly available UV sources, including gas discharge tubes and light-emitting diodes with different emission spectra, were utilized, and their performance in terms of inactivation efficacy, action spectrum, and energy efficiency was determined. Among these UV sources, the krypton chloride excilamp emitting at a peak wavelength of 222 nm was the most efficient in inactivating viral bioaerosols. A low-pressure mercury lamp emitting at 254 nm performed well on both inactivation efficacy and energy efficiency. A UV light-emitting diode emitting at 268 nm demonstrated the highest bacterial inactivation efficacy, but required approximately 10 times more energy to achieve an equivalent inactivation level compared with that of the krypton chloride excilamp and low-pressure mercury lamp. This study provides insights into UV inactivation on bioaerosols, which can guide the development of effective wavelength-targeted UV air disinfection technologies and may significantly help reduce bioaerosol transmission in public areas.
Collapse
Affiliation(s)
- Y H Lu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - R X Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - H L Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - A C K Lai
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| |
Collapse
|
17
|
Buonanno M, Kleiman NJ, Welch D, Hashmi R, Shuryak I, Brenner DJ. 222 nm far-UVC light markedly reduces the level of infectious airborne virus in an occupied room. Sci Rep 2024; 14:6722. [PMID: 38509265 PMCID: PMC10954628 DOI: 10.1038/s41598-024-57441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
An emerging intervention for control of airborne-mediated pandemics and epidemics is whole-room far-UVC (200-235 nm). Laboratory studies have shown that 222-nm light inactivates airborne pathogens, potentially without harm to exposed occupants. While encouraging results have been reported in benchtop studies and in room-sized bioaerosol chambers, there is a need for quantitative studies of airborne pathogen reduction in occupied rooms. We quantified far-UVC mediated reduction of aerosolized murine norovirus (MNV) in an occupied mouse-cage cleaning room within an animal-care facility. Benchtop studies suggest that MNV is a conservative surrogate for airborne viruses such as influenza and coronavirus. Using four 222-nm fixtures installed in the ceiling, and staying well within current recommended regulatory limits, far-UVC reduced airborne infectious MNV by 99.8% (95% CI: 98.2-99.9%). Similar to previous room-sized bioaerosol chamber studies on far-UVC efficacy, these results suggest that aerosolized virus susceptibility is significantly higher in room-scale tests than in bench-scale laboratory studies. That said, as opposed to controlled laboratory studies, uncertainties in this study related to airflow patterns, virus residence time, and dose to the collected virus introduce uncertainty into the inactivation estimates. This study is the first to directly demonstrate far-UVC anti-microbial efficacy against airborne pathogens in an occupied indoor location.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA.
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA
| | - Raabia Hashmi
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA.
| |
Collapse
|
18
|
Belland K, Garcia D, DeJohn C, Allen GR, Mills WD, Glaudel SP. Safety and Effectiveness Assessment of Ultraviolet-C Disinfection in Aircraft Cabins. Aerosp Med Hum Perform 2024; 95:147-157. [PMID: 38356125 DOI: 10.3357/amhp.6350.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
INTRODUCTION: Aircraft cabins, susceptible to disease transmission, require effective strategies to minimize the spread of airborne diseases. This paper reviews the James Reason Swiss Cheese Theory in mitigating these risks, as implemented by the International Civil Aviation Organization during the COVID-19 pandemic. It also evaluates the use of airborne ultraviolet-C (UV-C) light as an additional protective measure.METHODS: Our approach involved a thorough literature review by experts and a detailed risk-vs.-benefit analysis. The review covered existing research to understand the scientific foundation, while the analysis used established techniques to assess the impact of influenza and COVID-19 in terms of infections, deaths, and economic costs.RESULTS: Integrating UV-C light in aircraft cabins, when applied with appropriate scientific understanding and engineering safeguards, has the potential to reduce in-flight disease transmission. This additional mitigation strategy can work synergistically with existing measures.DISCUSSION: The research and risk-vs.-benefit analysis present strong evidence for the safety and effectiveness of continuous UV-C disinfection in aircraft cabins. It suggests that UV-C light, maintained below exposure limits, can be a valuable addition to existing measures against disease transmission during flights.Belland K, Garcia D, DeJohn C, Allen GR, Mills WD, Glaudel SP. Safety and effectiveness assessment of ultraviolet-C disinfection in aircraft cabins. Aerosp Med Hum Perform. 2024; 95(3):147-157.
Collapse
|
19
|
Stanton EJ, Tønning P, Ulsig EZ, Calmar S, Stanton MA, Thomsen ST, Gravesen KB, Johansen P, Volet N. Continuous-wave second-harmonic generation in the far-UVC pumped by a blue laser diode. Sci Rep 2024; 14:3238. [PMID: 38331948 PMCID: PMC10853522 DOI: 10.1038/s41598-024-53144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Far-UVC light in the wavelength range of 200-230 nm has attracted renewed interest because of its safety for human exposure and effectiveness in inactivating pathogens. Here we present a compact solid-state far-UVC laser source based on second-harmonic generation (SHG) using a low-cost commercially-available blue laser diode pump. Leveraging the high intensity of light in a nanophotonic waveguide and heterogeneous integration, our approach achieves Cherenkov phase-matching across a bonded interface consisting of a silicon nitride (SiN) waveguide and a beta barium borate (BBO) nonlinear crystal. Through systematic investigations of waveguide dimensions and pump power, we analyze the dependencies of Cherenkov emission angle, conversion efficiency, and output power. Experimental results confirm the feasibility of generating far-UVC, paving the way for mass production in a compact form factor. This solid-state far-UVC laser source shows significant potential for applications in human-safe disinfection, non-line-of-sight free-space communication, and deep-UV Raman spectroscopy.
Collapse
Affiliation(s)
- Eric J Stanton
- EMode Photonix, Boulder, CO, USA.
- National Institute of Standards and Technology, Boulder, CO, USA.
- Department of Physics, University of Colorado, Boulder, CO, USA.
| | | | - Emil Z Ulsig
- UVL A/S, Aarhus, Denmark
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | | | | | - Simon T Thomsen
- UVL A/S, Aarhus, Denmark
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Kevin B Gravesen
- UVL A/S, Aarhus, Denmark
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | | | - Nicolas Volet
- UVL A/S, Aarhus, Denmark
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Kousha O, O'Mahoney P, Hammond R, Wood K, Eadie E. 222 nm Far-UVC from filtered Krypton-Chloride excimer lamps does not cause eye irritation when deployed in a simulated office environment. Photochem Photobiol 2024; 100:137-145. [PMID: 37029739 PMCID: PMC10952573 DOI: 10.1111/php.13805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Far-UVC, from filtered Krypton-Chloride lamps, is promising for reducing airborne transmission of disease. While significant research has been undertaken to investigate skin safety of these lamps, less work has been undertaken on eye safety. There is limited data on human eye safety or discomfort from the deployment of this germicidal technology. In this pilot study, immediate and delayed eye discomfort were assessed in a simulated office environment with deployment of Krypton-Chloride lamps, located on the ceiling and directed downwards into the occupied room. Discomfort was assessed immediately postexposure and several days after exposure using validated, Standard Patient Evaluation Eye Dryness (SPEED) and Ocular Surface Disease Index (OSDI) questionnaires. Our results show no significant eye discomfort or adverse effects from the deployment of Far-UVC in this simulated office environment, even when lamps were operated continuously with participants receiving head exposures of up to 50 mJ cm-2 . In addition, a statistically significant reduction in bacteria and fungi of 52% was observed. Far-UVC in this simulated office environment did not cause any clinically significant eye discomfort and was effective at reducing pathogens in the room. These results contribute an important step to further investigation of the interaction of Far-UVC with the human eye.
