1
|
Banerjee A, Roychoudhury A. Molecular characterization of a phytomelatonin receptor and its overexpression as a 'one-stop' solution to nullify the toxic effects of hazardous inorganic agro-pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125041. [PMID: 39343345 DOI: 10.1016/j.envpol.2024.125041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Inorganic toxicants like arsenic, copper, lead, nickel and fluoride are notorious agro-pollutants, impeding plant-productivity due to high bioaccumulation. Consumption of such contaminated plant-parts causes irreversible health hazards. We identified a G-protein coupled receptor, serving as melatonin receptor (MelR) in Nicotiana tabacum (NtMelR), that relayed downstream-signaling after binding melatonin, a potent growth regulator and antioxidant. Using inhibitors against G-protein-α and NADPH oxidase (NOX), and by supplementing epidermal strips with exogenous melatonin and H2O2, we established that NtMelR acted upstream of reactive oxygen species (ROS) production in guard cells. Transgenic lines of N. benthamiana overexpressing NtMelR maintained constitutive melatonin-signaling via MelR, leading to efficient stomatal closure for preventing desiccation during oxidative stress. Melatonin biosynthesis was stimulated in the transgenic lines, exposed to different agro-pollutant stress, providing a steady-abundance of ligand for NtMelR binding and activating the defence machinery, comprising of enzymatic-antioxidants like superoxide dismutase, catalase, peroxidases and glyoxalases. Due to increased antioxidant capacity, the transgenics exhibited less molecular injuries (electrolyte leakage, methylglyoxal accumulation and NOX activity), generated less ROS and bioaccumulated significantly lower levels of toxicants. Unlike the wild-type counterparts, the transgenics maintained high relative water content, photosynthetic efficiency, could flower abundantly and even produce seeds. Overall, we established that overexpression of NtMelR is a single-window strategy to generate multiple-stress tolerant genotypes.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
2
|
Bayuo J, Rwiza MJ, Choi JW, Njau KN, Mtei KM. Recent and sustainable advances in phytoremediation of heavy metals from wastewater using aquatic plant species: Green approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122523. [PMID: 39305882 DOI: 10.1016/j.jenvman.2024.122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
A key component in a nation's economic progress is industrialization, however, hazardous heavy metals that are detrimental to living things are typically present in the wastewater produced from various industries. Therefore, before wastewater is released into the environment, it must be treated to reduce the concentrations of the various heavy metals to maximum acceptable levels. Even though several biological, physical, and chemical remediation techniques are found to be efficient for the removal of heavy metals from wastewater, these techniques are costly and create more toxic secondary pollutants. However, phytoremediation is inexpensive, environmentally friendly, and simple to be applied as a green technology for heavy metal detoxification in wastewater. The present study provides a thorough comprehensive review of the mechanisms of phytoremediation, with an emphasis on the possible utilization of plant species for the treatment of wastewater containing heavy metals. We have discussed the concept, its applications, advantages, challenges, and independent variables that determine how successful and efficient phytoremediation could be in the decontamination of heavy metals from wastewater. Additionally, we argue that the standards for choosing aquatic plant species for target heavy metal removal ought to be taken into account, as they influence various aspects of phytoremediation efficiency. Following the comprehensive and critical analysis of relevant literature, aquatic plant species are promising for sustainable remediation of heavy metals. However, several knowledge gaps identified from the review need to be taken into consideration and possibly addressed. Therefore, the review provides perspectives that indicate research needs and future directions on the application of plant species in heavy metal remediation.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Ghana; School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania; Graduate School of International Agricultural Technology, Seoul National University, South Korea.
