1
|
Wang X, Yan H, Liang X, Zhang X, Ji M, Wang M, Wang X. Schiff Base-Mediated Dual Active Site Catalyst for Efficient N-Formylation of Amines with CO 2. J Phys Chem Lett 2025; 16:468-474. [PMID: 39745076 DOI: 10.1021/acs.jpclett.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Using CO2 as the C1 source for N-formylation of amine is a crucial energy-storage pathway to address the greenhouse effect while generating high-value-added chemicals but is limited by the activation of inert molecules. Herein, a dual active site catalyst with high CO2 activation and dihydrogen dissociation capacity was fabricated by incorporating a Schiff base and Au nanoparticles (NPs) on silicon dioxide (SiO2). The modification of the Schiff base not only provides an alkaline environment for CO2 absorption but also stabilizes Au NPs in a small and highly dispersed state, which regulates the electronic density of the metal for excellent H2 cleavage. The Schiff base-mediated Au catalyst significantly increased the yield of N-formylmorpholine from 3.9% in unmodified Au/SiO2 to 83.3% without the addition of any other additives. This work provides a new avenue for designing multisite catalysts by supporting surface modification to achieve simultaneous activation of multiple target substrates for synergistic catalysis.
Collapse
Affiliation(s)
- Xingyan Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Huixin Yan
- School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiaoyu Liang
- School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xinxin Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Min Ji
- School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Min Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xinkui Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
2
|
Liu C, Guo H, Li G, Hu J, Xu H, Cui W. Poor/rich dual electron reaction centers promoting photo-Fenton synergistic removal of organic pollutants: Graphite carbon-modified copper ferrite. J Colloid Interface Sci 2025; 678:545-558. [PMID: 39260302 DOI: 10.1016/j.jcis.2024.08.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/08/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Controlling high recombination of photogenerated carriers and optimizing low cycling of metal valence states are the two key control steps in enhancing photo-Fenton oxidation. To achieve multiscale synergy of photo-Fenton degradation, graphite carbon-modified copper ferrite composites (C/CFO) with poor/rich dual electron reaction centers were synthesized through direct carbonization of Fe/Cu bimetallic organic frameworks. A novel photo-Fenton catalytic system was constructed by irradiating the Fenton reaction with visible light. The photo-Fenton degradation efficiency of C/CFO for tetracycline (100 mg‧L-1) was 93.69% ± 0.02%, and the degradation rate constant was 4.84 times higher than that of the control. Optimized preparation and catalytic conditions, ensured good cyclic stability and broad applicability of C/CFO. This excellent stability performance improvement can be attributed to the following main factors: (1) The introduction of graphite carbon not only increases the specific surface area of C/CFO, but also acts as a bridge between the dual electron reaction centers, facilitating the transfer of photogenerated electrons. (2) On the one hand, the electron-poor reaction centers Fe and Cu capture photogenerated electrons, accelerate the Fenton reaction, and realize the valence cycling of Fe and Cu. On the other hand, the electron-rich reaction centers (oxygen vacancies) act as active sites for H2O2 adsorption, which greatly accelerate the decomposition of H2O2. Overall, the synergy of dual electron reaction centers effectively promoted photo-Fenton oxidation.
Collapse
Affiliation(s)
- Chang Liu
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China
| | - Hongxia Guo
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China
| | - Guojiang Li
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China
| | - Jinshan Hu
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China.
| | - Haijun Xu
- Innovation Center of Aromatics Transformation and Separation Technology of Hebei Province, Tangshan Risun Chemical Co., Ltd, Tangshan 063000, PR China
| | - Wenquan Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China.
| |
Collapse
|
3
|
Dai X, Han Y, Jiao H, Shi F, Rabeah J, Brückner A. Aerobic Oxidative Synthesis of Formamides from Amines and Bioderived Formyl Surrogates. Angew Chem Int Ed Engl 2024; 63:e202402241. [PMID: 38567831 DOI: 10.1002/anie.202402241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 05/16/2024]
Abstract
Herein we present a new strategy for the oxidative synthesis of formamides from various types of amines and bioderived formyl sources (DHA, GLA and GLCA) and molecular oxygen (O2) as oxidant on g-C3N4 supported Cu catalysts. Combined characterization data from EPR, XAFS, XRD and XPS revealed the formation of single CuN4 sites on supported Cuphen/C3N4 catalysts. EPR spin trapping experiments disclosed ⋅OOH radicals as reactive oxygen species and ⋅NR1R2 radicals being responsible for the initial C-C bond cleavage. Control experiments and DFT calculations showed that the successive C-C bond cleavage in DHA proceeds via a reaction mechanism co-mediated by ⋅NR1R2 and ⋅OOH radicals based on the well-equilibrated CuII and CuI cycle. Our catalyst has much higher activity (TOF) than those based on noble metals.