Collapse
Affiliation(s)
- Obaid Kousha
- School of MedicineUniversity of St AndrewsSt AndrewsUK
| | | | | | - Kenneth Wood
- SUPA, School of Physics and AstronomyUniversity of St AndrewsSt AndrewsUK
| | - Ewan Eadie
- Photobiology Unit, NHS TaysideNinewells Hospital and Medical SchoolDundeeUK
| |
Collapse
|
21
|
Wang Y, Ma B, Zhao J, Tang Z, Li W, He C, Xia D, Linden KG, Yin R. Rapid Inactivation of Fungal Spores in Drinking Water by Far-UVC Photolysis of Free Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21876-21887. [PMID: 37978925 DOI: 10.1021/acs.est.3c05703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Effective and affordable disinfection technology is one key to achieving Sustainable Development Goal 6. In this work, we develop a process by integrating Far-UVC irradiation at 222 nm with free chlorine (UV222/chlorine) for rapid inactivation of the chlorine-resistant and opportunistic Aspergillus niger spores in drinking water. The UV222/chlorine process achieves a 5.0-log inactivation of the A. niger spores at a chlorine dosage of 3.0 mg L-1 and a UV fluence of 30 mJ cm-2 in deionized water, tap water, and surface water. The inactivation rate constant of the spores by the UV222/chlorine process is 0.55 min-1, which is 4.6-fold, 5.5-fold, and 1.8-fold, respectively, higher than those of the UV222 alone, chlorination alone, and the conventional UV254/chlorine process under comparable conditions. The more efficient inactivation by the UV222/chlorine process is mainly attributed to the enhanced generation of reactive chlorine species (e.g., 6.7 × 10-15 M of Cl•) instead of hydroxyl radicals from UV222 photolysis of chlorine, which is verified through both experiments and a kinetic model. We further demonstrate that UV222 photolysis damages the membrane integrity and benefits the penetration of chlorine and radicals into cells for inactivation. The merits of the UV222/chlorine process over the UV254/chlorine process also include the more effective inhibition of the photoreactivation of the spores after disinfection and the lower formation of chlorinated disinfection byproducts and toxicity.
Collapse
Affiliation(s)
- Yongyi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanxin Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
22
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Zhao J, Shang C, Yin R. A High-Radical-Yield Advanced Oxidation Process Coupling Far-UVC Radiation with Chlorinated Cyanurates for Micropollutant Degradation in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18867-18876. [PMID: 37158565 DOI: 10.1021/acs.est.3c00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing the radical yield and reducing energy consumption would enhance the sustainability and competitiveness of advanced oxidation processes (AOPs) for micropollutant degradation in water. We herein report a novel AOP coupling far-UVC radiation at 222 nm with chlorinated cyanurates (termed the UV222/Cl-cyanurates AOP) for radical generation and micropollutant abatement in water. We experimentally determined the concentrations of HO•, Cl•, and ClO• in the UV222/Cl-cyanurates AOP in deionized water and swimming pool water. The radical concentrations are 10-27 times and 4-13 times, respectively, higher than those in the UV254/Cl-cyanurates AOP and the well-documented UV254/chlorine AOP under comparable conditions (e.g., same UV fluence and oxidant dosing). We determined the molar absorption coefficients and innate quantum yields of two chlorine species and two Cl-cyanurates at 222 nm and incorporated these parameters into a kinetic model. The model enables accurate prediction of oxidant photodecay rates as well as the pH impact on radical generation in the UV222/Cl-cyanurates AOP. We predicted the pseudo-first-order degradation rate constants of 25 micropollutants in the UV222/Cl-cyanurates AOP and demonstrated that many micropollutants can be degraded by >80% with a low UV fluence of 25 mJ cm-2. This work advances the fundamental photochemistry of chlorine and Cl-cyanurates at 222 nm and offers a highly effective engineering tool in combating micropollutants in water where Cl-cyanurates are suitable to use.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
24
|
Tang L, Li A, Kong M, Dionysiou DD, Duan X. Effects of wavelength on the treatment of contaminants of emerging concern by UV-assisted homogeneous advanced oxidation/reduction processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165625. [PMID: 37481088 DOI: 10.1016/j.scitotenv.2023.165625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Pollutants of emerging concern in aqueous environments present a significant threat to both the aquatic ecosystem and human health due to their rapid transfer. Among the various treatment approaches to remove those pollutants, UV-assisted advanced oxidation/reduction processes are considered competent and cost-effective. The treatment effectiveness is highly dependent on the wavelength of the UV irradiation used. This article systematically discusses the wavelength dependency of direct photolysis, UV/peroxides, UV/chlor(am)ine, UV/ClO2, UV/natural organic matter, UV/nitrate, and UV/sulfite on the transformation of contaminants. Altering wavelengths affects the photolysis of target pollutants, photo-decay of the oxidant/reductant, and quantum yields of reactive species generated in the processes, which significantly impact the degradation rates and formation of disinfection byproducts. In general, the degradation of contaminants is most efficient when using wavelengths that closely match the highest molar absorption coefficients of the target pollutants or the oxidizing/reducing agents, and the contribution of pollutant absorption is generally more significant. By matching the wavelength with the peak absorbance of target compounds and oxidants/reductants, researchers and engineers have the potential to optimize the UV wavelengths used in UV-AO/RPs to effectively remove pollutants and control the formation of disinfection byproducts.
Collapse
Affiliation(s)
- Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Aozhou Li
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghao Kong
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Xiaodi Duan
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
25
|
Barber VP, Goss MB, Franco Deloya LJ, LeMar LN, Li Y, Helstrom E, Canagaratna M, Keutsch FN, Kroll JH. Indoor Air Quality Implications of Germicidal 222 nm Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15990-15998. [PMID: 37827494 PMCID: PMC10607233 DOI: 10.1021/acs.est.3c05680] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
One strategy for mitigating the indoor transmission of airborne pathogens, including the SARS-CoV-2 virus, is irradiation by germicidal UV light (GUV). A particularly promising approach is 222 nm light from KrCl excimer lamps (GUV222); this inactivates airborne pathogens and is thought to be relatively safe for human skin and eye exposure. However, the impact of GUV222 on the composition of indoor air has received little experimental study. Here, we conduct laboratory experiments in a 150 L Teflon chamber to examine the formation of secondary species by GUV222. We show that GUV222 generates ozone (O3) and hydroxyl radicals (OH), both of which can react with volatile organic compounds to form oxidized volatile organic compounds and secondary organic aerosol particles. Results are consistent with a box model based on the known photochemistry. We use this model to simulate GUV222 irradiation under more realistic indoor air scenarios and demonstrate that under some conditions, GUV222 irradiation can lead to levels of O3, OH, and secondary organic products that are substantially elevated relative to normal indoor conditions. The results suggest that GUV222 should be used at low intensities and in concert with ventilation, decreasing levels of airborne pathogens while mitigating the formation of air pollutants.
Collapse
Affiliation(s)
- Victoria P. Barber
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew B. Goss
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lesly J. Franco Deloya
- Department
of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lexy N. LeMar
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yaowei Li
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Erik Helstrom
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Manjula Canagaratna
- Center
for Aerosol and Cloud Chemistry, Aerodyne
Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Frank N. Keutsch
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jesse H. Kroll
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Huang R, Ma C, Huangfu X, Ma J. Preparing for the Next Pandemic: Predicting UV Inactivation of Coronaviruses with Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13767-13777. [PMID: 37660353 DOI: 10.1021/acs.est.3c03707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The epidemic of coronaviruses has posed significant public health concerns in the last two decades. An effective disinfection scheme is critical to preventing ambient virus infections and controlling the spread of further outbreaks. Ultraviolet (UV) irradiation has been a widely used approach to inactivating pathogenic viruses. However, no viable framework or model can accurately predict the UV inactivation of coronaviruses in aqueous solutions or on environmental surfaces, where viruses are commonly found and spread in public places. By conducting a systematic literature review to collect data covering a wide range of UV wavelengths and various subtypes of coronaviruses, including severe acute respiratory syndrome 2 (SARS-CoV-2), we developed machine learning models for predicting the UV inactivation effects of coronaviruses in aqueous solutions and on environmental surfaces, for which the optimal test performance was obtained with R2 = 0.927, RMSE = 0.565 and R2 = 0.888, RMSE = 0.439, respectively. Besides, the required UV doses at different wavelengths to inactivate the SARS-CoV-2 to 1 Log TCID50/mL titer from different initial titers were predicted for inactivation in protein-free water, saliva on the environmental surface, or the N95 respirator. Our models are instructive for eliminating the ongoing pandemic and controlling the spread of an emerging and unknown coronavirus outbreak.
