1
|
Armenta-Castro A, Oyervides-Muñoz MA, Aguayo-Acosta A, Lucero-Saucedo SL, Robles-Zamora A, Rodriguez-Aguillón KO, Ovalle-Carcaño A, Parra-Saldívar R, Sosa-Hernández JE. Academic institution extensive, building-by-building wastewater-based surveillance platform for SARS-CoV-2 monitoring, clinical data correlation, and potential national proxy. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0003756. [PMID: 40344047 PMCID: PMC12063887 DOI: 10.1371/journal.pgph.0003756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/20/2025] [Indexed: 05/11/2025]
Abstract
In this work, we report on the performance of an extensive, building-by-building wastewater surveillance platform deployed across 38 locations of the largest private university system in Mexico, spanning 19 of the 32 states, to detect SARS-CoV-2 genetic materials during the COVID-19 pandemic. Sampling took place weekly from January 2021 and June 2022. Data from 343 sampling sites was clustered by campus and by state and evaluated through its correlation with the seven-day average of daily new COVID-19 cases in each cluster. Statistically significant linear correlations (p-values below 0.05) were found in 25 of the 38 campuses and 13 of the 19 states. Moreover, to evaluate the effectiveness of epidemiologic containment measures taken by the institution across 2021 and the potential of university campuses as representative sampling points for surveillance in future public health emergencies in the Monterrey Metropolitan Area, correlation between new COVID-19 cases and viral loads in weekly wastewater samples was found to be stronger in Dulces Nombres, the largest wastewater treatment plant in the city (Pearson coefficient: 0.6456, p-value: 6.36710-8), than in the largest university campus in the study (Pearson coefficient: 0.4860, p-value: 8.288x10-5). However, when comparing the data after urban mobility returned to pre-pandemic levels, correlation levels in both locations became comparable (0.894 for the university campus and 0.865 for Dulces Nombres). This work provides a basic framework for the implementation and analysis of similar decentralized surveillance platforms to address future sanitary emergencies, allowing for an efficient return to priority in-person activities while preventing university campuses from becoming transmission hotspots.
Collapse
Affiliation(s)
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
| | | | | | | | - Antonio Ovalle-Carcaño
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
| | | | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
| |
Collapse
|
2
|
Chochlakis D, Tzedakis G, Kokkinomagoula A, Tzamali E, Ntoula A, Malliarou M, Intze E, Koutsolioutsou A, Kotsifaki C, Kalisperi D, Dolapsakis E, Sifakaki K, Spanakis EG, Sakkalis V, Psaroulaki A. Challenges on the implementation of wastewater-based epidemiology as a prediction tool: the paradigm of SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179593. [PMID: 40334465 DOI: 10.1016/j.scitotenv.2025.179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/16/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Wastewater Based Epidemiology (WBE) has been identified as a tool for monitoring and predicting patterns of SARS-CoV-2 in communities. Several factors may lead to a day-to-day variation in the measurement of viral genetic material. Wastewater samples are systematically collected from the two major wastewater treatment plants in Crete, Greece. Physico-chemical factors were tested, viral concentration was determined by RT-real time PCR and the results were normalized. The influence of restriction measures, rain and physico-chemical agents was addressed. Statistics together with machine learning (ML) were applied to predict human cases. 781 samples were analyzed. RNA concentration was reduced during lockdown and was impacted by rain. Fluctuations in pH and total solids' concentrations were associated with changes in viral load. Conductivity was mainly related to chloride ions. In Heraklion, wastewater viral load preceded human cases by three days on average. Cross- correlation estimates did not perform likewise in Chania. According to ML, the ratio of sewage RNA measurements to reported cases decreased in comparison to the first wave, due to different variants, climatological parameters, testing rate and behaviors related to seeking healthcare. The model developed showed a close approximation between recorded and predicted cases. Parameters such as total solids, pH, conductivity, rain and inhibitors can significantly impact the recovery of viral RNA. The correlation between viral load in wastewater and human cases is not straightforward. The application of ML may fill some but not every gap. Existing models cannot be directly applied to different Wastewater Treatment Plants or countries.
Collapse
Affiliation(s)
- Dimosthenis Chochlakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece; Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - Georgios Tzedakis
- Computational Biomedicine Laboratory, Institute of Computer Science - Foundation for Research and Technology -Hellas (FORTH), Heraklion, Crete, Greece
| | - Areti Kokkinomagoula
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece; Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Eleftheria Tzamali
- Computational Biomedicine Laboratory, Institute of Computer Science - Foundation for Research and Technology -Hellas (FORTH), Heraklion, Crete, Greece
| | - Artemisia Ntoula
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece; Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Maria Malliarou
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece; Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Evaggelia Intze
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Anastasia Koutsolioutsou
- Department of Environmental Health and Monitoring of Smoking Secession, Directorate of Epidemiology and Prevention of Non-Communicable Diseases and Injuries, National Public Health Organization, Athens, Greece
| | | | | | | | | | - Emmanouil G Spanakis
- Computational Biomedicine Laboratory, Institute of Computer Science - Foundation for Research and Technology -Hellas (FORTH), Heraklion, Crete, Greece
| | - Vangelis Sakkalis
- Computational Biomedicine Laboratory, Institute of Computer Science - Foundation for Research and Technology -Hellas (FORTH), Heraklion, Crete, Greece
| | - Anna Psaroulaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece; Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
3
|
Matra S, Ghode H, Rajput V, Pramanik R, Malik V, Rathore D, Kumar S, Kadam P, Tupekar M, Kamble S, Dastager S, Bajaj A, Qureshi A, Kapley A, Karmodiya K, Dharne M. Wastewater surveillance of open drains for mapping the trajectory and succession of SARS-CoV-2 lineages in 23 cities of Maharashtra state (India) during June 2022 to May 2023. Heliyon 2025; 11:e42534. [PMID: 40040990 PMCID: PMC11876887 DOI: 10.1016/j.heliyon.2025.e42534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
The timely detection of SARS-CoV-2 is crucial for controlling its spread, especially in areas vulnerable to outbreaks. However, due to a lack of sustainable and low cost methods, early detection of such outbreaks is impacting low to middle-income countries (LMICs). Leveraging Wastewater-Based Epidemiology (WBE), we examined the dissemination and evolution of the SARS CoV2 virus in open drains across urban, suburban and densely populated cities in selected regions in the state of Maharashtra, the third largest state of India. In the period from June 2022 to May 2023, 44.89 % of SARS-CoV-2 RNA were positive in RT-qPCR in wastewater samples collected from open drains across selected regions. Whole genome sequencing revealed 22 distinct SARS-CoV-2 lineages, with the Omicron variant, followed by the XBB variant, dominating, alongside other variants such as BF, BQ, CH, and BA.2.86, albeit with lower frequencies. Wastewater surveillance provided early insights into viral transmission, complementing clinical surveillance. Notably, our study detected emerging variants prior to clinical reporting, highlighting the potential of WBE for early detection. Findings underscore the correlation between population density and the trend of viral load. This study also highlighted the significance of using open drains for WBE as a low-cost, and sustainable tool, especially in LMICs, where adequate methods are lacking or difficult to deploy for accessibility.
Collapse
Affiliation(s)
- Sejal Matra
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, Maharashtra, India
| | - Harshada Ghode
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, Maharashtra, India
| | - Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rinka Pramanik
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vinita Malik
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, Maharashtra, India
| | - Deepak Rathore
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
| | - Shailendra Kumar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
| | - Pradnya Kadam
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, 411008, Maharashtra, India
| | - Manisha Tupekar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, 411008, Maharashtra, India
| | - Sanjay Kamble
- Chemical Engineering and Process Development (CEPD) Division, CSIR-NationaChemical Laboratory, Pune, 411008, Maharashtra, India
| | - Syed Dastager
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, Maharashtra, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
- Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, 411008, Maharashtra, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Brooks C, Brooks S, Beasley J, Valley J, Opata M, Karatan E, Bleich R. The influence of environmental factors on the detection and quantification of SARS-CoV-2 variants in dormitory wastewater at a primarily undergraduate institution. Microbiol Spectr 2025; 13:e0200324. [PMID: 39792012 PMCID: PMC11792549 DOI: 10.1128/spectrum.02003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection. Here, we present a data set of over 800 wastewater samples that sheds light on the influence of a variety of these factors on SARS-CoV-2 quantification using droplet digital PCR (ddPCR) from building-specific sewage infrastructure. We consistently quantified a significantly higher number of copies of virus per liter for the target nucleocapsid 2 (N2) compared to nucleocapsid 1 (N1), regardless of the sampling method (grab vs composite). We further show some dormitory-specific differences in SARS-CoV-2 abundance, including correlations to dormitory population size. Environmental variables like precipitation and temperature show little to no impact on virus load, with the exception of higher temperatures for grab sample data. We observed significantly higher gene copy numbers of the Omicron variant than the Delta variant within ductile iron pipes but no difference in nucleocapsid abundance (N1 or N2) across the three different sewage pipe types in our data set. Our results indicate that contextual variables should be considered when interpreting wastewater-based epidemiological data. IMPORTANCE Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been crucial in tracking the spread of the virus and informing public health decisions. SARS-CoV-2 viral RNA is shed by symptomatic and asymptomatic infected individuals, allowing its genetic material to be detected and quantified in wastewater. Here, we used wastewater-based epidemiology to measure SARS-CoV-2 viral RNA from several dormitories on the Appalachian State University campus and examined the impact of sampling methods, target types, environmental factors, and infrastructure variables on quantification. Changes in the quantification of SARS-CoV-2 were observed based on target type, as well as trends for the quantification of the Delta and Omicron variants by sampling method. These results highlight the value of applying the data-inquiry practices used in this study to better contextualize wastewater sampling results.
Collapse
Affiliation(s)
- Chequita Brooks
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
| | - Sebrina Brooks
- Department of Biology, University of North Carolina at Wilmington, Wilmington, North Carolina, USA
| | - Josie Beasley
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Jenna Valley
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Michael Opata
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Ece Karatan
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Rachel Bleich
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| |
Collapse
|
5
|
Gouthro M, Hayes EK, Gagnon GA. Maximizing viral nucleic acid yield from passive samplers: Evaluating elution and extraction protocols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177834. [PMID: 39616929 DOI: 10.1016/j.scitotenv.2024.177834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
The COVID-19 pandemic has underscored the need for effective viral tracking in aqueous environments, particularly for non-enteric viruses. Despite advances in wastewater monitoring, surveillance of viruses in freshwater remains limited due to traditional sampling challenges. This study refines GAC-based passive sampling protocols by determining optimal extraction and elution methods for enhancing the recovery of viral nucleic acids in freshwater. Three commercially available total nucleic acid (TNA) extraction kits and four elution buffers were assessed for their ability to recover SARS-CoV-2 and bacteriophage MS2 from GAC-based samplers. The Promega Wizard® Enviro Total Nucleic Acid Kit, paired with a Tween®20-based buffer, provided the highest virus recovery efficiency for GAC-based passive sampling. Field-scale applications demonstrated the effectiveness of GAC-based passive samplers in capturing SARS-CoV-2, INFA, RSV, and MeV using the optimized protocols. The combination of the Tween®20 based buffer and the Promega kit led to increased detection frequencies in grab samples, which remained lower in recovery than passive sampling. This study underscores the importance of selecting appropriate TNA extraction kits and elution buffers to maximize virus recovery from passive samples. By optimizing these protocols, we enhance the sensitivity and reliability of viral surveillance in freshwater ecosystems.
Collapse
Affiliation(s)
- Madison Gouthro
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
6
|
Sanguino-Jorquera DG, Mainardi-Remis JM, Maidana-Kulesza MN, Cruz MC, Poma HR, González MA, Irazusta VP, Rajal VB. An integrative analysis of SARS-CoV 2 during the first and second waves of COVID-19 in Salta, Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176782. [PMID: 39378941 DOI: 10.1016/j.scitotenv.2024.176782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024]
Abstract
Wastewater surveillance has been extensively applied to provide information about SARS-CoV-2 circulation in the community. However, its applicability is limited in regions lacking adequate sewerage infrastructure, without wastewater treatment plants (WWTP) or with insufficient coverage. During the COVID-19 pandemic, from July 2020 to September 2021, comprehensive epidemiological data encompassing positive, recovered, and deceased cases were collected alongside precipitation records. Additionally, wastewater samples from 13 main sewersheds and river water from two points (up- and downstream the main WWTP), in the city of Salta, were gathered. A total of 452 water samples were analyzed for quantitative detection of SARS-CoV-2 using reverse transcription real-time PCR. Across the 62-week study period, two distinct waves of COVID-19 were identified. The dynamics of deceased cases showed peaks 10 and 28 days after the peaks of positive cases in the first and second waves, respectively. Downstream river water exhibited higher fecal contamination than the upstream samples, evincing the impact of the WWTP discharges. Viral concentration in river waters mirrored those from wastewater, reflecting the progression of cases. Despite the lower reported number of cases during the first wave in comparison to the second (5420 vs. 8516 cases at the respective peaks), higher viral concentrations were detected in water samples (1.97 × 107 vs. 2.36 × 106 gc/L, respectively), suggesting underreporting during the first wave, and highlighting the positive effect of vaccination during the second. To the best of our knowledge, this is the first study that simultaneously and systematically analyzed surface water and wastewater over a prolonged period, the effect of precipitations were considered for the variations in the concentrations, and the findings compared with epidemiological information. Environmental surveillance was demonstrated to be a great tool to obtain valuable information about the circulation patterns of SARS-CoV-2, especially under resource constraints to massively test the population, thus, underreporting cases. Furthermore, the methodology employed herein can be easily expanded to the community-level surveillance of other pathogens excreted in urine and feces, encompassing viruses, bacteria, and protozoa.
Collapse
Affiliation(s)
- Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina.