Collapse
Affiliation(s)
- Xingchao Dai
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Yunyan Han
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry & Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
4
|
Qi Q, Huang G, Li R, Yu J, Chen X, Liu Z, Liu Y, Wang R, Yang Y, Chen J. Improving bioelectrochemical performance by sulfur-doped titanium dioxide cooperated with Zirconium based metal-organic framework (S-TiO 2@MOF-808) as cathode in microbial fuel cells. BIORESOURCE TECHNOLOGY 2024; 394:130288. [PMID: 38181999 DOI: 10.1016/j.biortech.2023.130288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
The sulfur-doped titanium dioxide (S-TiO2) cooperated with Zirconium based on a kind of metal-organic framework (MOF-808) was successfully prepared as cathode catalyst (S-TiO2@MOF-808) of microbial fuel cell (MFC) by two-step hydrothermal reaction. The particle size was approximately 5 μm, and the spherical S-TiO2 particle was attached to the surface of MOF-808 as irregular block solid. Zr-O, C-O and O-H bond were indicated to exist in S-TiO2@MOF-808. When n (Zr4+): n(Ti4+) was 1: 5, S-TiO2@MOF-808 showed better oxygen reduction reaction (ORR). The introduction of S-TiO2 restrained the framework collapse of MOF-808, S-TiO2@MOF-808 showed much higher catalytic stability in reaction. The recombination of sulfur and TiO2 reduced the charge transfer resistance, accelerated the electron transfer rate, and improved ORR greatly. The maximum power density of S-TiO2@MOF-808-MFC was 84.05 mW/m2, about 2.17 times of S-TiO2-MFC (38.64 mW/m2). The maximum voltage of S-TiO2@MOF-808-MFC was 205 mV, and the stability was maintained for 6 d.
Collapse
Affiliation(s)
- Qin Qi
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang 262700, PR China
| | - Rui Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Jiale Yu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Xiaomin Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Zhen Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
5
|
Ping Y, Zong MY, Zhao Z, Wang CJ, Wang DH. Introducing VO 2+ Group in Phosphomolybdic Acid and Supporting on MOF-808 for Efficient Oxidative Desulfurization. ACS OMEGA 2023; 8:37421-37430. [PMID: 37841163 PMCID: PMC10568600 DOI: 10.1021/acsomega.3c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Herein, by introducing a VO2+ group into the microstructure of phosphomolybdenic acid (PMA) and loading it onto MOF-808, a series of composite catalysts were obtained by reducing the V element with Vitamin C (ascorbic acid). V atoms exist in the secondary structural units of phosphomolybdic acid as [VO(H2O)5]H[PMo12O40]. Surprisingly, the VC-VO-PMA/MOF-808 completely removed DBT and 4,6-DMDBT from the simulated oil in 12 min. The EPR and XPS results verify the electronic structure and valence state of V4+ in the composites. The oxygen vacancy and V4+ generated by VC modification in VC-VO-PMA/MOF-808 have positive effects on the oxidation desulfurization (ODS) activity. Based on the design of the microstructure and electronic structure, this study provides a new paradigm for the development of readily available and efficient ODS catalysts.