Collapse
Affiliation(s)
- Ruixing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, College of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, College of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, College of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
27
|
Seyedi S, Ma B, Groves M, King H, Linden KG. Field Study and Evaluation of KrCl* Far UV-C Device Capability for Inactivation of Phi6 Bacteriophage. Photochem Photobiol 2023; 99:1293-1298. [PMID: 36533876 DOI: 10.1111/php.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
"Far UV-C" is an effective disinfection method that can be deployed in occupied areas. Commercially available Krypton Chloride (KrCl*) excimer lamps filtered to emit at 222 nm are effective in disinfecting pathogens and safe for human exposure up to an allowable threshold exposure, which is much longer than for conventional UV lamps emitting at 254 nm. Laboratory and controlled field testing of a filtered KrCl* excimer lamp for disinfection of a virus suspended in a thin film aqueous solution in an occupied office setting was conducted. Complete inactivation of almost 6 log (99.9999%) of Phi6 bacteriophage virus was achieved in ~20 min of exposure time in a field setting, equivalent to a dose of about 10 mJ cm-2 . The Phi6 inactivation rate constant for the field test results were not statistically different from laboratory values (P > 0.05, paired t-test). When positioned at 1 m distance from possible human exposure, this device can be used safely for almost 4.5 h of continuous direct exposure without any acute or long-term adverse health effects. This study illustrates the applicability and deployment of Far UV-C for pathogen reduction and can help in decision making for implementation of Far UV-C for disinfection in human-occupied environments.
Collapse
Affiliation(s)
- Saba Seyedi
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO
- Hazen and Sawyer, Fairfax, VA
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO
| | - Megan Groves
- Population Lights, Inc. d/b/a Population, San Francisco, CA
| | - Hal King
- Public Health Innovations, Saint Simons Island, GA
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
28
|
Sun W, Jing Z, Zhao Z, Yin R, Santoro D, Mao T, Lu Z. Dose-Response Behavior of Pathogens and Surrogate Microorganisms across the Ultraviolet-C Spectrum: Inactivation Efficiencies, Action Spectra, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10891-10900. [PMID: 37343195 DOI: 10.1021/acs.est.3c00518] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The dose-response behavior of pathogens and inactivation mechanisms by UV-LEDs and excimer lamps remains unclear. This study used low-pressure (LP) UV lamps, UV-LEDs with different peak wavelengths, and a 222 nm krypton chlorine (KrCl) excimer lamp to inactivate six microorganisms and to investigate their UV sensitivities and electrical energy efficiencies. The 265 nm UV-LED had the highest inactivation rates (0.47-0.61 cm2/mJ) for all tested bacteria. The bacterial sensitivity strongly fitted the absorption curve of nucleic acids at wavelengths of 200-300 nm; however, indirect damage induced by reactive oxygen species (ROS) was the leading cause of bacterial inactivation under 222 nm UV irradiation. In addition, the guanine and cytosine (GC) content and cell wall constituents of bacteria affect inactivation efficiency. The inactivation rate constant of Phi6 (0.13 ± 0.002 cm2/mJ) at 222 nm due to lipid envelope damage was significantly higher than other UVC (0.006-0.035 cm2/mJ). To achieve 2log reduction, the LP UV lamp had the best electrical energy efficiency (required less energy, average 0.02 kWh/m3) followed by 222 nm KrCl excimer lamp (0.14 kWh/m3) and 285 nm UV-LED (0.49 kWh/m3).
Collapse
Affiliation(s)
- Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, PR China
| | | | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
- MW Technologies, Inc., London, Ontario L8N1E, Canada
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Li LX, Nissly RH, Swaminathan A, Bird IM, Boyle NR, Nair MS, Greenawalt DI, Gontu A, Cavener VS, Sornberger T, Freihaut JD, Kuchipudi SV, Bahnfleth WP. Inactivation of HCoV-NL63 and SARS-CoV-2 in aqueous solution by 254 nm UV-C. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112755. [PMID: 37423001 DOI: 10.1016/j.jphotobiol.2023.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Ultraviolet germicidal irradiation (UVGI) is a highly effective means of inactivating many bacteria, viruses, and fungi. UVGI is an attractive viral mitigation strategy against coronaviruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-2019 (COVID-19) pandemic. This investigation measures the susceptibility of two human coronaviruses to inactivation by 254 nm UV-C radiation. Human coronavirus NL63 and SARS-CoV-2 were irradiated in a collimated, dual-beam, aqueous UV reactor. By measuring fluence and integrating it in real-time, this reactor accounts for the lamp output transients during UVGI exposures. The inactivation rate constants of a one-stage exponential decay model were determined to be 2.050 cm2/mJ and 2.098 cm2/mJ for the NL63 and SARS-CoV-2 viruses, respectively. The inactivation rate constant for SARS-CoV-2 is within 2% of that of NL63, indicating that in identical inactivation environments, very similar UV 254 nm deactivation susceptibilities for these two coronaviruses would be achieved. Given the inactivation rate constant obtained in this study, doses of 1.1 mJ/cm2, 2.2 mJ/cm2, and 3.3 mJ/cm2 would result in a 90%, 99%, and 99.9% inactivation of the SARS-CoV-2 virus, respectively. The inactivation rate constant obtained in this study is significantly higher than values reported from many 254 nm studies, which suggests greater UV susceptibility to the UV-C than what was believed. Overall, results from this study indicate that 254 nm UV-C is effective for inactivation of human coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Lily X Li
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ruth H Nissly
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Anand Swaminathan
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ian M Bird
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Nina R Boyle
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Meera Surendran Nair
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Denver I Greenawalt
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Abhinay Gontu
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Victoria S Cavener
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Ty Sornberger
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - James D Freihaut
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| | - Suresh V Kuchipudi
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America; Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America.
| | - William P Bahnfleth
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| |
Collapse
|
30
|
Li T, Zhang Y, Gan J, Yu X, Wang L. Superiority of UV222 radiation by in situ aquatic electrode KrCl excimer in disinfecting waterborne pathogens: Mechanism and efficacy. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131292. [PMID: 36989776 DOI: 10.1016/j.jhazmat.2023.131292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Microbial safety in water has always been the focus of attention, especially during the COVID-19 pandemic. Development of green, efficient and safe disinfection technology is the key to control the spread of pathogenic microorganisms. Here, an in situ aquatic electrode KrCl excimer radiation with main emission wavelength 222 nm (UV222) was designed and used to disinfect model waterborne virus and bacteria, i.e. phage MS2, E. coli and S. aureus. High inactivation efficacy and diversity of inactivation mechanisms of UV222 were proved by comparision with those of commercial UV254. UV222 could totally inactivate MS2, E. coli and S. aureus with initial concentrations of ∼107 PFU or CFU mL-1 within 20, 15, and 36 mJ/cm2, respectively. The UV dose required by UV254 to inactivate the same logarithmic pathogenic microorganism is at least twice that of UV222. The protein, genomic and cell membrane irreparable damage contributed to the microbial inactivation by UV222, but UV254 only act on nucleic acid of the target microorganisms. We found that UV222 damage nucleic acid with almost the same or even higher efficacy with UV254. In addition, free base damage of UV222 in similar ways with UV254(dimer and hydrate). But due to the quantum yield of free base degradation of UV222 was greater than UV254, the photolysis rates of UV222 to A, G, C and U four bases were 11.5, 1.2, 3.2 and 1 times as those of UV254, respectively. Excellent disinfection performance in UV222 irradiation was also achieved in real water matrices (WWTP and Lake). In addition, it was proved that coexisting HCO3- or HPO42 - in real and synthetic water matrices can produce • OH to promote UV222 disinfection. This study provided novel insight into the UV222 disinfection process and demonstrated its possibility to take place of the conventional ultraviolet mercury lamp in water purification.