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Patricia Irazusta
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
7
|
Zhao L, Guzman HP, Xagoraraki I. Comparative analyses of SARS-CoV-2 RNA concentrations in Detroit wastewater quantified with CDC N1, N2, and SC2 assays reveal optimal target for predicting COVID-19 cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174140. [PMID: 38906283 DOI: 10.1016/j.scitotenv.2024.174140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
To monitor COVID-19 through wastewater surveillance, global researchers dedicated significant endeavors and resources to develop and implement diverse RT-qPCR or RT-ddPCR assays targeting different genes of SARS-CoV-2. Effective wastewater surveillance hinges on the appropriate selection of the most suitable assay, especially for resource-constrained regions where scant technical and socioeconomic resources restrict the options for testing with multiple assays. Further research is imperative to evaluate the existing assays through comprehensive comparative analyses. Such analyses are crucial for health agencies and wastewater surveillance practitioners in the selection of appropriate methods for monitoring COVID-19. In this study, untreated wastewater samples were collected weekly from the Detroit wastewater treatment plant, Michigan, USA, between January and December 2023. Polyethylene glycol precipitation (PEG) was applied to concentrate the samples followed by RNA extraction and RT-ddPCR. Three assays including N1, N2 (US CDC Real-Time Reverse Transcription PCR Panel for Detection of SARS-CoV-2), and SC2 assay (US CDC Influenza SARS-CoV-2 Multiplex Assay) were implemented to detect SARS-CoV-2 in wastewater. The limit of blank and limit of detection for the three assays were experimentally determined. SARS-CoV-2 RNA concentrations were evaluated and compared through three statistical approaches, including Pearson and Spearman's rank correlations, Dynamic Time Warping, and vector autoregressive models. N1 and N2 demonstrated the highest correlation and most similar time series patterns. Conversely, N2 and SC2 assay demonstrated the lowest correlation and least similar time series patterns. N2 was identified as the optimal target to predict COVID-19 cases. This study presents a rigorous effort in evaluating and comparing SARS-CoV-2 RNA concentrations quantified with N1, N2, and SC2 assays and their interrelations and correlations with clinical cases. This study provides valuable insights into identifying the optimal target for monitoring COVID-19 through wastewater surveillance.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA
| | - Heidy Peidro Guzman
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA.
| |
Collapse
|
8
|
Brenner KI, Walser B, Cooper J, Jiang S. Wastewater-Based Surveillance Reveals the Effectiveness of the First COVID-19 Vaccination Campaigns in Assisted Living Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1259. [PMID: 39338142 PMCID: PMC11431242 DOI: 10.3390/ijerph21091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The COVID-19 pandemic has disproportionately affected vulnerable populations, including residents of assisted living facilities (ALFs). This study investigates the impact of non-pharmaceutical interventions (NPIs) and mass vaccination campaigns on SARS-CoV-2 transmission dynamics within four ALFs in Maricopa County, Arizona, United States from January to April 2021. Initial observations reveal a significant SARS-CoV-2 prevalence in Maricopa County, with 7452 new COVID-19 cases reported on 4 January 2021. Wastewater surveillance indicates elevated viral loads within ALFs with peak concentrations reaching 1.35 × 107 genome copies/L at Facility 1 and 4.68 × 105 copies/L at Facility 2. The implementation of NPIs, including isolation protocols, resulted in a rapid decline in viral loads in wastewater. Following mass vaccination campaigns, viral loads reduced across all facilities, except Facility 4. Facility 1 demonstrated a mean viral load decrease from 1.65 × 106 copies/L to 1.04 × 103 copies/L post-vaccination, with a statistically significant U-statistic of 28.0 (p-value = 0.0027). Similar trends are observed in Facilities 2 and 3, albeit with varying degrees of statistical significance. In conclusion, this study provides evidence supporting the role of NPIs and vaccination campaigns in controlling SARS-CoV-2 transmission within ALFs.
Collapse
Affiliation(s)
- Katherine I Brenner
- Samueli School of Engineering, University of California, Irvine, CA 92617, USA
| | - Bryan Walser
- Pangolin LLC, 260 Southhampton Ave., Berkeley, CA 94707, USA
| | - Joseph Cooper
- Pangolin LLC, 260 Southhampton Ave., Berkeley, CA 94707, USA
| | - Sunny Jiang
- Samueli School of Engineering, University of California, Irvine, CA 92617, USA
| |
Collapse
|
9
|
Porter AM, Hart JJ, Rediske RR, Szlag DC. SARS-CoV-2 wastewater surveillance at two university campuses: lessons learned and insights on intervention strategies for public health guidance. JOURNAL OF WATER AND HEALTH 2024; 22:811-824. [PMID: 38822461 DOI: 10.2166/wh.2024.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Wastewater surveillance has been a tool for public health officials throughout the COVID-19 pandemic. Universities established pandemic response committees to facilitate safe learning for students, faculty, and staff. These committees met to analyze both wastewater and clinical data to propose mitigation strategies to limit the spread of COVID-19. This paper reviews the initial efforts of utilizing campus data inclusive of wastewater surveillance for SARS-CoV-2 RNA concentrations, clinical case data from university response teams, and mitigation strategies from Grand Valley State University in West Michigan (population 21,648 students) and Oakland University in East Michigan (population 18,552 students) from November 2020 to April 2022. Wastewater positivity rates for both universities ranged from 32.8 to 46.8%. Peak viral signals for both universities directly corresponded to variant points of entry within the campus populations from 2021 to 2022. It was found that the organization of clinical case data and variability of wastewater testing data were large barriers for both universities to effectively understand disease dynamics within the university population. We review the initial efforts of onboarding wastewater surveillance and provide direction for structuring ongoing surveillance workflows and future epidemic response strategies based on those that led to reduced viral signals in campus wastewater.
Collapse
Affiliation(s)
- Alexis M Porter
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA E-mail:
| | - John J Hart
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA; Department of Chemistry, Oakland University, 146 Library Dr, Rochester, MI 48309, USA
| | - Richard R Rediske
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - David C Szlag
- Department of Chemistry, Oakland University, 146 Library Dr, Rochester, MI 48309, USA
| |
Collapse
|
10
|
Holm RH, Rempala GA, Choi B, Brick JM, Amraotkar AR, Keith RJ, Rouchka EC, Chariker JH, Palmer KE, Smith T, Bhatnagar A. Dynamic SARS-CoV-2 surveillance model combining seroprevalence and wastewater concentrations for post-vaccine disease burden estimates. COMMUNICATIONS MEDICINE 2024; 4:70. [PMID: 38594350 PMCID: PMC11004132 DOI: 10.1038/s43856-024-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Despite wide scale assessments, it remains unclear how large-scale severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination affected the wastewater concentration of the virus or the overall disease burden as measured by hospitalization rates. METHODS We used weekly SARS-CoV-2 wastewater concentration with a stratified random sampling of seroprevalence, and linked vaccination and hospitalization data, from April 2021-August 2021 in Jefferson County, Kentucky (USA). Our susceptible ( S ), vaccinated ( V ), variant-specific infected (I 1 andI 2 ), recovered ( R ), and seropositive ( T ) model ( S V I 2 R T ) tracked prevalence longitudinally. This was related to wastewater concentration. RESULTS Here we show the 64% county vaccination rate translate into about a 61% decrease in SARS-CoV-2 incidence. The estimated effect of SARS-CoV-2 Delta variant emergence is a 24-fold increase of infection counts, which correspond to an over 9-fold increase in wastewater concentration. Hospitalization burden and wastewater concentration have the strongest correlation (r = 0.95) at 1 week lag. CONCLUSIONS Our study underscores the importance of continuing environmental surveillance post-vaccine and provides a proof-of-concept for environmental epidemiology monitoring of infectious disease for future pandemic preparedness.
Collapse
Grants
- P20 GM103436 NIGMS NIH HHS
- P30 ES030283 NIEHS NIH HHS
- This study was supported by Centers for Disease Control and Prevention (75D30121C10273), Louisville Metro Government, James Graham Brown Foundation, Owsley Brown II Family Foundation, Welch Family, Jewish Heritage Fund for Excellence, the National Institutes of Health, (P20GM103436), the Rockefeller Foundation, the National Sciences Foundation (DMS-2027001), and the Basic Science Research Program National Research Foundation of Korea (NRF) (RS-2023-00245056).
Collapse
Affiliation(s)
- Rochelle H Holm
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Grzegorz A Rempala
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Boseung Choi
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
- Division of Big Data Science, Korea University, Sejong, South Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon, South Korea
| | | | - Alok R Amraotkar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Rachel J Keith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Ted Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
11
|
Ryon MG, Langan LM, Brennan C, O'Brien ME, Bain FL, Miller AE, Snow CC, Salinas V, Norman RS, Bojes HK, Brooks BW. Influences of 23 different equations used to calculate gene copies of SARS-CoV-2 during wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170345. [PMID: 38272099 DOI: 10.1016/j.scitotenv.2024.170345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, the use of wastewater-based surveillance (WBS) has increased dramatically along with associated infrastructure globally. However, due to the global nature of its application, and various workflow adaptations (e.g., sample collection, water concentration, RNA extraction kits), numerous methods for back-calculation of gene copies per volume (gc/L) of sewage have also emerged. Many studies have considered the comparability of processing methods (e.g., water concentration, RNA extraction); however, for equations used to calculate gene copies in a wastewater sample and subsequent influences on monitoring viral trends in a community and its association with epidemiological data, less is known. Due to limited information on how many formulas exist for the calculation of SARS-CoV-2 gene copies in wastewater, we initially attempted to quantify how many equations existed in the referred literature. We identified 23 unique equations, which were subsequently applied to an existing wastewater dataset. We observed a range of gene copies based on use of different equations, along with variability of AUC curve values, and results from correlation and regression analyses. Though a number of individual laboratories appear to have independently converged on a similar formula for back-calculation of viral load in wastewater, and share similar relationships with epidemiological data, differential influences of various equations were observed for variation in PCR volumes, RNA extraction volumes, or PCR assay parameters. Such observations highlight challenges when performing comparisons among WBS studies when numerous methodologies and back-calculation methods exist. To facilitate reproducibility among studies, the different gc/L equations were packaged as an R Shiny app, which provides end users the ability to investigate variability within their datasets and support comparisons among studies.
Collapse
Affiliation(s)
- Mia G Ryon
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA.
| | - Christopher Brennan
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843-2475, USA
| | - Megan E O'Brien
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Fallon L Bain
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Aubree E Miller
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Christine C Snow
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Victoria Salinas
- Environmental Epidemiology and Disease Registries, Texas Department of State Health Services, Austin, TX 78756, USA
| | - R Sean Norman
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly St., Columbia, SC 28208, USA
| | - Heidi K Bojes
- Environmental Epidemiology and Disease Registries, Texas Department of State Health Services, Austin, TX 78756, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA; Department of Public Health, Baylor University, One Bear Place #97343, Waco, TX 76798, USA.
| |
Collapse
|
12
|
Haskell BR, Dhiyebi HA, Srikanthan N, Bragg LM, Parker WJ, Giesy JP, Servos MR. Implementing an adaptive, two-tiered SARS-CoV-2 wastewater surveillance program on a university campus using passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168998. [PMID: 38040360 DOI: 10.1016/j.scitotenv.2023.168998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Building-level wastewater-based surveillance (WBS) has been increasingly applied upstream from wastewater treatment plants to conduct targeted monitoring for SARS-CoV-2. In this study, a two-tiered, trigger-based wastewater surveillance program was developed on a university campus to monitor dormitory wastewater. The objective was to determine if passive sampling with cotton gauze as a sampling medium could be used to support institution-level public health action. Two nucleocapsid gene targets (N1 and N2) of SARS-CoV-2 as well as the endogenous fecal indicator pepper mild mottle virus (PMMoV) were quantified using RT-qPCR. >500 samples were analyzed during two contrasting surveillance periods. In the Fall of 2021 community viral burden was low and a tiered sampling network was able to isolate individual clinical cases at the building-scale. In the Winter of 2022 wastewater signals were quickly elevated by the emergence of the highly transmissible SARS-CoV-2 Omicron (B.1.1.529) variant. Prevalence of SARS-CoV-2 shifted surveillance objectives from isolating cases to monitoring trends, revealing both the benefits and limitations of a tiered surveillance design under different public health situations. Normalization of SARS-CoV-2 by PMMoV was not reflective of upstream population differences, suggesting saturation of the material occurred during the exposure period. The passive sampling method detected nearly all known clinical cases and in one instance was able to identify one pre-symptomatic individual days prior to confirmation by clinical test. Comparisons between campus samplers and municipal wastewater influent suggests that the spread of COVID-19 on the campus was similar to that of the broader community. The results demonstrate that passive sampling is an effective tool that can produce semi-quantitative data capable of tracking temporal trends to guide targeted public health decision-making at an institutional level. Practitioners of WBS can utilize these results to inform surveillance program designs that prioritize efficient resource use and rapid reporting.
Collapse
Affiliation(s)
- Blake R Haskell
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | - Wayne J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada.
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Science, Baylor University, 1 Bear Trail, Waco, TX 76798, USA
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
13
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
14
|
Holm RH, Rempala G, Choi B, Brick JM, Amraotkar A, Keith R, Rouchka EC, Chariker JH, Palmer K, Smith TR, Bhatnagar A. Wastewater and seroprevalence for pandemic preparedness: variant analysis, vaccination effect, and hospitalization forecasting for SARS-CoV-2, in Jefferson County, Kentucky. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.06.23284260. [PMID: 36656780 PMCID: PMC9844017 DOI: 10.1101/2023.01.06.23284260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite wide scale assessments, it remains unclear how large-scale SARS-CoV-2 vaccination affected the wastewater concentration of the virus or the overall disease burden as measured by hospitalization rates. We used weekly SARS-CoV-2 wastewater concentration with a stratified random sampling of seroprevalence, and linked vaccination and hospitalization data, from April 2021-August 2021 in Jefferson County, Kentucky (USA). Our susceptible (S), vaccinated (V), variant-specific infected (I_1 and I_2), recovered (R), and seropositive (T) model (SVI_2 RT) tracked prevalence longitudinally. This was related to wastewater concentration. The 64% county vaccination rate translated into about 61% decrease in SARS-CoV-2 incidence. The estimated effect of SARS-CoV-2 Delta variant emergence was a 24-fold increase of infection counts, which corresponded to an over 9-fold increase in wastewater concentration. Hospitalization burden and wastewater concentration had the strongest correlation (r = 0.95) at 1 week lag. Our study underscores the importance of continued environmental surveillance post-vaccine and provides a proof-of-concept for environmental epidemiology monitoring of infectious disease for future pandemic preparedness.