Collapse
Affiliation(s)
- Yi Ping
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng-Ya Zong
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhe Zhao
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chuan-Jiao Wang
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dan-Hong Wang
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Chang PH, Mukhopadhyay R, Zhong B, Yang QY, Zhou S, Tzou YM, Sarkar B. Synthesis and characterization of PCN-222 metal organic framework and its application for removing perfluorooctane sulfonate from water. J Colloid Interface Sci 2023; 636:459-469. [PMID: 36641821 DOI: 10.1016/j.jcis.2023.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoro alkyl substances (PFAS) are a group of man-made, notoriously persistent, and highly toxic contaminants in the environment reported worldwide. Many adsorbents including granular activated carbon, graphene, biochar, zeolites, and clay minerals have been tested for PFAS removal from water, but most of these materials suffer from high cost and/or poor removal performance. Here, we synthesized, characterized, and examined the efficiency of PCN-222(Fe), a new porous metal organic framework (MOF) with high water stability, for adsorptive removal of a frequently occurring PFAS, perfluorooctane sulfonate (PFOS), from water. The adsorption isotherm and kinetic studies revealed high PFOS adsorption capacity of PCN-222 (2257 mg/g), with rapid PFOS removal rate (within 30 min). The structure of PCN-222 was unaffected in water in the pH range of 2-10 but disintegrated and lost its PFOS removal ability at pH > 10. The PFOS adsorption on PCN-222 was an endothermic reaction. Electrostatic attraction was a dominant mechanism for PFOS adsorption at < 1694 mg/g PFOS concentration, while hydrophobic interaction accompanied with hydrogen-bonding was responsible at ≥ 1694 mg/g PFOS concentration. The interlayer morphology of PCN-222 did not change due to increasing PFOS loading. The findings of this study demonstrated superior features of PCN-222 over other conventional adsorbents for its potential application in removing PFOS from contaminated water to reduce PFOS transfer from water to living organisms.
Collapse
Affiliation(s)
- Po-Hsiang Chang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Bo Zhong
- Shaanxi Provincial Land Engineering Construction Group Co. Ltd., Xi'an, Shaanxi 710075, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, PR China
| | - Shungui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
7
|
Zhao Z, Lei R, Zhang Y, Cai T, Han B. Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Goudarzi MD, Khosroshahi N, Safarifard V. Exploring novel heterojunctions based on the cerium metal-organic framework family and CAU-1, as dissimilar structures, for the sake of photocatalytic activity enhancement. RSC Adv 2022; 12:32237-32248. [PMID: 36425724 PMCID: PMC9647877 DOI: 10.1039/d2ra06034e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Ce-based metal-organic frameworks (Ce-MOFs) are excellent photocatalysts due to their high efficiency in charge transportation. The integration of this family with CAU-1 (CAU standing for Christian-Albrechts-University), as a MOF benefiting from its ultra-high surface area, can remarkably enhance the properties of the structure. This research includes four new heterojunctions, namely CAU-1/Ce-BDC-NH2, CAU-1/Ce-UiO-66, CAU-1/Ce-MOF-808, and CAU-1/Ce-BDC, prepared by an innovative method, and several characterization techniques were employed to study the structural features of the frameworks. Their high surface area and low bandgap energy seemed appropriate for catalytic applications. Therefore, CAU-1/Ce-BDC was chosen for the photocatalytic removal of Cr(vi), a dangerous heavy metal, from aqueous systems. According to the results, a 96% reduction of Cr(vi) to Cr(iii) within 75 min was observed, and the catalyst retained its stability after four runs of reactions under acidic conditions.
Collapse
Affiliation(s)
- Moein Darabi Goudarzi
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Negin Khosroshahi
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
9
|
Chang PH, Chen CY, Mukhopadhyay R, Chen W, Tzou YM, Sarkar B. Novel MOF-808 metal–organic framework as highly efficient adsorbent of perfluorooctane sulfonate in water. J Colloid Interface Sci 2022; 623:627-636. [DOI: 10.1016/j.jcis.2022.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/15/2022]
|
10
|
Zhai G, Liu Q, Ji J, Wu Y, Geng J, Hu X. Recyclable polymerized Lewis acid poly-BPh(C6F5)2 catalyzed selective N-formylation and N-methylation of amines with carbon dioxide and phenylsilanes. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Natte K, Naik G, Sarki N, Goyal V, Narani A. Recent Trends in Upgrading of CO2 as a C1 Reactant in N‐ and C‐Methylation Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kishore Natte
- Indian Institute of Technology Hyderabad Chemistry Kandi--- Sangareddy INDIA
| | - Ganesh Naik
- Indian Institute of Petroleum CSIR Chemistry INDIA
| | - Naina Sarki
- Indian Institute of Petroleum CSIR Chemistry INDIA
| | | | - Anand Narani
- Indian Institute of Petroleum CSIR Chemistry INDIA
| |
Collapse
|
12
|
Ran Z, Liu J, Mushtaq MA, Shao X, Liu H, Du X, Hou S, Ji S. Preparation of magnetic Au/MIL-101(Cr)@SiO2@Fe3O4 catalysts and N-methylation reaction mechanism of CO2 with aniline/H2. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Abstract
Two-dimensional compounds with nanostructural features are attracting attention from researchers worldwide. Their multitude of applications in various fields and vast potential for future technology advancements are successively increasing the research progress. Wastewater treatment and preventing dangerous substances from entering the environment have become important aspects due to the increasing environmental awareness, and increasing consumer demands have resulted in the appearance of new, often nonbiodegradable compounds. In this review, we focus on using the most promising 2D materials, such as MXenes, Bi2WO6, and MOFs, as catalysts in the modification of the Fenton process to degrade nonbiodegradable compounds. We analyze the efficiency of the process, its toxicity, previous environmental applications, and the stability and reusability of the catalyst. We also discuss the catalyst’s mechanisms of action. Collectively, this work provides insight into the possibility of implementing 2D material-based catalysts for industrial and urban wastewater treatment.