Collapse
Affiliation(s)
- Ting Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China
| | - Yizhan Zhang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China
| | - Jiaming Gan
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Lei Wang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China.
| |
Collapse
|
31
|
Fujimoto N, Nagaoka K, Tatsuno I, Oishi H, Tomita M, Hasegawa T, Tanaka Y, Matsumoto T. Wavelength dependence of ultraviolet light inactivation for SARS-CoV-2 omicron variants. Sci Rep 2023; 13:9706. [PMID: 37322228 PMCID: PMC10272214 DOI: 10.1038/s41598-023-36610-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Ultraviolet (UV) irradiation offers an effective and convenient method for the disinfection of pathogenic microorganisms. However, UV irradiation causes protein and/or DNA damage; therefore, further insight into the performance of different UV wavelengths and their applications is needed to reduce risks to the human body. In this paper, we determined the efficacy of UV inactivation of the SARS-CoV-2 omicron BA.2 and BA.5 variants in a liquid suspension at various UV wavelengths by the 50% tissue culture infection dose (TCID50) method and quantitative polymerase chain reaction (qPCR) assay. The inactivation efficacy of 220 nm light, which is considered safe for the human body, was approximately the same as that of health hazardous 260 nm light for both BA.2 and BA.5. Based on the inactivation rate constants determined by the TCID50 and qPCR methods versus the UV wavelength, the action spectra were determined, and BA.2 and BA.5 showed almost the same spectra. This result suggests that both variants have the same UV inactivation characteristics.
Collapse
Affiliation(s)
- Nahoko Fujimoto
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Ichiro Tatsuno
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Hisashi Oishi
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Makoto Tomita
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Tadao Hasegawa
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Takahiro Matsumoto
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| |
Collapse
|
32
|
Xu J, Huang CH. Enhanced Direct Photolysis of Organic Micropollutants by Far-UVC Light at 222 nm from KrCl* Excilamps. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:543-548. [PMID: 37333939 PMCID: PMC10269434 DOI: 10.1021/acs.estlett.3c00313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Krypton chloride (KrCl*) excilamps emitting at far-UVC 222 nm represent a promising technology for microbial disinfection and advanced oxidation of organic micropollutants (OMPs) in water treatment. However, direct photolysis rates and photochemical properties at 222 nm are largely unknown for common OMPs. In this study, we evaluated photolysis for 46 OMPs by a KrCl* excilamp and compared it with a low-pressure mercury UV lamp. Generally, OMP photolysis was greatly enhanced at 222 nm with fluence rate-normalized rate constants of 0.2-21.6 cm2·μEinstein-1, regardless of whether they feature higher or lower absorbance at 222 nm than at 254 nm. The photolysis rate constants and quantum yields were 10-100 and 1.1-47 times higher, respectively, than those at 254 nm for most OMPs. The enhanced photolysis at 222 nm was mainly caused by strong light absorbance for non-nitrogenous, aniline-like, and triazine OMPs, while notably higher quantum yield (4-47 times of that at 254 nm) occurred for nitrogenous OMPs. At 222 nm, humic acid can inhibit OMP photolysis by light screening and potentially by quenching intermediates, while nitrate/nitrite may contribute more than others to screen light. Overall, KrCl* excilamps are promising in achieving effective OMP photolysis and merit further research.
Collapse
Affiliation(s)
- Jiale Xu
- Department
of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, United States
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
33
|
Jeong SB, Shin JH, Kim SW, Seo SC, Jung JH. Performance evaluation of an electrostatic precipitator with a copper plate using an aerosolized SARS-CoV-2 surrogate (bacteriophage phi 6). ENVIRONMENTAL TECHNOLOGY & INNOVATION 2023; 30:103124. [PMID: 36987524 PMCID: PMC10035800 DOI: 10.1016/j.eti.2023.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/29/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has reminded us of the importance of developing technologies to reduce and control bioaerosols in built environments. For bioaerosol control, the interaction between researchers and biomaterials is essential, and considering the characteristics of target pathogens is strongly required. Herein, we used enveloped viral aerosols, bacteriophage phi 6, for evaluating the performance of an electrostatic precipitator (ESP) with a copper-collecting plate (Cu-plate). In particular, bacteriophage phi 6 is an accessible enveloped virus that can be operated in biosafety level (BSL)-1 as a promising surrogate for SARS-CoV-2 with structural and morphological similarities. ESP with Cu-plate showed >91% of particle removal efficiency for viral aerosols at 77 cm/s of airflow face velocity. Moreover, the Cu-plate presented a potent antiviral performance of 5.4-relative log reduction within <15 min of contact. We believe that the evaluation of ESP performance using an aerosolized enveloped virus and plaque assay is invaluable. Our results provide essential information for the development of bioaerosol control technologies that will lead the post-corona era.
Collapse
Affiliation(s)
- Sang Bin Jeong
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Hak Shin
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Sam Woong Kim
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Sung Chul Seo
- Department of Nano, Chemical and Biological Engineering, Seokyeong University, Seoul 02713, Republic of Korea
| | - Jae Hee Jung
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
34
|
Zupanc M, Zevnik J, Filipić A, Gutierrez-Aguirre I, Ješelnik M, Košir T, Ortar J, Dular M, Petkovšek M. Inactivation of the enveloped virus phi6 with hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2023; 95:106400. [PMID: 37060711 PMCID: PMC10085970 DOI: 10.1016/j.ultsonch.2023.106400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
The COVID -19 pandemic reminded us that we need better contingency plans to prevent the spread of infectious agents and the occurrence of epidemics or pandemics. Although the transmissibility of SARS-CoV-2 in water has not been confirmed, there are studies that have reported on the presence of infectious coronaviruses in water and wastewater samples. Since standard water treatments are not designed to eliminate viruses, it is of utmost importance to explore advanced treatment processes that can improve water treatment and help inactivate viruses when needed. This is the first study to investigate the effects of hydrodynamic cavitation on the inactivation of bacteriophage phi6, an enveloped virus used as a SARS-CoV-2 surrogate in many studies. In two series of experiments with increasing and constant sample temperature, virus reduction of up to 6.3 logs was achieved. Inactivation of phi6 at temperatures of 10 and 20 °C occurs predominantly by the mechanical effect of cavitation and results in a reduction of up to 4.5 logs. At 30 °C, the reduction increases to up to 6 logs, where the temperature-induced increased susceptibility of the viral lipid envelope makes the virus more prone to inactivation. Furthermore, the control experiments without cavitation showed that the increased temperature alone is not sufficient to cause inactivation, but that additional mechanical stress is still required. The RNA degradation results confirmed that virus inactivation was due to the disrupted lipid bilayer and not to RNA damage. Hydrodynamic cavitation, therefore, has the potential to inactivate current and potentially emerging enveloped pathogenic viruses in water at lower, environmentally relevant temperatures.