Collapse
|
15
|
Lin T, Karthikeyan S, Satterlund A, Schooley R, Knight R, De Gruttola V, Martin N, Zou J. Optimizing campus-wide COVID-19 test notifications with interpretable wastewater time-series features using machine learning models. Sci Rep 2023; 13:20670. [PMID: 38001346 PMCID: PMC10673837 DOI: 10.1038/s41598-023-47859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
During the COVID-19 pandemic, wastewater surveillance of the SARS CoV-2 virus has been demonstrated to be effective for population surveillance at the county level down to the building level. At the University of California, San Diego, daily high-resolution wastewater surveillance conducted at the building level is being used to identify potential undiagnosed infections and trigger notification of residents and responsive testing, but the optimal determinants for notifications are unknown. To fill this gap, we propose a pipeline for data processing and identifying features of a series of wastewater test results that can predict the presence of COVID-19 in residences associated with the test sites. Using time series of wastewater results and individual testing results during periods of routine asymptomatic testing among UCSD students from 11/2020 to 11/2021, we develop hierarchical classification/decision tree models to select the most informative wastewater features (patterns of results) which predict individual infections. We find that the best predictor of positive individual level tests in residence buildings is whether or not the wastewater samples were positive in at least 3 of the past 7 days. We also demonstrate that the tree models outperform a wide range of other statistical and machine models in predicting the individual COVID-19 infections while preserving interpretability. Results of this study have been used to refine campus-wide guidelines and email notification systems to alert residents of potential infections.
Collapse
Affiliation(s)
- Tuo Lin
- Department of Biostatistics, University of Florida, Gainesville, FL, 32608, USA
| | - Smruthi Karthikeyan
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alysson Satterlund
- Student Affairs, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert Schooley
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Victor De Gruttola
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Natasha Martin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jingjing Zou
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Li Y, Ash KT, Joyner DC, Williams DE, Alamilla I, McKay PJ, Iler C, Hazen TC. Evaluating various composite sampling modes for detecting pathogenic SARS-CoV-2 virus in raw sewage. Front Microbiol 2023; 14:1305967. [PMID: 38075856 PMCID: PMC10702244 DOI: 10.3389/fmicb.2023.1305967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 04/23/2025] Open
Abstract
Inadequate sampling approaches to wastewater analyses can introduce biases, leading to inaccurate results such as false negatives and significant over- or underestimation of average daily viral concentrations, due to the sporadic nature of viral input. To address this challenge, we conducted a field trial within the University of Tennessee residence halls, employing different composite sampling modes that encompassed different time intervals (1 h, 2 h, 4 h, 6 h, and 24 h) across various time windows (morning, afternoon, evening, and late-night). Our primary objective was to identify the optimal approach for generating representative composite samples of SARS-CoV-2 from raw wastewater. Utilizing reverse transcription-quantitative polymerase chain reaction, we quantified the levels of SARS-CoV-2 RNA and pepper mild mottle virus (PMMoV) RNA in raw sewage. Our findings consistently demonstrated that PMMoV RNA, an indicator virus of human fecal contamination in water environment, exhibited higher abundance and lower variability compared to pathogenic SARS-CoV-2 RNA. Significantly, both SARS-CoV-2 and PMMoV RNA exhibited greater variability in 1 h individual composite samples throughout the entire sampling period, contrasting with the stability observed in other time-based composite samples. Through a comprehensive analysis of various composite sampling modes using the Quade Nonparametric ANCOVA test with date, PMMoV concentration and site as covariates, we concluded that employing a composite sampler during a focused 6 h morning window for pathogenic SARS-CoV-2 RNA is a pragmatic and cost-effective strategy for achieving representative composite samples within a single day in wastewater-based epidemiology applications. This method has the potential to significantly enhance the accuracy and reliability of data collected at the community level, thereby contributing to more informed public health decision-making during a pandemic.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kurt T. Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dominique C. Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel E. Williams
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Isabella Alamilla
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Student Health Center, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Peter J. McKay
- Student Health Center, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chris Iler
- Department of Facilities Services, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
- Bredesen Center, University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
17
|
Bowes D, Darling A, Driver EM, Kaya D, Maal-Bared R, Lee LM, Goodman K, Adhikari S, Aggarwal S, Bivins A, Bohrerova Z, Cohen A, Duvallet C, Elnimeiry RA, Hutchison JM, Kapoor V, Keenum I, Ling F, Sills D, Tiwari A, Vikesland P, Ziels R, Mansfeldt C. Structured Ethical Review for Wastewater-Based Testing in Support of Public Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12969-12980. [PMID: 37611169 PMCID: PMC10484207 DOI: 10.1021/acs.est.3c04529] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of WBT measured biomarkers for research activities and for the pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process, introducing the potential for adverse outcomes for WBT professionals and community members. To address this deficiency, an interdisciplinary workshop developed a framework for a structured ethical review of WBT. The workshop employed a consensus approach to create this framework as a set of 11 questions derived from primarily public health guidance. This study retrospectively applied these questions to SARS-CoV-2 monitoring programs covering the emergent phase of the pandemic (3/2020-2/2022 (n = 53)). Of note, 43% of answers highlight a lack of reported information to assess. Therefore, a systematic framework would at a minimum structure the communication of ethical considerations for applications of WBT. Consistent application of an ethical review will also assist in developing a practice of updating approaches and techniques to reflect the concerns held by both those practicing and those being monitored by WBT supported programs.
Collapse
Affiliation(s)
- Devin
A. Bowes
- Biodesign
Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85287, United States
- Center on
Forced Displacement, Boston University, 111 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Amanda Darling
- Department
of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 415 Durham Hall; Blacksburg, Virginia 24061, United States
| | - Erin M. Driver
- Biodesign
Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85287, United States
| | - Devrim Kaya
- School of
Chemical, Biological, and Environmental Engineering, Oregon State University, 105 26th St, Corvallis, Oregon 97331, United States
- School of
Public Health, San Diego State University, San Diego and Imperial Valley, California 92182, United States
| | - Rasha Maal-Bared
- Quality
Assurance and Environment, EPCOR Water Services Inc., EPCOR Tower, 2000−10423 101
Street NW, Edmonton, Alberta T5H 0E7, Canada
| | - Lisa M. Lee
- Department
of Population Health Sciences and Division of Scholarly Integrity
and Research Compliance, Virginia Tech, 300 Turner St. NW, Suite 4120 (0497), Blacksburg, Virginia 24061, United States
| | - Kenneth Goodman
- Institute
for Bioethics and Health Policy, Miller School of Medicine, University of Miami, Miami, Florida 33101, United States
| | - Sangeet Adhikari
- Biodesign
Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85287, United States
| | - Srijan Aggarwal
- Department
of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, United States
| | - Aaron Bivins
- Department
of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Zuzana Bohrerova
- The Ohio
State University, Department of Civil, Environmental
and Geodetic Engineering, 2070 Neil Avenue, 470 Hitchcock Hall, Columbus, Ohio 43210, United States
| | - Alasdair Cohen
- Department
of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 415 Durham Hall; Blacksburg, Virginia 24061, United States
- Department
of Population Health Sciences, Virginia
Tech, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Claire Duvallet
- Biobot
Analytics, Inc., 501
Massachusetts Avenue; Cambridge, Massachusetts 02139, United States
| | - Rasha A. Elnimeiry
- Public
Health Outbreak Coordination, Informatics, Surveillance (PHOCIS) Office—Surveillance
Section, Division of Disease Control and Health Statistics, Washington State Department of Health, 111 Israel Rd SE, Tumwater, Washington 98501, United States
| | - Justin M. Hutchison
- Department
of Civil, Environmental, and Architectural Engineering, University of Kansas, 1530 W 15th St, Lawrence, Kansas 66045, United States
| | - Vikram Kapoor
- School
of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Ishi Keenum
- Complex
Microbial Systems Group, National Institute
of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, United States
| | - Fangqiong Ling
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Deborah Sills
- Department
of Civil and Environmental Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Ananda Tiwari
- Department
of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöberginkatu 2,
P.O. Box 66, FI 00014 Helsinki, Finland
- Expert
Microbiology Unit, Finnish Institute for
Health and Welfare, FI 70600 Kuopio, Finland
| | - Peter Vikesland
- Department
of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 415 Durham Hall; Blacksburg, Virginia 24061, United States
| | - Ryan Ziels
- Department
of Civil Engineering, The University of
British Columbia, 6250
Applied Science Ln #2002, Vancouver, BC V6T 1Z4, Canada
| | - Cresten Mansfeldt
- Department
of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, UCB 428, Boulder, Colorado 80309, United States
- Environmental
Engineering Program, University of Colorado
Boulder, UCB 607, Boulder, Colorado 80309, United States
| |
Collapse
|
18
|
Zhao L, Geng Q, Corchis-Scott R, McKay RM, Norton J, Xagoraraki I. Targeting a free viral fraction enhances the early alert potential of wastewater surveillance for SARS-CoV-2: a methods comparison spanning the transition between delta and omicron variants in a large urban center. Front Public Health 2023; 11:1140441. [PMID: 37546328 PMCID: PMC10400354 DOI: 10.3389/fpubh.2023.1140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Wastewater surveillance has proven to be a valuable approach to monitoring the spread of SARS-CoV-2, the virus that causes Coronavirus disease 2019 (COVID-19). Recognizing the benefits of wastewater surveillance as a tool to support public health in tracking SARS-CoV-2 and other respiratory pathogens, numerous wastewater virus sampling and concentration methods have been tested for appropriate applications as well as their significance for actionability by public health practices. Methods Here, we present a 34-week long wastewater surveillance study that covers nearly 4 million residents of the Detroit (MI, United States) metropolitan area. Three primary concentration methods were compared with respect to recovery of SARS-CoV-2 from wastewater: Virus Adsorption-Elution (VIRADEL), polyethylene glycol precipitation (PEG), and polysulfone (PES) filtration. Wastewater viral concentrations were normalized using various parameters (flow rate, population, total suspended solids) to account for variations in flow. Three analytical approaches were implemented to compare wastewater viral concentrations across the three primary concentration methods to COVID-19 clinical data for both normalized and non-normalized data: Pearson and Spearman correlations, Dynamic Time Warping (DTW), and Time Lagged Cross Correlation (TLCC) and peak synchrony. Results It was found that VIRADEL, which captures free and suspended virus from supernatant wastewater, was a leading indicator of COVID-19 cases within the region, whereas PEG and PES filtration, which target particle-associated virus, each lagged behind the early alert potential of VIRADEL. PEG and PES methods may potentially capture previously shed and accumulated SARS-CoV-2 resuspended from sediments in the interceptors. Discussion These results indicate that the VIRADEL method can be used to enhance the early-warning potential of wastewater surveillance applications although drawbacks include the need to process large volumes of wastewater to concentrate sufficiently free and suspended virus for detection. While lagging the VIRADEL method for early-alert potential, both PEG and PES filtration can be used for routine COVID-19 wastewater monitoring since they allow a large number of samples to be processed concurrently while being more cost-effective and with rapid turn-around yielding results same day as collection.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Robert Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Bowes DA, Darling A, Driver EM, Kaya D, Maal-Bared R, Lee LM, Goodman K, Adhikari S, Aggarwal S, Bivins A, Bohrerova Z, Cohen A, Duvallet C, Elnimeiry RA, Hutchison JM, Kapoor V, Keenum I, Ling F, Sills D, Tiwari A, Vikesland P, Ziels R, Mansfeldt C. Structured Ethical Review for Wastewater-Based Testing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.12.23291231. [PMID: 37398480 PMCID: PMC10312843 DOI: 10.1101/2023.06.12.23291231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of the field blurred the boundary between measuring biomarkers for research activities and for pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process (or associated data management safeguards), introducing the potential for adverse outcomes for WBT professionals and community members. To address this deficiency, an interdisciplinary group developed a framework for a structured ethical review of WBT. The workshop employed a consensus approach to create this framework as a set of 11-questions derived from primarily public health guidance because of the common exemption of wastewater samples to human subject research considerations. This study retrospectively applied the set of questions to peer- reviewed published reports on SARS-CoV-2 monitoring campaigns covering the emergent phase of the pandemic from March 2020 to February 2022 (n=53). Overall, 43% of the responses to the questions were unable to be assessed because of lack of reported information. It is therefore hypothesized that a systematic framework would at a minimum improve the communication of key ethical considerations for the application of WBT. Consistent application of a standardized ethical review will also assist in developing an engaged practice of critically applying and updating approaches and techniques to reflect the concerns held by both those practicing and being monitored by WBT supported campaigns. Abstract Figure Synopsis Development of a structured ethical review facilitates retrospective analysis of published studies and drafted scenarios in the context of wastewater-based testing.