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, South Korea
| | - Karoli Nicholas Njau
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| |
Collapse
|
3
|
Mahmoud R, Kotb NM, GadelHak Y, El-Ela FIA, Shehata AZ, Othman SI, Allam AA, Rudayni HA, Zaher A. Investigation of ternary Zn-Co-Fe layered double hydroxide as a multifunctional 2D layered adsorbent for moxifloxacin and antifungal disinfection. Sci Rep 2024; 14:806. [PMID: 38191628 PMCID: PMC10774404 DOI: 10.1038/s41598-023-48382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024] Open
Abstract
Layered double hydroxides have recently gained wide interest as promising multifunctional nanomaterials. In this work, a multifunctional ternary Zn-Co-Fe LDH was prepared and characterized using XRD, FTIR, BET, TEM, SEM, and EDX. This LDH showed a typical XRD pattern with a crystallite size of 3.52 nm and a BET surface area of 155.9 m2/g. This LDH was investigated, for the first time, as an adsorbent for moxifloxacin, a common fluoroquinolones antibiotic, showing a maximum removal efficiency and equilibrium time of 217.81 mg/g and 60 min, respectively. Its antifungal activity, for the first time, was investigated against Penicillium notatum, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Mucor fungi at various concentrations (1000-1.95 µg/mL). This LDH was found to be effective against a variety of fungal strains, particularly Penicillium and Mucor species and showed zones of inhibition of 19.3 and 21.6 mm for Penicillium and Mucor, respectively, with an inhibition of 85% for Penicillium species and 68.3% for Mucormycosis. The highest antifungal efficacy results were obtained at very low MIC concentrations (33.3 and 62 µg/ml) against Penicillium and Mucor, respectively. The results of this study suggest a promising multifunctional potential of this LDH for water and wastewater treatment and disinfection applications.
Collapse
Affiliation(s)
- Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Nada M Kotb
- Hydrogeology and Environment Department, Faculty of Earth Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ayman Z Shehata
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. BOX 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
| | - Amal Zaher
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Jlassi K, Al Ejji M, Ahmed AK, Mutahir H, Sliem MH, Abdullah AM, Chehimi MM, Krupa I. A carbon dot-based clay nanocomposite for efficient heavy metal removal. NANOSCALE ADVANCES 2023; 5:4224-4232. [PMID: 37560431 PMCID: PMC10408590 DOI: 10.1039/d3na00334e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/16/2023] [Indexed: 08/11/2023]
Abstract
Carbon dots and their derivatives with fascinating photoluminescence properties have recently attracted tremendous scientific attention. This work describes the preparation of novel fluorescent bentonite clay (B), modified with carbon dot nanomaterials (CDs), and its usage as a lead removal platform. The CDs were prepared using a hydrothermal method from graphitic waste which served as the carbon source material. The as-obtained CDs were found to be fluorescent, being spherical in shape, positively charged, and smaller than 5 nm. Encouraged by their structure and photoluminescence features, they were used as surface modifiers to make fluorescent bentonite nanocomposites. Bentonite was used as a negatively charged model of aluminosilicate and reacted with the positively charged CDs. XRD, FTIR, XPS, and fluorescence analysis were used to characterize the prepared materials. The results indicate that the CDs intercalated inside the bentonite matrix were stable with excellent optical properties over time. They were finally used as an efficient hybrid platform for lead removal with a removal efficiency of 95% under light conditions, at room temperature, in an alkaline medium, and after only 10 min of reaction, compared to 70% under dark conditions. The pseudo-second-order kinetics and Langmuir isotherm models were better fitted to describe the adsorption process. The maximum adsorption capacity was equal to 400 mg g-1 toward Pb(ii) removal, at room temperature and pH = 8, under light conditions. To summarize, we have designed UV light stimuli responsive carbon dot-intercalated clay with high Pb(ii) adsorption capacity and long-term stability.