Collapse
Affiliation(s)
- Mojca Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Zevnik
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Meta Ješelnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tamara Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Jernej Ortar
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Pilaquinga F, Bosch R, Morey J, Bastidas-Caldes C, Torres M, Toscano F, Debut A, Pazmiño-Viteri K, Nieves Piña MDL. High in vitroactivity of gold and silver nanoparticles from Solanum mammosum L. against SARS-CoV-2 surrogate Phi6 and viral model PhiX174. NANOTECHNOLOGY 2023; 34:175705. [PMID: 36689773 DOI: 10.1088/1361-6528/acb558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
The search for new strategies to curb the spread of the SARS-CoV-2 coronavirus, which causes COVID-19, has become a global priority. Various nanomaterials have been proposed as ideal candidates to inactivate the virus; however, because of the high level of biosecurity required for their use, alternative models should be determined. This study aimed to compare the effects of two types of nanomaterials gold (AuNPs) and silver nanoparticles (AgNPs), recognized for their antiviral activity and affinity with the coronavirus spike protein using PhiX174 and enveloped Phi6 bacteriophages as models. To reduce the toxicity of nanoparticles, a species known for its intermediate antiviral activity,Solanum mammosumL. (Sm), was used. NPs prepared with sodium borohydride (NaBH4) functioned as the control. Antiviral activity against PhiX174 and Phi6 was analyzed using its seed, fruit, leaves, and essential oil; the leaves were the most effective on Phi6. Using the aqueous extract of the leaves, AuNPs-Sm of 5.34 ± 2.25 nm and AgNPs-Sm of 15.92 ± 8.03 nm, measured by transmission electron microscopy, were obtained. When comparing NPs with precursors, both gold(III) acetate and silver nitrate were more toxic than their respective NPs (99.99% at 1 mg ml-1). The AuNPs-Sm were less toxic, reaching 99.30% viral inactivation at 1 mg ml-1, unlike the AgNPs-Sm, which reached 99.94% at 0.01 mg ml-1. In addition, cell toxicity was tested in human adenocarcinoma alveolar basal epithelial cells (A549) and human foreskin fibroblasts. Gallic acid was the main component identified in the leaf extract using high performance liquid chromatography with diode array detection (HPLC-DAD). The FT-IR spectra showed the presence of a large proportion of polyphenolic compounds, and the antioxidant analysis confirmed the antiradical activity. The control NPs showed less antiviral activity than the AuNPs-Sm and AgNPs-Sm, which was statistically significant; this demonstrates that both theS. mammosumextract and its corresponding NPs have a greater antiviral effect on the surrogate Phi bacteriophage, which is an appropriate model for studying SARS-CoV-2.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- Laboratory of Nanotechnology, School of Chemistry Sciences, Pontificia Universidad Católica del Ecuador, Avenida 12 de octubre 1076 y Roca, Quito, Ecuador
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Rafael Bosch
- Environmental Microbiology, IMEDEA (CSIC-UIB); and Microbiology, Department of Biology, University of Balearic Islands, Palma de Mallorca, Spain
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Redondel del Ciclista, Antigua Vía a Nayón, Quito, Ecuador
- Programa de Doctorado en Salud Pública y Animal, Universidad de Extremadura, Plaza de Caldereros, s/n, Extremadura, Spain
| | - Marbel Torres
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Fernanda Toscano
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Katherine Pazmiño-Viteri
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - María de Las Nieves Piña
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
36
|
Chen W, Yang H, Peng C, Wu T. Resolving the "health vs environment" dilemma with sustainable disinfection during the COVID-19 pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24737-24741. [PMID: 36622607 PMCID: PMC9838326 DOI: 10.1007/s11356-023-25167-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/02/2023] [Indexed: 05/21/2023]
Abstract
The overuse of disinfection during the COVID-19 pandemic leads to an emerging "health versus environment" dilemma that humans have to face. Irresponsible and unnecessary disinfection should be avoided, while comprehensive evaluation of the health and environmental impacts of different disinfectants is urgently needed. From this discussion, we reach a tentative conclusion that hydrogen peroxide is a green disinfectant. Its on-demand production enables a circular economy model to solve the storage issues. Water, oxygen, and electrons are the only feedstock to generate H2O2. Upon completion of disinfection, H2O2 is rapidly converted back into water and oxygen. This model adopts several principles of green chemistry to ensure overall sustainability along the three stages of its whole life cycle, i.e., production, disinfection, and decomposition. Physical methods, particularly UV irradiation, also provide sustainable disinfection with minimal health and environmental impacts.
Collapse
Affiliation(s)
- Wanru Chen
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuhan, 430072, China
| | - Hangqi Yang
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuhan, 430072, China
| | - Chuang Peng
- School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Tao Wu
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo, 199 Taikang East Road, Ningbo, 315100, China
| |
Collapse
|
37
|
Lu YH, Wu H, Zhang HH, Li WS, Lai ACK. Synergistic disinfection of aerosolized bacteria and bacteriophage by far-UVC (222-nm) and negative air ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129876. [PMID: 36087531 DOI: 10.1016/j.jhazmat.2022.129876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Air ionizers and 222-nm krypton-chlorine (KrCl) excilamp have proven to be effective disinfection apparatus for bacteria and viruses with limited health risks. We determined inactivation efficiencies by operating them individually and in combined modules. Gram-positive and gram-negative bacteria, non-enveloped dsDNA virus, and enveloped dsRNA virus were examined in a designed air disinfection system. Our results showed that the bioaerosols were inactivated efficiently by negative ionizers and far-UVC (222-nm), either used individually or in combination. Among which the combined modules of negative ionizers and KrCl excilamp had the best disinfection performance for the bacteria. The aerosolized virus P22 and Phi 6 were more susceptible to 222-nm emitted by KrCl excilamp than negative air ions. Significant greater inactivation of bacterial bioaerosols were identified after treated by combined treatment of negative air ion and far-UVC for 2 minutes (Escherichia coli, 6.25 natural log (ln) reduction; Staphylococcus epidermidis, 3.66 ln reduction), as compared to the mean sum value of inactivation results by respective individual treatment of negative ionizers and KrCl excilamp (Escherichia coli, 4.34 ln; Staphylococcus epidermidis, 1.75 ln), indicating a synergistic inactivation effect. The findings provide important baseline data to support the design and development of safe and high-efficient disinfection systems.
Collapse
Affiliation(s)
- Y H Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China
| | - H Wu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China; Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong China
| | - H H Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China
| | - W S Li
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong China
| | - A C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China.
| |
Collapse
|
38
|
Zhang H, Lai ACK. Evaluation of Single-Pass Disinfection Performance of Far-UVC Light on Airborne Microorganisms in Duct Flows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17849-17857. [PMID: 36469399 DOI: 10.1021/acs.est.2c04861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Far-UVC irradiation (222 nm) is considered an emerging and sustainable solution for future infection and pandemic challenges. We examined the disinfection performance of a krypton-chloride lamp, with a quasi-monochromatic UVC peak at 222 nm, for inactivating airborne microorganisms in a full-scale ventilation duct system. Single-pass disinfection efficacy of far-UVC was determined and compared with that of a conventional mercury-type UVC (254 nm) lamp. Four bacteria, Escherichia coli (E. coli), Pseudomonas alcaligenes (P. alcaligenes), Serratia marcescens (S. marcescens), and Staphylococcus epidermidis (S. epidermidis), as well as bacteriophage P22, were tested under UV exposure with different velocities of duct flows. The data revealed that as the air velocity increased from 0.7 to 4 m/s, the far-UVC disinfection efficacies would decrease by 42, 47, 35, 39, and 33% for these five microorganisms, respectively. The inactivation rate constants to far-UVC light were 4.9, 7.5, 3.3, 6.3, and 3.0 cm2/mJ for aerosolized E. coli, P. alcaligenes, S. marcescens, S. epidermidis, and bacteriophage P22, respectively. Far-UVC irradiation showed a comparable disinfection ability on airborne microorganisms compared with the 254 nm UV irradiation. This first study of far-UVC in real duct applications provides a better understanding of the disinfection performance of this solution in bioaerosol inactivation. It offers a valuable database in the sizing and design of excimer lamps for novel portable air purifiers or in-duct disinfection units.