Collapse
Affiliation(s)
- Devin A. Bowes
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287
- Center on Forced Displacement, Boston University, 111 Cummington Mall, Boston, MA, 02215
| | - Amanda Darling
- Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street; 415 Durham Hall; Blacksburg, VA 24061
| | - Erin M. Driver
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 26th St, Corvallis, Oregon 97331
- School of Public Health, San Diego State University, San Diego and Imperial Valley, CA
| | - Rasha Maal-Bared
- Quality Assurance and Environment, EPCOR Water Services Inc., EPCOR Tower, 2000–10423 101 Street NW, Edmonton, Alberta, CA
| | - Lisa M. Lee
- Department of Population Health Sciences and Division of Scholarly Integrity and Research Compliance, Virginia Tech, 300 Turner St. NW, Suite 4120 (0497), Blacksburg, VA 24061
| | - Kenneth Goodman
- Institute for Bioethics and Health Policy, Miller School of Medicine, University of Miami, Miami, Florida
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287
| | - Srijan Aggarwal
- Department of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, AK 99775
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803
| | - Zuzana Bohrerova
- The Ohio State University, Department of Civil, Environmental and Geodetic Engineering, 2070 Neil Avenue, 470 Hitchcock Hall, Columbus, OH 43210
| | - Alasdair Cohen
- Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street; 415 Durham Hall; Blacksburg, VA 24061
- Department of Population Health Sciences, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061
| | - Claire Duvallet
- Biobot Analytics, Inc., 501 Massachusetts Avenue; Cambridge, MA; 02139
| | - Rasha A. Elnimeiry
- Public Health Outbreak Coordination, Informatics, Surveillance (PHOCIS) Office – Surveillance Section, Division of Disease Control and Health Statistics, Washington State Department of Health, 111 Israel Rd SE, Tumwater, WA 98501
| | - Justin M. Hutchison
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, 1530 W 15th St, Lawrence, KS 66045
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249
| | - Ishi Keenum
- Complex Microbial Systems Group, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899
| | - Fangqiong Ling
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Deborah Sills
- Department of Civil and Environmental Engineering, Bucknell University, Lewisburg, PA, 17837
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöberginkatu 2 P.O. Box 66 FI 00014 Helsinki, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street; 415 Durham Hall; Blacksburg, VA 24061
| | - Ryan Ziels
- Department of Civil Engineering, the University of British Columbia, 6250 Applied Science Ln #2002, Vancouver, BC V6T 1Z4
| | - Cresten Mansfeldt
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, UCB 428, Boulder, CO 80309
- Environmental Engineering Program, University of Colorado Boulder, UCB 607, Boulder, CO 80309
| |
Collapse
|
20
|
Assoum M, Lau CL, Thai PK, Ahmed W, Mueller JF, Thomas KV, Choi PM, Jackson G, Selvey LA. Wastewater Surveillance Can Function as an Early Warning System for COVID-19 in Low-Incidence Settings. Trop Med Infect Dis 2023; 8:211. [PMID: 37104337 PMCID: PMC10143724 DOI: 10.3390/tropicalmed8040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION During the first two years of the COVID-19 pandemic, Australia implemented a series of international and interstate border restrictions. The state of Queensland experienced limited COVID-19 transmission and relied on lockdowns to stem any emerging COVID-19 outbreaks. However, early detection of new outbreaks was difficult. In this paper, we describe the wastewater surveillance program for SARS-CoV-2 in Queensland, Australia, and report two case studies in which we aimed to assess the potential for this program to provide early warning of new community transmission of COVID-19. Both case studies involved clusters of localised transmission, one originating in a Brisbane suburb (Brisbane Inner West) in July-August 2021, and the other originating in Cairns, North Queensland in February-March 2021. MATERIALS AND METHODS Publicly available COVID-19 case data derived from the notifiable conditions (NoCs) registry from the Queensland Health data portal were cleaned and merged spatially with the wastewater surveillance data using statistical area 2 (SA2) codes. The positive predictive value and negative predictive value of wastewater detection for predicting the presence of COVID-19 reported cases were calculated for the two case study sites. RESULTS Early warnings for local transmission of SARS-CoV-2 through wastewater surveillance were noted in both the Brisbane Inner West cluster and the Cairns cluster. The positive predictive value of wastewater detection for the presence of notified cases of COVID-19 in Brisbane Inner West and Cairns were 71.4% and 50%, respectively. The negative predictive value for Brisbane Inner West and Cairns were 94.7% and 100%, respectively. CONCLUSIONS Our findings highlight the utility of wastewater surveillance as an early warning tool in low COVID-19 transmission settings.
Collapse
Affiliation(s)
- Mohamad Assoum
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Colleen L. Lau
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Phong K. Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Jochen F. Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Phil Min Choi
- Health Protection Branch, Queensland Health, Brisbane, QLD 4006, Australia
| | - Greg Jackson
- Health Protection Branch, Queensland Health, Brisbane, QLD 4006, Australia
| | - Linda A. Selvey
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
21
|
Mohapatra S, Bhatia S, Senaratna KYK, Jong MC, Lim CMB, Gangesh GR, Lee JX, Giek GS, Cheung C, Yutao L, Luhua Y, Yong NH, Peng LC, Wong JCC, Ching NL, Gin KYH. Wastewater surveillance of SARS-CoV-2 and chemical markers in campus dormitories in an evolving COVID - 19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130690. [PMID: 36603423 PMCID: PMC9795800 DOI: 10.1016/j.jhazmat.2022.130690] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 05/21/2023]
Abstract
In this study, we report the implementation of a comprehensive wastewater surveillance testing program at a university campus in Singapore to identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infected individuals and the usage of pharmaceuticals and personal care products (PPCPs) as well as other emerging contaminants (ECs). This unique co-monitoring program simultaneously measured SARS-CoV-2 with chemical markers/contaminants as the COVID-19 situation evolved from pandemic to endemic stages, following a nationwide mass vaccination drive. SARS-CoV-2 RNA concentrations in wastewater from campus dormitories were measured using real-time reverse transcription-polymerase chain reaction (RT-qPCR) and corroborated with the number of symptomatic COVID-19 cases confirmed with the antigen rapid test (ART). Consistent results were observed where the concentrations of SARS-CoV-2 RNA detected in wastewater increased proportionately with the number of COVID-19 infected individuals residing on campus. Similarly, a wide range of ECs, including disinfectants and antibiotics, were detected through sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques to establish PPCPs consumption patterns during various stages of the COVID-19 pandemic in Singapore. Statistical correlation of SARS-CoV-2 RNA was observed with few ECs belonging to disinfectants, PCPs and antibiotics. A high concentration of disinfectants and subsequent positive correlation with the number of reported cases on the university campus indicates that disinfectants could serve as a chemical marker during such unprecedented times.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Sumedha Bhatia
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | | | - Mui-Choo Jong
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Chun Min Benjamin Lim
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - G Reuben Gangesh
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Jia Xiong Lee
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Goh Shin Giek
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Callie Cheung
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore
| | - Lin Yutao
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - You Luhua
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Ng How Yong
- Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore
| | - Lim Cheh Peng
- Office of Risk Management and Compliance, National University of Singapore, 119077, Singapore
| | - Judith Chui Ching Wong
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08, 138667, Singapore
| | - Ng Lee Ching
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08, 138667, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
22
|
Zhao L, Zou Y, David RE, Withington S, McFarlane S, Faust RA, Norton J, Xagoraraki I. Simple methods for early warnings of COVID-19 surges: Lessons learned from 21 months of wastewater and clinical data collection in Detroit, Michigan, United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161152. [PMID: 36572285 PMCID: PMC9783093 DOI: 10.1016/j.scitotenv.2022.161152] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 05/12/2023]
Abstract
Wastewater-based epidemiology (WBE) has drawn great attention since the Coronavirus disease 2019 (COVID-19) pandemic, not only due to its capability to circumvent the limitations of traditional clinical surveillance, but also due to its potential to forewarn fluctuations of disease incidences in communities. One critical application of WBE is to provide "early warnings" for upcoming fluctuations of disease incidences in communities which traditional clinical testing is incapable to achieve. While intricate models have been developed to determine early warnings based on wastewater surveillance data, there is an exigent need for straightforward, rapid, broadly applicable methods for health departments and partner agencies to implement. Our purpose in this study is to develop and evaluate such early-warning methods and clinical-case peak-detection methods based on WBE data to mount an informed public health response. Throughout an extended wastewater surveillance period across Detroit, MI metropolitan area (the entire study period is from September 2020 to May 2022) we designed eight early-warning methods (three real-time and five post-factum). Additionally, we designed three peak-detection methods based on clinical epidemiological data. We demonstrated the utility of these methods for providing early warnings for COVID-19 incidences, with their counterpart accuracies evaluated by hit rates. "Hit rates" were defined as the number of early warning dates (using wastewater surveillance data) that captured defined peaks (using clinical epidemiological data) divided by the total number of early warning dates. Hit rates demonstrated that the accuracy of both real-time and post-factum methods could reach 100 %. Furthermore, the results indicate that the accuracy was influenced by approaches to defining peaks of disease incidence. The proposed methods herein can assist health departments capitalizing on WBE data to assess trends and implement quick public health responses to future epidemics. Besides, this study elucidated critical factors affecting early warnings based on WBE amid the COVID-19 pandemic.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, USA
| | - Yangyang Zou
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, USA
| | - Randy E David
- Detroit Health Department, 100 Mack Ave, Detroit, MI 48201, USA
| | | | - Stacey McFarlane
- Macomb County Health Division, 43525 Elizabeth Rd, Mount Clemens, MI 48043, USA
| | - Russell A Faust
- Oakland County Health Division, 1200 Telegraph Rd, Pontiac, MI 48341, USA
| | - John Norton
- Great Lakes Water Authority, 735 Randolph, Detroit, MI 48226, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, USA.
| |
Collapse
|
23
|
Ash KT, Li Y, Alamilla I, Joyner DC, Williams DE, McKay PJ, Green BM, Iler C, DeBlander SE, North CM, Kara-Murdoch F, Swift CM, Hazen TC. SARS-CoV-2 raw wastewater surveillance from student residences on an urban university campus. Front Microbiol 2023; 14:1101205. [PMID: 36846780 PMCID: PMC9948028 DOI: 10.3389/fmicb.2023.1101205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The COVID-19 pandemic brought about an urgent need to monitor the community prevalence of infection and detect the presence of SARS-CoV-2. Testing individual people is the most reliable method to measure the spread of the virus in any given community, but it is also the most expensive and time-consuming. Wastewater-based epidemiology (WBE) has been used since the 1960s when scientists implemented monitoring to measure the effectiveness of the Polio vaccine. Since then, WBE has been used to monitor populations for various pathogens, drugs, and pollutants. In August 2020, the University of Tennessee-Knoxville implemented a SARS-CoV-2 surveillance program that began with raw wastewater surveillance of the student residence buildings on campus, the results of which were shared with another lab group on campus that oversaw the pooled saliva testing of students. Sample collection began at 8 am, and the final RT-qPCR results were obtained by midnight. The previous day's results were presented to the campus administrators and the Student Health Center at 8 am the following morning. The buildings surveyed included all campus dormitories, fraternities, and sororities, 46 buildings in all representing an on-campus community of over 8,000 students. The WBE surveillance relied upon early morning "grab" samples and 24-h composite sampling. Because we only had three Hach AS950 Portable Peristaltic Sampler units, we reserved 24-h composite sampling for the dormitories with the highest population of students. Samples were pasteurized, and heavy sediment was centrifuged and filtered out, followed by a virus concentration step before RNA extraction. Each sample was tested by RT-qPCR for the presence of SARS-CoV-2, using the CDC primers for N Capsid targets N1 and N3. The subsequent pooled saliva tests from sections of each building allowed lower costs and minimized the total number of individual verification tests that needed to be analyzed by the Student Health Center. Our WBE results matched the trend of the on-campus cases reported by the student health center. The highest concentration of genomic copies detected in one sample was 5.06 × 107 copies/L. Raw wastewater-based epidemiology is an efficient, economical, fast, and non-invasive method to monitor a large community for a single pathogen or multiple pathogen targets.
Collapse
Affiliation(s)
- K. T. Ash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - Y. Li
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - I. Alamilla
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - D. C. Joyner
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - D. E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - P. J. McKay
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - B. M. Green
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - C. Iler
- Facilities Services Department, University of Tennessee, Knoxville, TN, United States
| | - S. E. DeBlander
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - C. M. North
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - F. Kara-Murdoch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
- Battelle Memorial Institute, Columbus, OH, United States
| | - C. M. Swift
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - T. C. Hazen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
24
|
Rainey AL, Buschang K, O’Connor A, Love D, Wormington AM, Messcher RL, Loeb JC, Robinson SE, Ponder H, Waldo S, Williams R, Shapiro J, McAlister EB, Lauzardo M, Lednicky JA, Maurelli AT, Sabo-Attwood T, Bisesi J. Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T WATER 2023; 3:16-29. [PMID: 37552720 PMCID: PMC9762499 DOI: 10.1021/acsestwater.2c00275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.