Collapse
|
14
|
Chelating Cu-N within Cu+-incorporated MIL-101 (Cr)-NH2 framework for enhanced CO adsorption and CO/CO2 selectivity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Khosroshahi N, Darabi Goudarzi M, Safarifard V. Fabrication of a novel heteroepitaxial structure from an MOF-on-MOF architecture as a photocatalyst for highly efficient Cr( vi) reduction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05440f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ce-on-Zr-MOF-808, a novel MOF-on-MOF hybrid used for efficient chromium reduction under visible-light irradiation.
Collapse
Affiliation(s)
- Negin Khosroshahi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Moein Darabi Goudarzi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
16
|
Zuo W, yang S, xing Y, xiao X, Fan D, Li H, Wang G, Qin B, You S, Jia X. Amorphous zirconium metal-organic frameworks assembled from mixed porphyrins as solvent-free catalysts for Knoevenagel condensation. Dalton Trans 2022; 51:6631-6637. [DOI: 10.1039/d2dt00142j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three mixed porphyrins, icpp (1–3) were synthesized via the reactions of 4-formylbenzoic acid and 4-imidazolecarboxaldehyde in different proportions, and then five amorphous or crystalline Zr-MOFs—SPUZ (1–5) were obtained from icpp...
Collapse
|
17
|
Fabrication of MOF-808(Zr) with abundant defects by cleaving Zr O bond for oxidative desulfurization of fuel oil. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
|
19
|
Mesoporous Sn(IV) Doping DFNS Supported BaMnO3 Nanoparticles for Formylation of Amines Using Carbon Dioxide. Catal Letters 2021. [DOI: 10.1007/s10562-020-03307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Zhang K, Zong L, Jia X. Bifunctional Ru‐loaded Porous Organic Polymers with Pyridine Functionality: Recyclable Catalysts for N‐Formylation of Amines with CO
2
and H
2. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kai Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Lingbo Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| |
Collapse
|
21
|
Song X, Mei D. A density functional theoretical study on the stability of Pt clusters in MOF-808. Phys Chem Chem Phys 2020; 22:23645-23656. [PMID: 33112306 DOI: 10.1039/d0cp04444j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal organic framework (MOF)-encapsulated metal clusters have shown superior catalytic activity due to geometric and electronic properties of metal clusters, which are largely determined by adsorption sites and sizes and morphologies of encapsulated metal clusters. In the present work, anchoring sites, the stability, and the agglomeration probability of Ptn (n = 1-23) clusters over an MOF-808 framework structure were studied using density functional theory calculations and ab initio molecular dynamics simulation. It has been found that Ptn (n = 1-7) clusters bind more strongly at the Zr6 metal node sites than at the interface and linker sites. Upon adsorption, significant amounts of electrons (+0.92 to +1.96 |e|) are transferred from Ptn clusters to the MOF framework. The agglomeration of single Pt1 atoms at the Zr6 metal node to form a Ptn cluster is unlikely, while the agglomeration at the interface or the linker is energetically feasible. Compared with the single Zr6 node, the bonding of Ptn clusters with two Zr6 metal nodes is weaker, with less electron (+0.12 to +0.89 |e|) transfer. Finally, our calculations show that CO adsorption at the single Pt atom is stabilized at the interface site, preventing its further agglomeration with Ptn clusters between the two Zr6 metal nodes.
Collapse
Affiliation(s)
- Xiaohui Song
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Donghai Mei
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| |
Collapse
|