Collapse
Affiliation(s)
- Huihui Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong00000, China
| | - Alvin C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong00000, China
| |
Collapse
|
39
|
McLeod RS, Hopfe CJ, Bodenschatz E, Moriske HJ, Pöschl U, Salthammer T, Curtius J, Helleis F, Niessner J, Herr C, Klimach T, Seipp M, Steffens T, Witt C, Willich SN. A multi-layered strategy for COVID-19 infection prophylaxis in schools: A review of the evidence for masks, distancing, and ventilation. INDOOR AIR 2022; 32:e13142. [PMID: 36305077 PMCID: PMC9827916 DOI: 10.1111/ina.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Implications for the academic and interpersonal development of children and adolescents underpin a global political consensus to maintain in-classroom teaching during the ongoing COVID-19 pandemic. In support of this aim, the WHO and UNICEF have called for schools around the globe to be made safer from the risk of COVID-19 transmission. Detailed guidance is needed on how this goal can be successfully implemented in a wide variety of educational settings in order to effectively mitigate impacts on the health of students, staff, their families, and society. This review provides a comprehensive synthesis of current scientific evidence and emerging standards in relation to the use of layered prevention strategies (involving masks, distancing, and ventilation), setting out the basis for their implementation in the school environment. In the presence of increasingly infectious SARS-Cov-2 variants, in-classroom teaching can only be safely maintained through a layered strategy combining multiple protective measures. The precise measures that are needed at any point in time depend upon a number of dynamic factors, including the specific threat-level posed by the circulating variant, the level of community infection, and the political acceptability of the resultant risk. By consistently implementing appropriate prophylaxis measures, evidence shows that the risk of infection from in-classroom teaching can be dramatically reduced. Current studies indicate that wearing high-quality masks and regular testing are amongst the most important measures in preventing infection transmission; whilst effective natural and mechanical ventilation systems have been shown to reduce infection risks in classrooms by over 80%.
Collapse
Affiliation(s)
- Robert S McLeod
- Institute for Building Physics, Services and Construction, Graz University of Technology, Graz, Austria
| | - Christina J Hopfe
- Institute for Building Physics, Services and Construction, Graz University of Technology, Graz, Austria
| | - Eberhard Bodenschatz
- Max Planck Institute for Dynamics and Self-Organization, Gottingen, Germany
- Georg-August-University Göttingen, Gottingen, Germany
| | | | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Mainz, Germany
- Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | - Caroline Herr
- Ludwig-Maximilian-University Munich, Munich, Germany
| | | | - Martin Seipp
- Technical University of Central Hesse, Giessen, Germany
| | | | | | | |
Collapse
|
40
|
Ratliff K, Oudejans L, Calfee W, Abdel-Hady A, Monge M, Aslett D. Evaluating the impact of ultraviolet C exposure conditions on coliphage MS2 inactivation on surfaces. Lett Appl Microbiol 2022; 75:933-941. [PMID: 35704393 PMCID: PMC9764853 DOI: 10.1111/lam.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
The COVID-19 pandemic has raised interest in using devices that generate ultraviolet C (UVC) radiation as an alternative approach for reducing or eliminating microorganisms on surfaces. Studies investigating the efficacy of UVC radiation against pathogens use a wide range of laboratory methods and experimental conditions that can make cross-comparison of results and extrapolation of findings to real-world settings difficult. Here, we use three different UVC-generating sources - a broad-spectrum pulsed xenon light, a continuous light-emitting diode (LED), and a low-pressure mercury vapour lamp - to evaluate the impact of different experimental conditions on UVC efficacy against the coliphage MS2 on surfaces. We find that a nonlinear dose-response relationship exists for all three light sources, meaning that linear extrapolation of doses resulting in a 1-log10 (90%) reduction does not accurately predict the dose required for higher (e.g. 3-log10 or 99.9%) log10 reductions. In addition, our results show that the inoculum characteristics and underlying substrate play an important role in determining UVC efficacy. Variations in microscopic surface topography may shield MS2 from UVC radiation to different degrees, which impacts UVC device efficacy. These findings are important to consider in comparing results from different UVC studies and in estimating device performance in field conditions.
Collapse
Affiliation(s)
- K Ratliff
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - L Oudejans
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - W Calfee
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - A Abdel-Hady
- Jacobs Technology Inc., Research Triangle Park, NC, USA
| | - M Monge
- Consolidated Safety Services, Inc., Research Triangle Park, NC, USA
| | - D Aslett
- Jacobs Technology Inc., Research Triangle Park, NC, USA
| |
Collapse
|
41
|
Armentano I, Barbanera M, Belloni E, Crognale S, Lelli D, Marconi M, Calabrò G. Design and Analysis of a Novel Ultraviolet-C Device for Surgical Face Mask Disinfection. ACS OMEGA 2022; 7:34117-34126. [PMID: 36188306 PMCID: PMC9520726 DOI: 10.1021/acsomega.2c03426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 05/09/2023]
Abstract
This paper deals with the design of a compact sanitization device and the definition of a specific protocol for UV-C disinfection of a surgical face mask. The system was designed considering the material properties, face mask shape, and UV-C light distribution. DIALux software was used to evaluate the irradiance distribution provided by the lamps emitting in the UV-C range. The irradiance needed for UV-C-decontaminated bacteria and virus, and other contaminating pathogens, without compromising their integrity and guaranteeing inactivation of the bacteria, was evaluated. The face mask's material properties were analyzed with respect to UV-C exposure in terms of physicochemical properties, breathability, and bacterial filtration performance. Information on the effect of time-dependent passive decontamination at room temperature storage was provided. Single and multiple cycles of UV-C sanitization did not adversely affect respirator breathability and bacterial filtration efficiency. This multidisciplinal approach may provide important information on how it is possible to correctly sanitize a face mask and, in case of shortage, safely reuse the face mask.
Collapse
Affiliation(s)
- Ilaria Armentano
- Department
of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo 01100, Italy
| | - Marco Barbanera
- Department
of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo 01100, Italy
| | - Elisa Belloni
- Department
of Engineering, University of Perugia, Perugia 06125, Italy
| | - Silvia Crognale
- Department
for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo 01100, Italy
| | - Davide Lelli
- Department
for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo 01100, Italy
| | - Marco Marconi
- Department
of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo 01100, Italy
| | - Giuseppe Calabrò
- Department
of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo 01100, Italy
| |
Collapse
|
42
|
Fischer RJ, Port JR, Holbrook MG, Yinda KC, Creusen M, ter Stege J, de Samber M, Munster VJ. UV-C Light Completely Blocks Aerosol Transmission of Highly Contagious SARS-CoV-2 Variants WA1 and Delta in Hamsters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12424-12430. [PMID: 36001075 PMCID: PMC9437662 DOI: 10.1021/acs.est.2c02822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Behavioral and medical control measures have not been effective in containing the spread of SARS-CoV-2 in large part due to the unwillingness of populations to adhere to "best practices". Ultraviolet light with wavelengths of between 200 and 280 nm (UV-C) and, in particular, germicidal ultraviolet light, which refers to wavelengths around 254 nm, have the potential to unobtrusively reduce the risk of SARS-CoV-2 transmission in enclosed spaces. We investigated the effectiveness of a strategy using UV-C light to prevent airborne transmission of the virus in a hamster model. Treatment of environmental air with 254 nm UV-C light prevented transmission of SARS-CoV-2 between individuals in a model using highly susceptible Syrian golden hamsters. The prevention of transmission of SARS-CoV-2 in a natural system by treating elements of the surrounding environment is one more weapon in the arsenal to combat COVID. The results presented indicate that coupling mitigation strategies utilizing UV-C light, along with current methods to reduce transmission risk, have the potential to allow a return to normal indoor activities.