Collapse
Affiliation(s)
- Andrew L. Rainey
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Katherine Buschang
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Amber O’Connor
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Deirdre Love
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Alexis M. Wormington
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Julia C. Loeb
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Sarah E. Robinson
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Hunter Ponder
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Sarah Waldo
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Roy Williams
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Jerne Shapiro
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
- Department of Epidemiology, College of Public
Health and Health Professions and College of Medicine, Gainesville,
Florida32611, United States
| | | | - Michael Lauzardo
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Department of Medicine, College of Medicine,
University of Florida, Gainesville, Florida32611,
United States
| | - John A. Lednicky
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Joseph
H. Bisesi
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| |
Collapse
|
25
|
Kotlarz N, Holcomb DA, Tanvir Pasha ABM, Reckling S, Kays J, Lai YC, Daly S, Palani S, Bailey E, Guidry VT, Christensen A, Berkowitz S, Hoppin JA, Mitasova H, Engel LS, Reyes FLDL, Harris A. Timing and Trends for Municipal Wastewater, Lab-Confirmed Case, and Syndromic Case Surveillance of COVID-19 in Raleigh, North Carolina. Am J Public Health 2023; 113:79-88. [PMID: 36356280 PMCID: PMC9755929 DOI: 10.2105/ajph.2022.307108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/12/2022]
Abstract
Objectives. To compare 4 COVID-19 surveillance metrics in a major metropolitan area. Methods. We analyzed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater influent and primary solids in Raleigh, North Carolina, from April 10 through December 13, 2020. We compared wastewater results with lab-confirmed COVID-19 cases and syndromic COVID-like illness (CLI) cases to answer 3 questions: (1) Did they correlate? (2) What was the temporal alignment of the different surveillance systems? (3) Did periods of significant change (i.e., trends) align? Results. In the Raleigh sewershed, wastewater influent, wastewater primary solids, lab-confirmed cases, and CLI were strongly or moderately correlated. Trends in lab-confirmed cases and wastewater influent were observed earlier, followed by CLI and, lastly, wastewater primary solids. All 4 metrics showed sustained increases in COVID-19 in June, July, and November 2020 and sustained decreases in August and September 2020. Conclusions. In a major metropolitan area in 2020, the timing of and trends in municipal wastewater, lab-confirmed case, and syndromic case surveillance of COVID-19 were in general agreement. Public Health Implications. Our results provide evidence for investment in SARS-CoV-2 wastewater and CLI surveillance to complement information provided through lab-confirmed cases. (Am J Public Health. 2023;113(1):79-88. https://doi.org/10.2105/AJPH.2022.307108).
Collapse
Affiliation(s)
- Nadine Kotlarz
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - David A Holcomb
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - A B M Tanvir Pasha
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Stacie Reckling
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Judith Kays
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Yi-Chun Lai
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Sean Daly
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Sivaranjani Palani
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Erika Bailey
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Virginia T Guidry
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Ariel Christensen
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Steven Berkowitz
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Jane A Hoppin
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Helena Mitasova
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Lawrence S Engel
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Francis L de Los Reyes
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Angela Harris
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| |
Collapse
|
26
|
Martin M, Goethals P, Newhart K, Rhodes E, Vogel J, Stevenson B. Optimization of sewage sampling for wastewater-based epidemiology through stochastic modeling. JOURNAL OF ENGINEERING AND APPLIED SCIENCE 2023; 70:11. [PMCID: PMC9930068 DOI: 10.1186/s44147-023-00180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The proliferation of the SARS-CoV-2 global pandemic has brought to attention the need for epidemiological tools that can detect diseases in specific geographical areas through non-contact means. Such methods may protect those potentially infected by facilitating early quarantine policies to prevent the spread of the disease. Sampling of municipal wastewater has been studied as a plausible solution to detect pathogen spread, even from asymptomatic patients. However, many challenges exist in wastewater-based epidemiology such as identifying a representative sample for a population, determining the appropriate sample size, and establishing the right time and place for samples. In this work, a new approach to address these questions is assessed using stochastic modeling to represent wastewater sampling given a particular community of interest. Using estimates for various process parameters, inferences on the population infected are generated with Monte Carlo simulation output. A case study at the University of Oklahoma is examined to calibrate and evaluate the model output. Finally, extensions are provided for more efficient wastewater sampling campaigns in the future. This research provides greater insight into the effects of viral load, the percentage of the population infected, and sampling time on mean SARS-CoV-2 concentration through simulation. In doing so, an earlier warning of infection for a given population may be obtained and aid in reducing the spread of viruses.
Collapse
Affiliation(s)
- Max Martin
- grid.419884.80000 0001 2287 2270United States Corps of Cadets, United States Military Academy, West Point, New York, USA
| | - Paul Goethals
- grid.419884.80000 0001 2287 2270Department of Mathematical Sciences, United States Military Academy, West Point, New York, USA
| | - Kathryn Newhart
- grid.419884.80000 0001 2287 2270Department of Geography & Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Emily Rhodes
- grid.266900.b0000 0004 0447 0018School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Jason Vogel
- grid.266900.b0000 0004 0447 0018School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Bradley Stevenson
- grid.266900.b0000 0004 0447 0018Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
27
|
Armas F, Chandra F, Lee WL, Gu X, Chen H, Xiao A, Leifels M, Wuertz S, Alm EJ, Thompson J. Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era. ENVIRONMENT INTERNATIONAL 2023; 171:107718. [PMID: 36584425 PMCID: PMC9783150 DOI: 10.1016/j.envint.2022.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 wastewater-based surveillance (WBS) offers a tool for cost-effective oversight of a population's infections. In the past two years, WBS has proven to be crucial for managing the pandemic across different geographical regions. However, the changing context of the pandemic due to high levels of COVID-19 vaccination warrants a closer examination of its implication towards SARS-CoV-2 WBS. Two main questions were raised: 1) Does vaccination cause shedding of viral signatures without infection? 2) Does vaccination affect the relationship between wastewater and clinical data? To answer, we review historical reports of shedding from viral vaccines in use prior to the COVID-19 pandemic including for polio, rotavirus, influenza and measles infection and provide a perspective on the implications of different COVID-19 vaccination strategies with regard to the potential shedding of viral signatures into the sewershed. Additionally, we reviewed studies that looked into the relationship between wastewater and clinical data and how vaccination campaigns could have affected the relationship. Finally, analyzing wastewater and clinical data from the Netherlands, we observed changes in the relationship concomitant with increasing vaccination coverage and switches in dominant variants of concern. First, that no vaccine-derived shedding is expected from the current commercial pipeline of COVID-19 vaccines that may confound interpretation of WBS data. Secondly, that breakthrough infections from vaccinated individuals contribute significantly to wastewater signals and must be interpreted in light of the changing dynamics of shedding from new variants of concern.
Collapse
Affiliation(s)
- Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Amy Xiao
- Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore.
| |
Collapse
|
28
|
Hegazy N, Cowan A, D'Aoust PM, Mercier É, Towhid ST, Jia JJ, Wan S, Zhang Z, Kabir MP, Fang W, Graber TE, MacKenzie AE, Guilherme S, Delatolla R. Understanding the dynamic relation between wastewater SARS-CoV-2 signal and clinical metrics throughout the pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158458. [PMID: 36075428 PMCID: PMC9444583 DOI: 10.1016/j.scitotenv.2022.158458] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 05/27/2023]
Abstract
Wastewater surveillance (WWS) of SARS-CoV-2 was proven to be a reliable and complementary tool for population-wide monitoring of COVID-19 disease incidence but was not as rigorously explored as an indicator for disease burden throughout the pandemic. Prior to global mass immunization campaigns and during the spread of the wildtype COVID-19 and the Alpha variant of concern (VOC), viral measurement of SARS-CoV-2 in wastewater was a leading indicator for both COVID-19 incidence and disease burden in communities. As the two-dose vaccination rates escalated during the spread of the Delta VOC in Jul. 2021 through Dec. 2021, relations weakened between wastewater signal and community COVID-19 disease incidence and maintained a strong relationship with clinical metrics indicative of disease burden (new hospital admissions, ICU admissions, and deaths). Further, with the onset of the vaccine-resistant Omicron BA.1 VOC in Dec. 2021 through Mar. 2022, wastewater again became a strong indicator of both disease incidence and burden during a period of limited natural immunization (no recent infection), vaccine escape, and waned vaccine effectiveness. Lastly, with the populations regaining enhanced natural and vaccination immunization shortly prior to the onset of the Omicron BA.2 VOC in mid-Mar 2022, wastewater is shown to be a strong indicator for both disease incidence and burden. Hospitalization-to-wastewater ratio is further shown to be a good indicator of VOC virulence when widespread clinical testing is limited. In the future, WWS is expected to show moderate indication of incidence and strong indication of disease burden in the community during future potential seasonal vaccination campaigns.
Collapse
Affiliation(s)
- Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stéphanie Guilherme
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
29
|
D'Aoust PM, Tian X, Towhid ST, Xiao A, Mercier E, Hegazy N, Jia JJ, Wan S, Kabir MP, Fang W, Fuzzen M, Hasing M, Yang MI, Sun J, Plaza-Diaz J, Zhang Z, Cowan A, Eid W, Stephenson S, Servos MR, Wade MJ, MacKenzie AE, Peng H, Edwards EA, Pang XL, Alm EJ, Graber TE, Delatolla R. Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158547. [PMID: 36067855 PMCID: PMC9444156 DOI: 10.1016/j.scitotenv.2022.158547] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 09/01/2022] [Indexed: 05/14/2023]
Abstract
Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al., 2021; O'Keeffe, 2021). In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven cities in Canada over periods ranging from 8 to 21 months. This work demonstrates that significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing (resulting in a reduction to testing access and a reduction in the number of daily tests) in these communities, despite increases in the wastewater signal. Furthermore, the WC ratio decreased significantly in 6 of the 7 studied locations, serving as a potential signal of the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized community (40-60 % allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized community (40-60 % allelic proportion). Finally, a significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variant's greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when community immunity was high. The WC ratio, used as an additional monitoring metric, could complement clinical case counts and wastewater signals as individual metrics in its potential ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Xin Tian
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | | | - Amy Xiao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Maria Hasing
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Matthew J Wade
- Data, Analytics and Surveillance Group, UK Health Security Agency, London, United Kingdom
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
30
|
Oh C, Zhou A, O'Brien K, Jamal Y, Wennerdahl H, Schmidt AR, Shisler JL, Jutla A, Schmidt AR, Keefer L, Brown WM, Nguyen TH. Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158448. [PMID: 36063927 PMCID: PMC9436825 DOI: 10.1016/j.scitotenv.2022.158448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/28/2022] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology (WBE), an emerging approach for community-wide COVID-19 surveillance, was primarily characterized at large sewersheds such as wastewater treatment plants serving a large population. Although informed public health measures can be better implemented for a small population, WBE for neighborhood-scale sewersheds is less studied and not fully understood. This study applied WBE to seven neighborhood-scale sewersheds (average population of 1471) from January to November 2021. Community testing data showed an average of 0.004 % incidence rate in these sewersheds (97 % of monitoring periods reported two or fewer daily infections). In 92 % of sewage samples, SARS-CoV-2 N gene fragments were below the limit of quantification. We statistically determined 10-2.6 as the threshold of the SARS-CoV-2 N gene concentration normalized to pepper mild mottle virus (N/PMMOV) to alert high COVID-19 incidence rate in the studied sewershed. This threshold of N/PMMOV identified neighborhood-scale outbreaks (COVID-19 incidence rate higher than 0.2 %) with 82 % sensitivity and 51 % specificity. Importantly, neighborhood-scale WBE can discern local outbreaks that would not otherwise be identified by city-scale WBE. Our findings suggest that neighborhood-scale WBE is an effective community-wide disease surveillance tool when COVID-19 incidence is maintained at a low level.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States.
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States
| | - Kate O'Brien
- School of Integrative Biology, University of Illinois Urbana-Champaign, United States
| | - Yusuf Jamal
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, United States
| | - Hayden Wennerdahl
- Illinois State Water Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, United States
| | - Arthur R Schmidt
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois Urbana-Champaign, United States
| | - Antarpreet Jutla
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, United States
| | - Arthur R Schmidt
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States
| | - Laura Keefer
- Illinois State Water Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, United States
| | - William M Brown
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States; Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| |
Collapse
|
31
|
Li Y, Miyani B, Zhao L, Spooner M, Gentry Z, Zou Y, Rhodes G, Li H, Kaye A, Norton J, Xagoraraki I. Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158350. [PMID: 36041621 PMCID: PMC9419442 DOI: 10.1016/j.scitotenv.2022.158350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Wastewater-based epidemiology (WBE) has been suggested as a useful tool to predict the emergence and investigate the extent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we screened appropriate population biomarkers for wastewater SARS-CoV-2 normalization and compared the normalized SARS-CoV-2 values across locations with different demographic characteristics in southeastern Michigan. Wastewater samples were collected between December 2020 and October 2021 from nine neighborhood sewersheds in the Detroit Tri-County area. Using reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR), concentrations of N1 and N2 genes in the studied sites were quantified, with N1 values ranging from 1.92 × 102 genomic copies/L to 6.87 × 103 gc/L and N2 values ranging from 1.91 × 102 gc/L to 6.45 × 103 gc/L. The strongest correlations were observed with between cumulative COVID-19 cases per capita (referred as COVID-19 incidences thereafter), and SARS-CoV-2 concentrations normalized by total Kjeldahl nitrogen (TKN), creatinine, 5-hydroxyindoleacetic acid (5-HIAA) and xanthine when correlating the per capita SARS-CoV-2 and COVID-19 incidences. When SARS-CoV-2 concentrations in wastewater were normalized and compared with COVID-19 incidences, the differences between neighborhoods of varying demographics were reduced as compared to differences observed when comparing non-normalized SARS-CoV-2 with COVID-19 cases. This indicates when studying the disease burden in communities of different demographics, accurate per capita estimation is of great importance. The study suggests that monitoring selected water quality parameters or biomarkers, along with RNA concentrations in wastewater, will allow adequate data normalization for spatial comparisons, especially in areas where detailed sanitary sewage flows and contributing populations in the catchment areas are not available. This opens the possibility of using WBE to assess community infections in rural areas or the developing world where the contributing population of a sample could be unknown.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America.