Collapse
Affiliation(s)
- Khouloud Jlassi
- Center for Advanced Materials, Qatar University P.O. Box 2713 Doha Qatar
| | - Maryam Al Ejji
- Center for Advanced Materials, Qatar University P.O. Box 2713 Doha Qatar
| | | | - Hafsa Mutahir
- Department of Chemical Engineering, College of Engineering, Qatar University Doha 2713 Qatar
| | - Mostafa H Sliem
- Center for Advanced Materials, Qatar University P.O. Box 2713 Doha Qatar
| | | | - Mohamed M Chehimi
- Université de Paris, ITODYS, UMR CNRS 7086 15 rue JA de Baïf 75013 Paris France
| | - Igor Krupa
- Center for Advanced Materials, Qatar University P.O. Box 2713 Doha Qatar
| |
Collapse
|
5
|
Ahmed SF, Mehejabin F, Momtahin A, Tasannum N, Faria NT, Mofijur M, Hoang AT, Vo DVN, Mahlia TMI. Strategies to improve membrane performance in wastewater treatment. CHEMOSPHERE 2022; 306:135527. [PMID: 35780994 DOI: 10.1016/j.chemosphere.2022.135527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh.
| | - Fatema Mehejabin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Adiba Momtahin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nuzaba Tasannum
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nishat Tasnim Faria
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Dai-Viet N Vo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - T M I Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Selangor, Malaysia
| |
Collapse
|
6
|
Mosleh N, Najmi M, Parandi E, Rashidi Nodeh H, Vasseghian Y, Rezania S. Magnetic sporopollenin supported polyaniline developed for removal of lead ions from wastewater: Kinetic, isotherm and thermodynamic studies. CHEMOSPHERE 2022; 300:134461. [PMID: 35395264 DOI: 10.1016/j.chemosphere.2022.134461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the synthesis of novel binary functionaladsorbent based on sporopollenin, magnetic nanoparticles, and polyaniline to produce MSP-PANI. The MSP-PANI was applied to enhance uptake of lead ions (Pb2+) from wastewater samples. The functionalities, surface morphology, magnetic properties, and elemental composition of the newly synthesized nanocomposite were investigated using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibration sample magnetometer (VSM), and energy-dispersive X-ray spectroscopy (EDX), respectively. The experimental condition for the adsorption process was MSP/PANI ratio 1:1, pH ∼6, adsorbent dosage 40 mg, and contact time 90 min at room temperature. Under the proposed condition, lead ions removal were obtained as 83%, 88% and 95% for MSPE, PANI, and MSP/PANI, respectively. Based on the experimental and predicted data, the adsorption was corresponded to the psudo-second-order (R2 = 0.999) kinetics model, and the adsorption equilibrium corresponded to the Langmuir model (R2 = 0.996). Langmuir isotherm showed the maximum adsorption capacity of MSP-PANI for lead ions was 163 mg/g and followed the monolayer pattern. Hence, thermodynamic model under Van't Hoff equation suggested that the adsorption mechanism was physio-sorption with endothermic nature. Therefore, this research can help the researchers to use magnetic nanoparticles for lead removal in highly polluted areas.
Collapse
Affiliation(s)
- Nazanin Mosleh
- Department of Food Science & Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohsen Najmi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, P.O. Box 15875-4413, Tehran, Iran.
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran; Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran.
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O.Box 17011, Doornfontein 2088, South Africa.
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
7
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
8
|
Selective Removal of Iron, Lead, and Copper Metal Ions from Industrial Wastewater by a Novel Cross-Linked Carbazole-Piperazine Copolymer. Polymers (Basel) 2022; 14:polym14122486. [PMID: 35746063 PMCID: PMC9227031 DOI: 10.3390/polym14122486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
A novel cross-linked Copolymer (MXM) was synthesized by the polycondensation reaction of 3,6-Diaminocarbazole and piperazine with p-formaldehyde as a cross-linker. The Copolymer was fully characterized by solid 13C-NMR and FT-IR. The thermal stability of MXM was investigated by TGA and showed that the Copolymer was stable up to 300 °C. The synthesized polyamine was tested for the removal of iron (Fe2+), lead (Pb2+), and copper (Cu2+) ions from aqueous and industrial wastewater solutions. The effect of pH, concentration and time on the adsorption of iron (Fe2+), lead (Pb2+), and copper (Cu2+) ions was investigated. The adsorption of the studied ions from aqueous solutions onto the MXM polymer occurs following the Freundlich isotherm and pseudo-second-order kinetic models. The intraparticle diffusion model showed that the adsorption mechanism is controlled by film diffusion. The regeneration of MXM showed practical reusability with a loss in capacity of 2–5% in the case of Fe2+ and Cu2+ ions. The molecular simulation investigations revealed similarities between experimental and theoretical calculations. Industrial wastewater treatment revealed the excellent capabilities and design of MXM to be a potential adsorbent for the removal of heavy metal ions.