Collapse
Affiliation(s)
- Robert J. Fischer
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Julia R. Port
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Myndi G. Holbrook
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Kwe Claude Yinda
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Martin Creusen
- Signify, High Tech Campus 48, 5656 AE Eindhoven, The Netherlands
| | - Jeroen ter Stege
- UVConsult
BV, Hoofdstraat 249, 1611 AG Bovenkarspel, The Netherlands
| | - Marc de Samber
- Signify, High Tech Campus 48, 5656 AE Eindhoven, The Netherlands
| | - Vincent J. Munster
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| |
Collapse
|
43
|
Henderson J, Ma B, Cohen M, Dazey J, Meschke JS, Linden KG. Field study of early implementation of UV sources and their relative effectiveness for public health and safety. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:524-537. [PMID: 35816423 DOI: 10.1080/15459624.2022.2100404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emergence of COVID-19 and its corresponding public health burden has prompted industries to rapidly implement traditional and novel control strategies to mitigate the likelihood of SARS-CoV-2 transmission, generating a surge of interest and application of ultraviolet germicidal irradiation (UVGI) sources as disinfection systems. With this increased attention the need to evaluate the efficacy and safety of these types of devices is paramount. A field study of the early implementation of UVGI devices was conducted at the Space Needle located in Seattle, Washington. Six devices were evaluated, including four low-pressure (LP) mercury-vapor lamp devices for air and surface sanitation not designed for human exposure and two krypton chloride (KrCl*) excimer lamp devices to be operated on and around humans. Emission spectra and ultraviolet (UV) irradiance at different locations from the UV devices were measured and germicidal effectiveness against SARS-CoV-2 was estimated. The human safety of KrCl* excimer devices was also evaluated based on measured irradiance and estimated exposure durations. Our results show all LP devices emitted UV radiation primarily at 254 nm as expected. Both KrCl* excimers emitted far UVC irradiation at 222 nm as advertised but also emitted at longer, more hazardous wavelengths (228 to 262 nm). All LP devices emitted strong UVC irradiance, which was estimated to achieve three log reduction of SARS-CoV-2 within 10 sec of exposure at reasonable working distances. KrCl* excimers, however, emitted much lower irradiance than needed for effective disinfection of SARS-CoV-2 (>90% inactivation) within the typical exposure times. UV fluence from KrCl* excimer devices for employees was below the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) under the reported device usage and work shifts. However, photosensitive individuals, human susceptibility, or exposure to multiple UV sources throughout a worker's day, were not accounted for in this study. Caution should be used when determining the acceptability of UV exposure to workers in this occupational setting and future work should focus on UVGI sources in public settings.
Collapse
Affiliation(s)
- Jennifer Henderson
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Martin Cohen
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington
| | | | - John Scott Meschke
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
44
|
Ruetalo N, Berger S, Niessner J, Schindler M. Inactivation of aerosolized SARS-CoV-2 by 254 nm UV-C irradiation. INDOOR AIR 2022; 32:e13115. [PMID: 36168221 PMCID: PMC9538331 DOI: 10.1111/ina.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/12/2023]
Abstract
Surface residing SARS-CoV-2 is efficiently inactivated by UV-C irradiation. This raises the question whether UV-C-based technologies are also suitable to decontaminate SARS-CoV-2- containing aerosols and which doses are needed to achieve inactivation. Here, we designed a test bench to generate aerosolized SARS-CoV-2 and exposed the aerosols to a defined UV-C dose. Our results demonstrate that the exposure of aerosolized SARS-CoV-2 with a low average dose in the order of 0.42-0.51 mJ/cm2 UV-C at 254 nm resulted in more than 99.9% reduction in viral titers. Altogether, UV-C-based decontamination of aerosols seems highly effective to achieve a significant reduction in SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| | - Simon Berger
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Jennifer Niessner
- Institute for Flow in Additively Manufactured Porous MediaHochschule HeilbronnHeilbronnGermany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| |
Collapse
|
45
|
Weyersberg L, Klemens E, Buehler J, Vatter P, Hessling M. UVC, UVB and UVA susceptibility of Phi6 and its suitability as a SARS-CoV-2 surrogate. AIMS Microbiol 2022; 8:278-291. [PMID: 36317004 PMCID: PMC9576498 DOI: 10.3934/microbiol.2022020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/07/2022] [Accepted: 07/03/2022] [Indexed: 11/19/2022] Open
Abstract
For SARS-CoV-2 disinfection systems or applications that are based on UVC, UVB or UVA irradiation, it would be desirable to have a SARS-CoV-2 surrogate for tests and development, which does not require a laboratory with a high biosafety level. The bacteriophage Phi 6, an enveloped RNA virus like coronaviruses, is an obvious candidate for such a surrogate. In this study, UVC, UVB and UVA log-reduction doses for Phi6 are determined by plaque assay. Log-reduction doses for SARS-CoV-2 are retrieved from a literature research. Because of a high variability of the published results, median log-reduction doses are determined for defined spectral ranges and compared to Phi6 data in the same intervals. The measured Phi6 log-reduction doses for UVC (254 nm), UVB (311 nm) and UVA (365 nm) are 31.7, 980 and 14 684 mJ/cm2, respectively. The determined median log-reduction doses for SARS-CoV-2 are much lower, only about 1.7 mJ/cm2 within the spectral interval 251-270 nm. Therefore, Phi6 can be photoinactivated by all UV wavelengths but it is much less UV sensitive compared to SARS-CoV-2 in all UV spectral ranges. Thus, Phi6 is no convincing SARS-CoV-2 surrogate in UV applications.
Collapse
Affiliation(s)
| | | | | | | | - Martin Hessling
- Ulm University of Applied Sciences, Department of Medical Engineering and Mechatronics, Albert Einstein-Allee 55, D-89081 Ulm, Germany
| |
Collapse
|
46
|
Bailey ES, Curcic M, Sobsey MD. Persistence of Coronavirus Surrogates on Meat and Fish Products during Long-Term Storage. Appl Environ Microbiol 2022; 88:e0050422. [PMID: 35670583 PMCID: PMC9238416 DOI: 10.1128/aem.00504-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission have been examined, and the role of contaminated foods as a source of SARS-CoV-2 exposure has been suggested. As many cases of SARS-CoV-2 have been linked to meat processing plants, it may be that conditions in live animal markets and slaughterhouses or meat processing plant procedures transfer viral particles to meat, poultry, and seafood during animal slaughter, processing, storage, or transport. Because of the potential for contamination of foods such as beef, chicken, pork, or fish, the goal of this study was to evaluate the survival of a lipid enveloped RNA bacteriophage, phi 6, as well as two animal coronaviruses, murine hepatitis virus (MHV) and transmissible gastroenteritis virus (TGEV), as SARS-CoV-2 surrogates for their survival under various meat and fish cold-storage conditions over 30 days. Viral surrogates differed in survival, depending on food product and temperature, but overall, viruses survived for extended periods of time at high concentrations at both refrigerated and frozen temperatures. The ability of SARS-CoV-2 viral surrogates like Phi 6 and animal coronaviruses to survive for varying extents on some meat and fish products when stored refrigerated or frozen is a significant and concerning finding. Continued efforts are needed to prevent contamination of foods and food processing surfaces, worker hands, and food processing utensils such as knives, and there is a need to better address the lack of or inadequate disinfection of these foods prior to meat packaging. IMPORTANCE The ability of SARS-CoV-2 viral surrogates like Phi 6 and animal coronaviruses to survive for long periods on meat and fish products at cold temperatures emphasizes the need for rigorous and sustained food sanitation and hygiene in the harvest, transport, processing, and distribution of these foods.