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Maddie Spooner
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Zach Gentry
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Yangyang Zou
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, United States of America
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, United States of America
| | - Andrew Kaye
- CDM Smith, 535 Griswold St, Detroit, MI 48226, United States of America
| | - John Norton
- Great Lakes Water Authority, 735 Randolph, Detroit, MI 48226, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| |
Collapse
|
32
|
Hoar C, McClary-Gutierrez J, Wolfe MK, Bivins A, Bibby K, Silverman AI, McLellan SL. Looking Forward: The Role of Academic Researchers in Building Sustainable Wastewater Surveillance Programs. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:125002. [PMID: 36580023 PMCID: PMC9799055 DOI: 10.1289/ehp11519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In just over 2 years, tracking the COVID-19 pandemic through wastewater surveillance advanced from early reports of successful SARS-CoV-2 RNA detection in untreated wastewater to implementation of programs in at least 60 countries. Early wastewater monitoring efforts primarily originated in research laboratories and are now transitioning into more formal surveillance programs run in commercial and public health laboratories. A major challenge in this progression has been to simultaneously optimize methods and build scientific consensus while implementing surveillance programs, particularly during the rapidly changing landscape of the pandemic. Translating wastewater surveillance results for effective use by public health agencies also remains a key objective for the field. OBJECTIVES We examined the evolution of wastewater surveillance to identify model collaborations and effective partnerships that have created rapid and sustained success. We propose needed areas of research and key roles academic researchers can play in the framework of wastewater surveillance to aid in the transition from early monitoring efforts to more formalized programs within the public health system. DISCUSSION Although wastewater surveillance has rapidly developed as a useful public health tool for tracking COVID-19, there remain technical challenges and open scientific questions that academic researchers are equipped to address. This includes validating methodology and backfilling important knowledge gaps, such as fate and transport of surveillance targets and epidemiological links to wastewater concentrations. Our experience in initiating and implementing wastewater surveillance programs in the United States has allowed us to reflect on key barriers and draw useful lessons on how to promote synergy between different areas of expertise. As wastewater surveillance programs are formalized, the working relationships developed between academic researchers, commercial and public health laboratories, and data users should promote knowledge co-development. We believe active involvement of academic researchers will contribute to building robust surveillance programs that will ultimately provide new insights into population health. https://doi.org/10.1289/EHP11519.
Collapse
Affiliation(s)
- Catherine Hoar
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Jill McClary-Gutierrez
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marlene K. Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Indiana, USA
| | - Andrea I. Silverman
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
33
|
Ahmed W, Smith WJM, Metcalfe S, Jackson G, Choi PM, Morrison M, Field D, Gyawali P, Bivins A, Bibby K, Simpson SL. Comparison of RT-qPCR and RT-dPCR Platforms for the Trace Detection of SARS-CoV-2 RNA in Wastewater. ACS ES&T WATER 2022; 2:1871-1880. [PMID: 36380768 PMCID: PMC8848507 DOI: 10.1021/acsestwater.1c00387] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We compared reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RT digital PCR (RT-dPCR) platforms for the trace detection of SARS-CoV-2 RNA in low-prevalence COVID-19 locations in Queensland, Australia, using CDC N1 and CDC N2 assays. The assay limit of detection (ALOD), PCR inhibition rates, and performance characteristics of each assay, along with the positivity rates with the RT-qPCR and RT-dPCR platforms, were evaluated by seeding known concentrations of exogenous SARS-CoV-2 in wastewater. The ALODs using RT-dPCR were approximately 2-5 times lower than those using RT-qPCR. During sample processing, the endogenous (n = 96) and exogenous (n = 24) SARS-CoV-2 wastewater samples were separated, and RNA was extracted from both wastewater eluates and pellets (solids). The RT-dPCR platform demonstrated a detection rate significantly greater than that of RT-qPCR for the CDC N1 and CDC N2 assays in the eluate (N1, p = 0.0029; N2, p = 0.0003) and pellet (N1, p = 0.0015; N2, p = 0.0067) samples. The positivity results also indicated that for the analysis of SARS-CoV-2 RNA in wastewater, including the eluate and pellet samples may further increase the detection sensitivity using RT-dPCR.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J. M. Smith
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Suzanne Metcalfe
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Greg Jackson
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Phil M. Choi
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Mary Morrison
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Daniel Field
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Pradip Gyawali
- Institute
of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand
| | - Aaron Bivins
- Department
of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kyle Bibby
- Department
of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | |
Collapse
|
34
|
Vadde KK, Al-Duroobi H, Phan DC, Jafarzadeh A, Moghadam SV, Matta A, Kapoor V. Assessment of Concentration, Recovery, and Normalization of SARS-CoV-2 RNA from Two Wastewater Treatment Plants in Texas and Correlation with COVID-19 Cases in the Community. ACS ES&T WATER 2022; 2:2060-2069. [PMID: 37552728 PMCID: PMC9128005 DOI: 10.1021/acsestwater.2c00054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to conduct a correlative assessment of SARS-CoV-2 RNA concentrations in wastewater with COVID-19 cases and a systematic evaluation of the effect of using different virus concentration methods and recovery and normalization approaches. We measured SARS-CoV-2 RNA concentrations at two different wastewater treatment plants (WWTPs) in the Bexar County of Texas from October 2020 to May 2021 (32 weeks) using reverse transcription droplet digital PCR (RT-ddPCR). We evaluated three different adsorption-extraction (AE) based virus concentration methods (acidification, addition of MgCl2, or without any pretreatment) using bovine coronavirus (BCoV) as surrogate virus and observed that the direct AE method showed the highest mean recovery. COVID-19 cases were correlated significantly with SARS-CoV-2 N1 concentrations in Salitrillo (ρ = 0.75, p < 0.001) and Martinez II (ρ = 0.68, p < 0.001) WWTPs, but normalizing to a spiked recovery control (BCoV) or a fecal marker (HF183) reduced correlations for both treatment plants. The results generated in this 32-week monitoring study will enable researchers to prioritize the virus recovery method and subsequent correlation studies for wastewater surveillance.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Haya Al-Duroobi
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Duc C. Phan
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Arash Jafarzadeh
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Sina V. Moghadam
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Akanksha Matta
- Department of Chemistry, University of
Texas at San Antonio, San Antonio, Texas 78249, United
States
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| |
Collapse
|
35
|
Langan LM, O’Brien M, Rundell ZC, Back JA, Ryan BJ, Chambliss CK, Norman RS, Brooks BW. Comparative Analysis of RNA-Extraction Approaches and Associated Influences on RT-qPCR of the SARS-CoV-2 RNA in a University Residence Hall and Quarantine Location. ACS ES&T WATER 2022; 2:1929-1943. [PMID: 37552714 PMCID: PMC9063990 DOI: 10.1021/acsestwater.1c00476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) provides an early warning and trend analysis approach for determining the presence of COVID-19 in a community and complements clinical testing in assessing the population level, even as viral loads fluctuate. Here, we evaluate combinations of two wastewater concentration methods (i.e., ultrafiltration and composite supernatant-solid), four pre-RNA extraction modifications, and three nucleic acid extraction kits using two different wastewater sampling locations. These consisted of a quarantine facility containing clinically confirmed COVID-19-positive inhabitants and a university residence hall. Of the combinations examined, composite supernatant-solid with pre-RNA extraction consisting of water concentration and RNA/DNA shield performed the best in terms of speed and sensitivity. Further, of the three nucleic acid extraction kits examined, the most variability was associated with the Qiagen kit. Focusing on the quarantine facility, viral concentrations measured in wastewater were generally significantly related to positive clinical cases, with the relationship dependent on method, modification, kit, target, and normalization, although results were variable-dependent on individual time points (Kendall's Tau-b (τ) = 0.17 to 0.6) or cumulatively (Kendall's Tau-b (τ) = -0.048 to 1). These observations can support laboratories establishing protocols to perform wastewater surveillance and monitoring efforts for COVID-19.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Zach C. Rundell
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Jeffrey A. Back
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Benjamin J. Ryan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
| | - C. Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Chemistry and Biochemistry,
Baylor University, One Bear Place #97348, Waco, Texas 76798,
United States
| | - R. Sean Norman
- Environmental Health Sciences, Arnold
School of Public Health, South Carolina, 921 Assembly Street, Columbia,
South Carolina 29208, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Institute of Biomedical Studies, Baylor
University, One Bear Place #97224, Waco, Texas 76798, United
States
| |
Collapse
|
36
|
Langan LM, O’Brien M, Lovin LM, Scarlett KR, Davis H, Henke AN, Seidel SE, Archer N, Lawrence E, Norman RS, Bojes HK, Brooks BW. Quantitative Reverse Transcription PCR Surveillance of SARS-CoV-2 Variants of Concern in Wastewater of Two Counties in Texas, United States. ACS ES&T WATER 2022; 2:2211-2224. [PMID: 37552718 PMCID: PMC9291321 DOI: 10.1021/acsestwater.2c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 06/02/2023]
Abstract
After its emergence in late November/December 2019, the severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) rapidly spread globally. Recognizing that this virus is shed in feces of individuals and that viral RNA is detectable in wastewater, testing for SARS-CoV-2 in sewage collections systems has allowed for the monitoring of a community's viral burden. Over a 9 month period, the influents of two regional wastewater treatment facilities were concurrently examined for wild-type SARS-CoV-2 along with variants B.1.1.7 and B.1.617.2 incorporated as they emerged. Epidemiological data including new confirmed COVID-19 cases and associated hospitalizations and fatalities were tabulated within each location. RNA from SARS-CoV-2 was detectable in 100% of the wastewater samples, while variant detection was more variable. Quantitative reverse transcription PCR (RT-qPCR) results align with clinical trends for COVID-19 cases, and increases in COVID-19 cases were positively related with increases in SARS-CoV-2 RNA load in wastewater, although the strength of this relationship was location specific. Our observations demonstrate that clinical and wastewater surveillance of SARS-CoV-2 wild type and constantly emerging variants of concern can be combined using RT-qPCR to characterize population infection dynamics. This may provide an early warning for at-risk communities and increases in COVID-19 related hospitalizations.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Public Health, Baylor
University, One Bear Place #97343, Waco, Texas 76798, United
States
| | - Lea M. Lovin
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Kendall R. Scarlett
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Haley Davis
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Abigail N. Henke
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Biology, Baylor
University, One Bear Place #97388, Waco, Texas 76798, United
States
| | - Sarah E. Seidel
- Center for Health
Statistics, Texas Department of State Health Services, Austin, Texas
78756, United States
| | - Natalie Archer
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - Eric Lawrence
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - R. Sean Norman
- Department of Environmental Health Sciences, Arnold School of
Public Health, University of South Carolina, 921 Assembly
Street Columbia, South Carolina 29208, United States
| | - Heidi K. Bojes
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Public Health, Baylor
University, One Bear Place #97343, Waco, Texas 76798, United
States
| |
Collapse
|
37
|
Rainey AL, Loeb JC, Robinson SE, Davis P, Liang S, Lednicky JA, Coker ES, Sabo-Attwood T, Bisesi JH, Maurelli AT. Assessment of a mass balance equation for estimating community-level prevalence of COVID-19 using wastewater-based epidemiology in a mid-sized city. Sci Rep 2022; 12:19085. [PMID: 36352013 PMCID: PMC9645338 DOI: 10.1038/s41598-022-21354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Wastewater-based epidemiology (WBE) has emerged as a valuable epidemiologic tool to detect the presence of pathogens and track disease trends within a community. WBE overcomes some limitations of traditional clinical disease surveillance as it uses pooled samples from the entire community, irrespective of health-seeking behaviors and symptomatic status of infected individuals. WBE has the potential to estimate the number of infections within a community by using a mass balance equation, however, it has yet to be assessed for accuracy. We hypothesized that the mass balance equation-based approach using measured SARS-CoV-2 wastewater concentrations can generate accurate prevalence estimates of COVID-19 within a community. This study encompassed wastewater sampling over a 53-week period during the COVID-19 pandemic in Gainesville, Florida, to assess the ability of the mass balance equation to generate accurate COVID-19 prevalence estimates. The SARS-CoV-2 wastewater concentration showed a significant linear association (Parameter estimate = 39.43, P value < 0.0001) with clinically reported COVID-19 cases. Overall, the mass balance equation produced accurate COVID-19 prevalence estimates with a median absolute error of 1.28%, as compared to the clinical reference group. Therefore, the mass balance equation applied to WBE is an effective tool for generating accurate community-level prevalence estimates of COVID-19 to improve community surveillance.
Collapse
Affiliation(s)
- Andrew L Rainey
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, PO Box 110885, Gainesville, FL, 32611, USA
| | - Paul Davis
- Gainesville Regional Utilities, Gainesville, FL, 32614, USA
| | - Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Eric S Coker
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, PO Box 110885, Gainesville, FL, 32611, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, PO Box 110885, Gainesville, FL, 32611, USA.
| | - Anthony T Maurelli
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
38
|
de Llanos R, Cejudo-Marín R, Barneo M, Pérez-Cataluña A, Barberá-Riera M, Rebagliato M, Bellido-Blasco J, Sánchez G, Hernández F, Bijlsma L. Monitoring the evolution of SARS-CoV-2 on a Spanish university campus through wastewater analysis: A pilot project for the reopening strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157370. [PMID: 35842154 PMCID: PMC9278994 DOI: 10.1016/j.scitotenv.2022.157370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 06/03/2023]
Abstract
Wastewater surveillance is a fast and cost-effective tool that enables tracing of both symptomatic and asymptomatic transmission of SARS-CoV-2. In this paper, a pilot program carried out at the University Jaume I for monitoring the trends of the presence of SARS-CoV-2 in wastewater. To the best of our knowledge, this is the first such project conducted on a university campus in Spain. Wastewater samples (n = 838) were collected when students returned to campus, from October 2020 until August 2021, at a confluence sewer point and at the building level including different academic departments and services, the library, administration offices and the university student residence. It has been observed that the probability of SARS-CoV-2 RNA detection in wastewater depended on COVID-19 incidence on campus and visitors/occupants of the buildings i.e., high-, or low-traffic buildings with high or low frequency of potential contacts. Moreover, the third wave in Spain (after Christmas 2020) and an outbreak that occurred at the university student's residence could be carefully followed, allowing confirmation of the end of the outbreak. In addition, viral variants (i.e., mutations and linages) from selected time points were detected by sequencing and gave an indication of the evolution of the virus over time. The results illustrate the potential of wastewater-based epidemiology to provide an early warning for SARS-CoV-2 within the university, especially in buildings with low traffic and more defined populations, like the student residence. The strategy and experience gathered in this study will allow for implementation of improvements for reliable monitoring in the future.