Collapse
|
9
|
Samuel MS, Selvarajan E, Chidambaram R, Patel H, Brindhadevi K. Clean approach for chromium removal in aqueous environments and role of nanomaterials in bioremediation: Present research and future perspective. CHEMOSPHERE 2021; 284:131368. [PMID: 34225115 DOI: 10.1016/j.chemosphere.2021.131368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 05/25/2023]
Abstract
Chromium is an insidious ecological pollutant that is of huge value for its toxicity. The existing ecological objective to lower the heights of toxic materials in marine systems and to stimulate the existing water to recycle after suitable treatment of wastewater. Chromium is a hazard element that appears in discharges of numerous industries that must be diminished to accomplish the goals. Nearly all of the findings described in the literature related to the usage of various materials such as fungal, algal, bacterial biomass, and nanomaterials for chromium adsorption. The current work evaluates the findings of research commenced in the preceding on the use of a variety of adsorbents to decrease chromium concentrations in contaminated waters. This review article focuses on the issue of chromium contamination, its chemistry, causes, consequences, biological agent remediation techniques, and the detailed process of chromium detoxification in microbial cells. It also lists a description of the in situ and ex situ chromium bioremediation methods used. This can help design more effective Cr(VI) removal methods, thus bridging the difference between laboratory discoveries and industrial chromium remediation applications.
Collapse
Affiliation(s)
- Melvin S Samuel
- Department of Materials Science and Engineering, CEAS, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, United States
| | - E Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Himanshu Patel
- Applied Science and Humanities Department, Pacific School of Engineering, Kadodara, Palasana Road, Surat, 394305, Gujarat, India
| | - Kathirvel Brindhadevi
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
10
|
Rajnish KN, Samuel MS, John J A, Datta S, Chandrasekar N, Balaji R, Jose S, Selvarajan E. Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. Int J Biol Macromol 2021; 182:1793-1802. [PMID: 34058212 DOI: 10.1016/j.ijbiomac.2021.05.176] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/02/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Cellulose is a very abundant polymer that is found in nature. Cellulose has been used as a raw material for production of biofuels for many years. However, there are multiple processing steps that are required so that cellulose can be used as a raw material for biofuel production. One of the most important steps is the breakdown of cellulose into intermediate sugars which can then be a viable substrate for biofuel production. Cellulases are enzymes which play a role in the catalysis of the breakdown of cellulose into glucose. Nanomaterials and micromaterials have been gaining a lot of attention over the past few years for its potential in immobilizing enzymes for industrial procedures. Immobilization of enzymes on these nanomaterials has been observed to be of great value due to the improvement in thermal stability, pH stability, regenerative capacity, increase in activity and the reusability of enzymes. Similarly, there have been multiple reports of cellulase enzymes being immobilized on various nanoparticles. The immobilization of these cellulase enzymes have resulted in very efficient processing and provide a great and economic solution for the processing of cellulose for biofuel production. Hence in this paper, we review and discuss the various advantages and disadvantages of enzymes on various available nanomaterials.
Collapse
Affiliation(s)
- K Narayanan Rajnish
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Melvin S Samuel
- School of Environmental Science and Engineering, School of Bioengineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Ashwini John J
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, India
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taiwan
| | - Sujin Jose
- School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.
| |
Collapse
|