Collapse
Affiliation(s)
- Emily S. Bailey
- Department of Public Health, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Marina Curcic
- Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Mark D. Sobsey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
47
|
Eadie E, Hiwar W, Fletcher L, Tidswell E, O'Mahoney P, Buonanno M, Welch D, Adamson CS, Brenner DJ, Noakes C, Wood K. Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber. Sci Rep 2022; 12:4373. [PMID: 35322064 PMCID: PMC8943125 DOI: 10.1038/s41598-022-08462-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Many infectious diseases, including COVID-19, are transmitted by airborne pathogens. There is a need for effective environmental control measures which, ideally, are not reliant on human behaviour. One potential solution is Krypton Chloride (KrCl) excimer lamps (often referred to as Far-UVC), which can efficiently inactivate pathogens, such as coronaviruses and influenza, in air. Research demonstrates that when KrCl lamps are filtered to remove longer-wavelength ultraviolet emissions they do not induce acute reactions in the skin or eyes, nor delayed effects such as skin cancer. While there is laboratory evidence for Far-UVC efficacy, there is limited evidence in full-sized rooms. For the first time, we show that Far-UVC deployed in a room-sized chamber effectively inactivates aerosolised Staphylococcus aureus. At a room ventilation rate of 3 air-changes-per-hour (ACH), with 5 filtered-sources the steady-state pathogen load was reduced by 98.4% providing an additional 184 equivalent air changes (eACH). This reduction was achieved using Far-UVC irradiances consistent with current American Conference of Governmental Industrial Hygienists threshold limit values for skin for a continuous 8-h exposure. Our data indicate that Far-UVC is likely to be more effective against common airborne viruses, including SARS-CoV-2, than bacteria and should thus be an effective and "hands-off" technology to reduce airborne disease transmission. The findings provide room-scale data to support the design and development of effective Far-UVC systems.
Collapse
Affiliation(s)
- Ewan Eadie
- NHS Tayside, Photobiology Unit, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| | - Waseem Hiwar
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Louise Fletcher
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Emma Tidswell
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul O'Mahoney
- NHS Tayside, Photobiology Unit, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- School of Medicine Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| | - David Welch
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| | - Catherine S Adamson
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| | - Catherine Noakes
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Kenneth Wood
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| |
Collapse
|
48
|
Gomes M, Bartolomeu M, Vieira C, Gomes ATPC, Faustino MAF, Neves MGPMS, Almeida A. Photoinactivation of Phage Phi6 as a SARS-CoV-2 Model in Wastewater: Evidence of Efficacy and Safety. Microorganisms 2022; 10:659. [PMID: 35336234 PMCID: PMC8954818 DOI: 10.3390/microorganisms10030659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
The last two years have been marked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This virus is found in the intestinal tract; it reaches wastewater systems and, consequently, the natural receiving water bodies. As such, inefficiently treated wastewater (WW) can be a means of contamination. The currently used methods for the disinfection of WW can lead to the formation of toxic compounds and can be expensive or inefficient. As such, new and alternative approaches must be considered, namely, photodynamic inactivation (PDI). In this work, the bacteriophage φ6 (or, simply, phage φ6), which has been used as a suitable model for enveloped RNA viruses, such as coronaviruses (CoVs), was used as a model of SARS-CoV-2. Firstly, to understand the virus's survival in the environment, phage φ6 was subjected to different laboratory-controlled environmental conditions (temperature, pH, salinity, and solar and UV-B irradiation), and its persistence over time was assessed. Second, to assess the efficiency of PDI towards the virus, assays were performed in both phosphate-buffered saline (PBS), a commonly used aqueous matrix, and a secondarily treated WW (a real WW matrix). Third, as WW is generally discharged into the marine environment after treatment, the safety of PDI-treated WW was assessed through the determination of the viability of native marine water microorganisms after their contact with the PDI-treated effluent. Overall, the results showed that, when used as a surrogate for SARS-CoV-2, phage φ6 remains viable in different environmental conditions for a considerable period. Moreover, PDI proved to be an efficient approach in the inactivation of the viruses, and the PDI-treated effluent showed no toxicity to native aquatic microorganisms under realistic dilution conditions, thus endorsing PDI as an efficient and safe tertiary WW disinfection method. Although all studies were performed with phage φ6, which is considered a suitable model of SARS-CoV-2, further studies using SARS-CoV-2 are necessary; nevertheless, the findings show the potential of PDI for controlling SARS-CoV-2 in WW.
Collapse
Affiliation(s)
- Marta Gomes
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Maria Bartolomeu
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Cátia Vieira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Ana T. P. C. Gomes
- Center for Interdisciplinary Investigation (CIIS), Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | | | | | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| |
Collapse
|
49
|
Bartolomeu M, Braz M, Costa P, Duarte J, Pereira C, Almeida A. Evaluation of UV-C Radiation Efficiency in the Decontamination of Inanimate Surfaces and Personal Protective Equipment Contaminated with Phage ϕ6. Microorganisms 2022; 10:593. [PMID: 35336168 PMCID: PMC8954440 DOI: 10.3390/microorganisms10030593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
To help halt the global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appropriate disinfection techniques are required. Over the last years, the interest in Ultraviolet-C (UV-C) radiation as a method to disinfect inanimate surfaces and personal protective equipment (PPE) has increased, mainly to efficiently disinfect and prevent SARS-CoV-2 from spreading and allow for the safe reuse of said equipment. The bacteriophage ϕ6 (or simply phage ϕ6) is an RNA virus with a phospholipid envelope and is commonly used in environmental studies as a surrogate for human RNA-enveloped viruses, including SARS-CoV-2. The present study investigated the use of two new UV irradiation systems ((2)2.4W and (8)5.5W)) constituted by conventional mercury UV-C lamps with a strong emission peak at ~254 nm to potentially inactivate phage ϕ6 on different surfaces (glass, plastic, stainless steel, and wood) and personal protective equipment, PPE, (surgical and filtering facepiece 2, FFP2, masks, a clear acetate visor, and disposable protective clothing). The results showed that both UV-C systems were effective in inactivating phage ϕ6, but the UV-C sterilizing chamber (8)5.5W had the best disinfection performance on the tested surfaces. The inactivation effectiveness is material-dependent on all surfaces, reaching the detection limit of the method at different times (between 60 and 240 s of irradiation). The glass surface needed less time to reduce the virus (30 s) when compared with plastic, stainless, and wood surfaces (60 s). The virus inactivation was more effective in the disposable surgical and FFP2 masks (60 and 120 s, respectively) than in the disposable vest and clear acetate visor (240 s). Overall, this study suggests that UV-C lamps with peak emission at ~254 nm could provide rapid, efficient, and sustainable sanitization procedures to different materials and surfaces. However, dosage and irradiation time are important parameters to be considered during their implementation as a tool in the fight against human coronaviruses, namely against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | - Carla Pereira
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (M.B.); (P.C.); (J.D.)
| | - Adelaide Almeida
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (M.B.); (P.C.); (J.D.)
| |
Collapse
|
50
|
Molan K, Rahmani R, Krklec D, Brojan M, Stopar D. Phi 6 Bacteriophage Inactivation by Metal Salts, Metal Powders, and Metal Surfaces. Viruses 2022; 14:204. [PMID: 35215798 PMCID: PMC8877498 DOI: 10.3390/v14020204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The interaction of phages with abiotic environmental surfaces is usually an understudied field of phage ecology. In this study, we investigated the virucidal potential of different metal salts, metal and ceramic powders doped with Ag and Cu ions, and newly fabricated ceramic and metal surfaces against Phi6 bacteriophage. The new materials were fabricated by spark plasma sintering (SPS) and/or selective laser melting (SLM) techniques and had different surface free energies and infiltration features. We show that inactivation of Phi6 in solutions with Ag and Cu ions can be as effective as inactivation by pH, temperature, or UV. Adding powder to Ag and Cu ion solutions decreased their virucidal effect. The newly fabricated ceramic and metal surfaces showed very good virucidal activity. In particular, 45%TiO2 + 5%Ag + 45%ZrO2 + 5%Cu, in addition to virus adhesion, showed virucidal and infiltration properties. The results indicate that more than 99.99% of viruses deposited on the new ceramic surface were inactivated or irreversibly attached to it.
Collapse
Affiliation(s)
- Katja Molan
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (K.M.); (D.K.)
| | - Ramin Rahmani
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia;
| | - Daniel Krklec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (K.M.); (D.K.)
| | - Miha Brojan
- Laboratory for Nonlinear Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia;
| | - David Stopar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (K.M.); (D.K.)
| |
Collapse
|