Collapse
Affiliation(s)
- Rosa de Llanos
- Faculty of Health Sciences, University Jaume I, Castellón, Spain.
| | | | - Manuela Barneo
- Faculty of Health Sciences, University Jaume I, Castellón, Spain
| | - Alba Pérez-Cataluña
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - María Barberá-Riera
- Faculty of Health Sciences, University Jaume I, Castellón, Spain; Epidemiology and Public Health Center of Castellón, Spain
| | - Marisa Rebagliato
- Faculty of Health Sciences, University Jaume I, Castellón, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Bellido-Blasco
- Faculty of Health Sciences, University Jaume I, Castellón, Spain; Epidemiology and Public Health Center of Castellón, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain.
| |
Collapse
|
39
|
Cutrupi F, Cadonna M, Manara S, Postinghel M, La Rosa G, Suffredini E, Foladori P. The wave of the SARS-CoV-2 Omicron variant resulted in a rapid spike and decline as highlighted by municipal wastewater surveillance. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102667. [PMID: 35615435 PMCID: PMC9122782 DOI: 10.1016/j.eti.2022.102667] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/10/2023]
Abstract
This paper highlights the extraordinarily rapid spread of SARS-CoV-2 loads in wastewater that during the Omicron wave in December 2021-February 2022, compared with the profiles acquired in 2020-21 with 410 samples from two wastewater treatment plants (Trento+suburbs, 132,500 inhabitants). Monitoring of SARS-CoV-2 in wastewater focused on: (i) 3 samplings/week and analysis, (ii) normalization to calculate genomic units (GU) inh-1 d-1; (iii) calculation of a 7-day moving average to smooth daily fluctuations; (iv) comparison with the 'current active cases'/100,000 inh progressively affected by the mass vaccination. The time profiles of SARS-CoV-2 in wastewater matched the waves of active cases. In February-April 2021, a viral load of 1.0E+07 GU inh-1 d- 1 corresponded to 700 active cases/100,000 inh. In July-September 2021, although the low current active cases, sewage revealed an appreciable SARS-CoV-2 circulation (in this period 2.2E+07 GU inh-1 d-1 corresponded to 90 active cases/100,000 inh). Omicron was not detected in wastewater until mid-December 2021. The Omicron spread caused a 5-6 fold increase of the viral load in two weeks, reaching the highest peak (2.0-2.2E+08 GU inh-1 d-1 and 4500 active cases/100,000 inh) during the pandemic. In this period, wastewater surveillance anticipated epidemiological data by about 6 days. In winter 2021-22, despite the 4-7 times higher viral loads in wastewater, hospitalizations were 4 times lower than in winter 2020-21 due to the vaccination coverage >80%. The Omicron wave demonstrated that SARS-CoV-2 monitoring of wastewater anticipated epidemiological data, confirming its importance in long-term surveillance.
Collapse
Affiliation(s)
- Francesca Cutrupi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - Maria Cadonna
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, 38121 Trento, Italy
| | - Serena Manara
- Department of Cellular Computational and Integrative Biology-CIBIO, Via Sommarive 9, 38123 Trento, Italy
| | - Mattia Postinghel
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, 38121 Trento, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| |
Collapse
|
40
|
Nyaruaba R, Mwaliko C, Dobnik D, Neužil P, Amoth P, Mwau M, Yu J, Yang H, Wei H. Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: a Roadmap for Future Outbreaks. Clin Microbiol Rev 2022; 35:e0016821. [PMID: 35258315 PMCID: PMC9491181 DOI: 10.1128/cmr.00168-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Caroline Mwaliko
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pavel Neužil
- Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
41
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
42
|
Novoa B, Ríos-Castro R, Otero-Muras I, Gouveia S, Cabo A, Saco A, Rey-Campos M, Pájaro M, Fajar N, Aranguren R, Romero A, Panebianco A, Valdés L, Payo P, Alonso AA, Figueras A, Cameselle C. Wastewater and marine bioindicators surveillance to anticipate COVID-19 prevalence and to explore SARS-CoV-2 diversity by next generation sequencing: One-year study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155140. [PMID: 35421481 PMCID: PMC8996449 DOI: 10.1016/j.scitotenv.2022.155140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/13/2023]
Abstract
This study presents the results of SARS-CoV-2 surveillance in sewage water of 11 municipalities and marine bioindicators in Galicia (NW of Spain) from May 2020 to May 2021. An integrated pipeline was developed including sampling, pre-treatment and biomarker quantification, RNA detection, SARS-CoV-2 sequencing, mechanistic mathematical modeling and forecasting. The viral load in the inlet stream to the wastewater treatment plants (WWTP) was used to detect new outbreaks of COVID-19, and the data of viral load in the wastewater in combination with data provided by the health system was used to predict the evolution of the pandemic in the municipalities under study within a time horizon of 7 days. Moreover, the study shows that the viral load was eliminated from the treated sewage water in the WWTP, mainly in the biological reactors and the disinfection system. As a result, we detected a minor impact of the virus in the marine environment through the analysis of seawater, marine sediments and, wild and aquacultured mussels in the final discharge point of the WWTP.
Collapse
Affiliation(s)
- Beatriz Novoa
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Raquel Ríos-Castro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Irene Otero-Muras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain; Institute for Integrative Systems Biology I2SYSBIO (UV, CSIC), Spanish National Research Council, 46980 València, Spain
| | - Susana Gouveia
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain; University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Adrián Cabo
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain; GESECO Aguas S.A. Vigo, Spain
| | - Amaro Saco
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Magalí Rey-Campos
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Manuel Pájaro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain; CITIC Research Center, Department of Applied Mathematics, University of A Coruña, 15071 A Coruña, Spain
| | - Noelia Fajar
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Raquel Aranguren
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Alejandro Romero
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Antonella Panebianco
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Lorena Valdés
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | | | - Antonio A Alonso
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Antonio Figueras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Claudio Cameselle
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain.
| |
Collapse
|
43
|
Fahrenfeld NL, Morales Medina WR, D'Elia S, Deshpande AS, Ehasz G. Year-long wastewater monitoring for SARS-CoV-2 signals in combined and separate sanitary sewers. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10768. [PMID: 35918060 DOI: 10.1021/acsestwater.1c00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 05/27/2023]
Abstract
COVID-19 wastewater-based epidemiology has been performed in catchments of various sizes and sewer types with many short-term studies available and multi-seasonal studies emerging. The objective of this study was to compare weekly observations of SARS-CoV-2 genes in municipal wastewater across multiple seasons for different systems as a factor of sewer type (combined, separate sanitary) and system size. Sampling occurred following the first wave of SARS-CoV-2 cases in the study region (June 2020) and continued through the third wave (May 2021), the period during which clinical testing was widely available and different variants dominated clinical cases. The strongest correlations were observed between wastewater N1 concentrations and the cumulative clinical cases reported in the 2 weeks prior to wastewater sampling, followed by the week prior, new cases, and the week after wastewater sampling. Sewer type and size did not necessarily explain the strength of the correlations, indicating that other non-sewer factors may be impacting the observations. In-system sampling results for the largest system sampled are presented for 1 month. Removing wet weather days from the data sets improved even the flow-normalized correlations for the systems, potentially indicating that interpreting results during wet weather events may be more complicated than simply accounting for dilution. PRACTITIONER POINTS: SARS-CoV-2 in wastewater correlated best with total clinical cases reported in 2 weeks before wastewater sampling at the utility level. Study performed when clinical testing was widespread during the year after the first COVID-19 wave in the region. Sewer type and size did not necessarily explain correlation strength between clinical cases and wastewater-based epidemiology results. Removing wet weather days improved correlations for 3/4 utilities studied, including both separate sanitary and combined sewers.
Collapse
Affiliation(s)
- Nicole L Fahrenfeld
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - William R Morales Medina
- Department of Microbiology and Molecular Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Stephanie D'Elia
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Aishwarya S Deshpande
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Genevieve Ehasz
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
44
|
Zheng X, Deng Y, Xu X, Li S, Zhang Y, Ding J, On HY, Lai JCC, In Yau C, Chin AWH, Poon LLM, Tun HM, Zhang T. Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153687. [PMID: 35134418 PMCID: PMC8816846 DOI: 10.1016/j.scitotenv.2022.153687] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Accepted: 02/01/2022] [Indexed: 05/02/2023]
Abstract
Wastewater surveillance is a promising tool for population-level monitoring of the spread of infectious diseases, such as the coronavirus disease 2019 (COVID-19). Different from clinical specimens, viruses in community-scale wastewater samples need to be concentrated before detection because viral RNA is highly diluted. The present study evaluated eleven different virus concentration methods for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. First, eight concentration methods of different principles were compared using spiked wastewater at a starting volume of 30 mL. Ultracentrifugation was the most effective method with a viral recovery efficiency of 25 ± 6%. The second-best option, AlCl3 precipitation method, yielded a lower recovery efficiency, only approximately half that of the ultracentrifugation method. Second, the potential of increasing method sensitivity was explored using three concentration methods starting with a larger volume of 1000 mL. Although ultracentrifugation using a large volume outperformed the other two large-volume methods, it only yielded a comparable method sensitivity as the ultracentrifugation using a small volume (30 mL). Thus, ultracentrifugation using less volume of wastewater is more preferable considering the sample processing throughput. Third, a comparison of two viral RNA extraction methods showed that the lysis-buffer-based extraction method resulted in higher viral recovery efficiencies, with cycle threshold (Ct) values 0.9-4.2 lower than those obtained for the acid-guanidinium-phenol-based method using spiked samples. These results were further confirmed by using positive wastewater samples concentrated by ultracentrifugation and extracted separately by the two viral RNA extraction methods. In summary, concentration using ultracentrifugation followed by the lysis buffer-based extraction method enables sensitive and robust detection of SARS-CoV-2 for wastewater surveillance.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yulin Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hei Yin On
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Jimmy C C Lai
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Chung In Yau
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Hein M Tun
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
45
|
Kapoor V, Al-Duroobi H, Phan DC, Palekar RS, Blount B, Rambhia KJ. Wastewater surveillance for SARS-CoV-2 to support return to campus: Methodological considerations and data interpretation. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 27:100362. [PMID: 35402756 PMCID: PMC8975751 DOI: 10.1016/j.coesh.2022.100362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The COVID-19 pandemic has been challenging for various institutions such as school systems due to widespread closures. As schools re-open their campuses to in-person education, there is a need for frequent screening and monitoring of the virus to ensure the safety of students and staff and to limit risk to the surrounding community. Wastewater surveillance (WWS) of SARS-CoV-2 is a rapid and economical approach to determine the extent of COVID-19 in the community. The focus of this review is on the emergence of WWS as a tool for safe return to school campuses, taking into account methodological considerations such as site selection, sample collection and processing, SARS-CoV-2 quantification, and data interpretation. Recently published studies on the implementation of COVID-19 WWS on school and college campuses were reviewed. While there are several logistical and technical challenges, WWS can be used to inform decision-making at the school campus and/or building level.
Collapse
Affiliation(s)
- Vikram Kapoor
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Haya Al-Duroobi
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Duc C Phan
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
46
|
Tiwari A, Lipponen A, Hokajärvi AM, Luomala O, Sarekoski A, Rytkönen A, Österlund P, Al-Hello H, Juutinen A, Miettinen IT, Savolainen-Kopra C, Pitkänen T. Detection and quantification of SARS-CoV-2 RNA in wastewater influent in relation to reported COVID-19 incidence in Finland. WATER RESEARCH 2022; 215:118220. [PMID: 35248908 PMCID: PMC8865022 DOI: 10.1016/j.watres.2022.118220] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 05/03/2023]
Abstract
Wastewater-based surveillance is a cost-effective concept for monitoring COVID-19 pandemics at a population level. Here, SARS-CoV-2 RNA was monitored from a total of 693 wastewater (WW) influent samples from 28 wastewater treatment plants (WWTP, N = 21-42 samples per WWTP) in Finland from August 2020 to May 2021, covering WW of ca. 3.3 million inhabitants (∼ 60% of the Finnish population). Quantity of SARS-CoV-2 RNA fragments in 24 h-composite samples was determined by using the ultrafiltration method followed by nucleic acid extraction and CDC N2 RT-qPCR assay. SARS-CoV-2 RNA signals at each WWTP were compared over time to the numbers of confirmed COVID-19 cases (14-day case incidence rate) in the sewer network area. Over the 10-month surveillance period with an extensive total number of samples, the detection rate of SARS-CoV-2 RNA in WW was 79% (including 6% uncertain results, i.e., amplified only in one out of four, two original and two ten-fold diluted replicates), while only 24% of all samples exhibited gene copy numbers above the quantification limit. The range of the SARS-CoV-2 detection rate in WW varied from 33% (including 10% uncertain results) in Pietarsaari to 100% in Espoo. Only six out of 693 WW samples were positive with SARS-COV-2 RNA when the reported COVID-19 case number from the preceding 14 days was zero. Overall, the 14-day COVID-19 incidence was 7.0, 18, and 36 cases per 100 000 persons within the sewer network area when the probability to detect SARS-CoV-2 RNA in wastewater samples was 50%, 75% and 95%, respectively. The quantification of SARS-CoV-2 RNA required significantly more COVID-19 cases: the quantification rate was 50%, 75%, and 95% when the 14-day incidence was 110, 152, and 223 COVID-19 cases, respectively, per 100 000 persons. Multiple linear regression confirmed the relationship between the COVID-19 incidence and the SARS-CoV-2 RNA quantified in WW at 15 out of 28 WWTPs (overall R2 = 0.36, p < 0.001). At four of the 13 WWTPs where a significant relationship was not found, the SARS-CoV-2 RNA remained below the quantification limit during the whole study period. In the five other WWTPs, the sewer coverage was less than 80% of the total population in the area and thus the COVID-19 cases may have been inhabitants from the areas not covered. Based on the results obtained, WW-based surveillance of SARS-CoV-2 could be used as an indicator for local and national COVID-19 incidence trends. Importantly, the determination of SARS-CoV-2 RNA fragments from WW is a powerful and non-invasive public health surveillance measure, independent of possible changes in the clinical testing strategies or in the willingness of individuals to be tested for COVID-19.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland.
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland.
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, Infectious Disease Control and Vaccinations Unit, Mannerheimintie 166, Helsinki FI-00271, Finland.
| | - Anniina Sarekoski
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland.
| | - Annastiina Rytkönen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Pamela Österlund
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Mannerheimintie 166, Helsinki FI-00271, Finland.
| | - Haider Al-Hello
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Mannerheimintie 166, Helsinki FI-00271, Finland.
| | - Aapo Juutinen
- Finnish Institute for Health and Welfare, Infectious Disease Control and Vaccinations Unit, Mannerheimintie 166, Helsinki FI-00271, Finland.
| | - Ilkka T Miettinen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland.
| | - Carita Savolainen-Kopra
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Mannerheimintie 166, Helsinki FI-00271, Finland.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Neulaniementie 4, Kuopio FI-70701, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| |
Collapse
|
47
|
Li L, Mazurowski L, Dewan A, Carine M, Haak L, Guarin TC, Dastjerdi NG, Gerrity D, Mentzer C, Pagilla KR. Longitudinal monitoring of SARS-CoV-2 in wastewater using viral genetic markers and the estimation of unconfirmed COVID-19 cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152958. [PMID: 35016937 PMCID: PMC8743272 DOI: 10.1016/j.scitotenv.2022.152958] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 05/18/2023]
Abstract
In this study, wastewater-based surveillance was carried out to establish the correlation between SARS-CoV-2 viral RNA concentrations in wastewater and the incidence of corona virus disease 2019 (COVID-19) from clinical testing. The influent wastewater of three major water reclamation facilities (WRFs) in Northern Nevada, serving a population of 390,750, was monitored for SARS-CoV-2 viral RNA gene markers, N1 and N2, from June 2020 through September 2021. A total of 614 samples were collected and analyzed. The SARS-CoV-2 concentrations in wastewater were observed to peak twice during the study period. A moderate correlation trend between coronavirus disease 2019 (COVID-19) incidence data from clinical testing and SARS-CoV-2 viral RNA concentrations in wastewater was observed (Spearman r = 0.533). This correlation improved when using weekly average SARS-CoV-2 marker concentrations of wastewater and clinical case data (Spearman r = 0.790), presumably by mitigating the inherent variability of the environmental dataset and the effects of clinical testing artifacts (e.g., reporting lags). The research also demonstrated the value of wastewater-based surveillance as an early warning signal for early detection of trends in COVID-19 incidence. This was accomplished by identifying that the reported clinical cases had a stronger correlation to SARS-CoV-2 wastewater monitoring data when they were estimated to lag 7-days behind the wastewater data. The results aided local decision makers in developing strategies to manage COVID-19 in the region and provide a framework for how wastewater-based surveillance can be applied across localities to enhance the public health monitoring of the ongoing pandemic.
Collapse
Affiliation(s)
- Lin Li
- Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV 89557, USA
| | - Lauren Mazurowski
- Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV 89557, USA
| | - Aimee Dewan
- Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV 89557, USA
| | - Madeline Carine
- Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV 89557, USA
| | - Tatiana C Guarin
- Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV 89557, USA
| | | | - Daniel Gerrity
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, USA
| | - Casey Mentzer
- Truckee Meadows Water Reclamation Facility, Sparks, NV 89502, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV 89557, USA.
| |
Collapse
|
48
|
Fahrenfeld NL, Morales Medina WR, D'Elia S, Modica M, Ruiz A, McLane M. Comparison of residential dormitory COVID-19 monitoring via weekly saliva testing and sewage monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151947. [PMID: 34838560 PMCID: PMC8611854 DOI: 10.1016/j.scitotenv.2021.151947] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
Wastewater surveillance has been used as a tool for COVID-19 outbreak detection particularly where there was not capability in place for routine and robust individual testing. Given clinical reports that earlier detection is possible following infection from throat/nasal samples compared to fecal samples for COVID-19 patients, the utility of wastewater testing where robust individual testing is possible is less clear. The objective of this study was to compare the results of weekly required COVID-19 saliva tests to weekly wastewater monitoring for residential buildings (i.e., dormitories) located across three college campuses capturing wastewater from 80 to 441 occupants per sampling location. Sampling occurred during the spring semester of the 2021 academic year which captured the third wave of SARS-CoV-2 cases in the study region. Comparison of the saliva and wastewater testing results indicated that the wastewater SARS-CoV-2 concentrations had a strong linear correlation with the previous week's percentage of positive saliva test results and a weak linear correlation with the saliva testing results surrounding the wastewater sampling (four days before and 3 days after). Given that no correlation was observed between the wastewater and the saliva testing from the following week, the weekly saliva testing captured spikes in COVID-19 cases earlier than the weekly wastewater sampling. Interestingly, the N1 gene was observed in buildings on all campuses, but N2 was observed in wastewater on only one of the campuses. N1 and N2 were also observed in sewer biofilm. The campus-specific challenges associated with implementation of wastewater surveillance are discussed. Overall, these results can help inform design of surveillance for early detection of SARS-CoV-2 in residential settings thereby informing mitigation strategies to slow or prevent the spread of the virus among residents in congregate living.
Collapse
Affiliation(s)
- N L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA.
| | | | - Stephanie D'Elia
- Biochemistry and Microbiology, Rutgers, The State University of New Jersey, USA
| | - Maureen Modica
- Environmental Health and Safety, Rutgers, The State University of New Jersey, USA
| | - Alejandro Ruiz
- Environmental Health and Safety, Rutgers, The State University of New Jersey, USA
| | - Mark McLane
- Environmental Health and Safety, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
49
|
Corchis-Scott R, Geng Q, Seth R, Ray R, Beg M, Biswas N, Charron L, Drouillard KD, D'Souza R, Heath DD, Houser C, Lawal F, McGinlay J, Menard SL, Porter LA, Rawlings D, Scholl ML, Siu KWM, Tong Y, Weisener CG, Wilhelm SW, McKay RML. Averting an Outbreak of SARS-CoV-2 in a University Residence Hall through Wastewater Surveillance. Microbiol Spectr 2021; 9:e0079221. [PMID: 34612693 DOI: 10.1101/2021.06.23.21259176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
A wastewater surveillance program targeting a university residence hall was implemented during the spring semester 2021 as a proactive measure to avoid an outbreak of COVID-19 on campus. Over a period of 7 weeks from early February through late March 2021, wastewater originating from the residence hall was collected as grab samples 3 times per week. During this time, there was no detection of SARS-CoV-2 by reverse transcriptase quantitative PCR (RT-qPCR) in the residence hall wastewater stream. Aiming to obtain a sample more representative of the residence hall community, a decision was made to use passive samplers beginning in late March onwards. Adopting a Moore swab approach, SARS-CoV-2 was detected in wastewater samples just 2 days after passive samplers were deployed. These samples also tested positive for the B.1.1.7 (Alpha) variant of concern (VOC) using RT-qPCR. The positive result triggered a public health case-finding response, including a mobile testing unit deployed to the residence hall the following day, with testing of nearly 200 students and staff, which identified two laboratory-confirmed cases of Alpha variant COVID-19. These individuals were relocated to a separate quarantine facility, averting an outbreak on campus. Aggregating wastewater and clinical data, the campus wastewater surveillance program has yielded the first estimates of fecal shedding rates of the Alpha VOC of SARS-CoV-2 in individuals from a nonclinical setting. IMPORTANCE Among early adopters of wastewater monitoring for SARS-CoV-2 have been colleges and universities throughout North America, many of whom are using this approach to monitor congregate living facilities for early evidence of COVID-19 infection as an integral component of campus screening programs. Yet, while there have been numerous examples where wastewater monitoring on a university campus has detected evidence for infection among community members, there are few examples where this monitoring triggered a public health response that may have averted an actual outbreak. This report details a wastewater-testing program targeting a residence hall on a university campus during spring 2021, when there was mounting concern globally over the emergence of SARS-CoV-2 variants of concern, reported to be more transmissible than the wild-type Wuhan strain. In this communication, we present a clear example of how wastewater monitoring resulted in actionable responses by university administration and public health, which averted an outbreak of COVID-19 on a university campus.
Collapse
Affiliation(s)
- Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Rajesh Seth
- Great Lakes Institute for Environmental Research, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
- Civil and Environmental Engineering, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Rajan Ray
- Civil and Environmental Engineering, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Mohsan Beg
- Student Counselling Centre, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Nihar Biswas
- Civil and Environmental Engineering, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Lynn Charron
- Residence Services, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Kenneth D Drouillard
- Great Lakes Institute for Environmental Research, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
- School of the Environment, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Ramsey D'Souza
- Windsor-Essex County Health Unit, Windsor, Ontario, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
- Department of Integrative Biology, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Chris Houser
- Great Lakes Institute for Environmental Research, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
- School of the Environment, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Felicia Lawal
- Windsor-Essex County Health Unit, Windsor, Ontario, Canada
| | - James McGinlay
- Residence Services, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Sherri Lynne Menard
- Environmental Health and Safety, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Lisa A Porter
- Department of Biomedical Sciences, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Diane Rawlings
- Residence Services, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Matthew L Scholl
- Student Health Services, University of Windsorgrid.267455.7University of Windsor, grid.267455.7, Windsor, Ontario, Canada
| | - K W Michael Siu
- Department of Chemistry and Biochemistry, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
- School of the Environment, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - R Michael L McKay
- Great Lakes Institute for Environmental Research, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
- School of the Environment, University of Windsorgrid.267455.7, Windsor, Ontario, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
50
|
Corchis-Scott R, Geng Q, Seth R, Ray R, Beg M, Biswas N, Charron L, Drouillard KD, D’Souza R, Heath DD, Houser C, Lawal F, McGinlay J, Menard SL, Porter LA, Rawlings D, Scholl ML, Siu KWM, Tong Y, Weisener CG, Wilhelm SW, McKay RML. Averting an Outbreak of SARS-CoV-2 in a University Residence Hall through Wastewater Surveillance. Microbiol Spectr 2021; 9:e0079221. [PMID: 34612693 PMCID: PMC8510253 DOI: 10.1128/spectrum.00792-21] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
A wastewater surveillance program targeting a university residence hall was implemented during the spring semester 2021 as a proactive measure to avoid an outbreak of COVID-19 on campus. Over a period of 7 weeks from early February through late March 2021, wastewater originating from the residence hall was collected as grab samples 3 times per week. During this time, there was no detection of SARS-CoV-2 by reverse transcriptase quantitative PCR (RT-qPCR) in the residence hall wastewater stream. Aiming to obtain a sample more representative of the residence hall community, a decision was made to use passive samplers beginning in late March onwards. Adopting a Moore swab approach, SARS-CoV-2 was detected in wastewater samples just 2 days after passive samplers were deployed. These samples also tested positive for the B.1.1.7 (Alpha) variant of concern (VOC) using RT-qPCR. The positive result triggered a public health case-finding response, including a mobile testing unit deployed to the residence hall the following day, with testing of nearly 200 students and staff, which identified two laboratory-confirmed cases of Alpha variant COVID-19. These individuals were relocated to a separate quarantine facility, averting an outbreak on campus. Aggregating wastewater and clinical data, the campus wastewater surveillance program has yielded the first estimates of fecal shedding rates of the Alpha VOC of SARS-CoV-2 in individuals from a nonclinical setting. IMPORTANCE Among early adopters of wastewater monitoring for SARS-CoV-2 have been colleges and universities throughout North America, many of whom are using this approach to monitor congregate living facilities for early evidence of COVID-19 infection as an integral component of campus screening programs. Yet, while there have been numerous examples where wastewater monitoring on a university campus has detected evidence for infection among community members, there are few examples where this monitoring triggered a public health response that may have averted an actual outbreak. This report details a wastewater-testing program targeting a residence hall on a university campus during spring 2021, when there was mounting concern globally over the emergence of SARS-CoV-2 variants of concern, reported to be more transmissible than the wild-type Wuhan strain. In this communication, we present a clear example of how wastewater monitoring resulted in actionable responses by university administration and public health, which averted an outbreak of COVID-19 on a university campus.
Collapse
Affiliation(s)
- Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Rajesh Seth
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Civil and Environmental Engineering, University of Windsor, Windsor, Ontario, Canada
| | - Rajan Ray
- Civil and Environmental Engineering, University of Windsor, Windsor, Ontario, Canada
| | - Mohsan Beg
- Student Counselling Centre, University of Windsor, Windsor, Ontario, Canada
| | - Nihar Biswas
- Civil and Environmental Engineering, University of Windsor, Windsor, Ontario, Canada
| | - Lynn Charron
- Residence Services, University of Windsor, Windsor, Ontario, Canada
| | - Kenneth D. Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Ramsey D’Souza
- Windsor-Essex County Health Unit, Windsor, Ontario, Canada
| | - Daniel D. Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Chris Houser
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Felicia Lawal
- Windsor-Essex County Health Unit, Windsor, Ontario, Canada
| | - James McGinlay
- Residence Services, University of Windsor, Windsor, Ontario, Canada
| | - Sherri Lynne Menard
- Environmental Health and Safety, University of Windsor, Windsor, Ontario, Canada
| | - Lisa A. Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Diane Rawlings
- Residence Services, University of Windsor, Windsor, Ontario, Canada
| | - Matthew L. Scholl
- Student Health Services, University of Windsor, Windsor, Ontario, Canada
| | - K. W. Michael Siu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Christopher G. Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - R. Michael L. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|