1
|
Wu C, Zhang Y, Yang HY. Rational Design and Facile Preparation of Palladium-Based Electrocatalysts for Small Molecules Oxidation. CHEMSUSCHEM 2025; 18:e202401127. [PMID: 39211939 DOI: 10.1002/cssc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Direct liquid fuel cells (DLFCs) can convert the chemical energy of small organic molecules directly into electrical energy, which is a promising technique and always calls for electrocatalysts with high activity, stability and selectivity. Palladium (Pd)-based catalysts for DLFCs have been widely studied with the pursuit of ultra-high performance, however, most of the preparation routes require complex agents, multi-operation steps, even extreme experimental conditions, which are high-cost, energy-consuming, and not conducive to the scalable and sustainable production of catalysts. In this review, the recent progresses on not only the rational design strategies, but also the facile preparation methods of Pd-based electrocatalysts for small molecules oxidation reaction (SMOR) are comprehensively summarized. Based on the principles of green chemistry in material synthesis, the basic rules of "facile method" have been restricted, and the fabrication processes, perks and drawbacks, as well as practical applications of the "real" facile methods have been highlighted. The landscape of this review is to facilitate the mild preparation of efficient Pd-based electrocatalysts for SMOR, that is, to achieve a balance between "facile preparation" and "outstanding performance", thereby to stimulate the huge potential of sustainable nano-electrocatalysts in various research and industrial fields.
Collapse
Affiliation(s)
- Chenshuo Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Yingmeng Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
2
|
Yang T, Qu J, Yang X, Cai Y, Hu J. Recent advances in ambient-stable black phosphorus materials for artificial catalytic nitrogen cycle in environment and energy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123522. [PMID: 38331240 DOI: 10.1016/j.envpol.2024.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nitrogen cycle is crucial for the Earth's ecosystem and human-nature coexistence. However, excessive fertilizer use and industrial contamination disrupt this balance. Semiconductor-based artificial nitrogen cycle strategies are being actively researched to address this issue. Black phosphorus (BP) exhibits remarkable performance and significant potential in this area due to its unique physical and chemical properties. Nevertheless, its practical application is hindered by ambient instability. This review covers the synthesis methods of BP materials, analyzes their instability factors under environmental conditions, discusses stability improvement strategies, and provides an overview of the applications of ambient-stable BP materials in nitrogen cycle, including N2 fixation, NO3- reduction, NOx removal and nitrides sensing. The review concludes by summarizing the challenges and prospects of BP materials in the nitrogen cycle, offering valuable guidance to researchers.
Collapse
Affiliation(s)
- Tingyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Ma J, Xue D, Xu T, Wei G, Gu C, Zhang Y, Jiang T. Nonmetallic SERS-based biosensor for ultrasensitive and reproducible immunoassay of ferritin mediated by magnetic molybdenum disulfide nanoflowers and black phosphorus nanosheets. Colloids Surf B Biointerfaces 2023; 227:113338. [PMID: 37167693 DOI: 10.1016/j.colsurfb.2023.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
To improve the curability of cancer patients, it is essential to propose an early diagnosis technology with ultra-high sensitivity and reliable biocompatibility. Herein, a sophisticated nonmetallic SERS-based immunosensor, comprised by a MoS2 @Fe3O4 nanoflower-based immunoprobe with magnetism and a black phosphorus (BP) nanosheet-based immunosubstrate, was proposed for the specific in-situ monitoring of ferritin (FER). The sandwich immunosensor was endowed with an excellent SERS performance mainly ascribed to a synergistic chemical enhancement as well as an additional electrostatic adsorption effect, achieving a limit of detection down to 7.3 × 10-5 μg/mL. Particularly, all the Raman label, target FER, and anti-FER could be completely degraded within 70 min under visible light irradiation owing to the favorable photocatalytic activities of MoS2 and BP which could be then effectively separated and collected with the assistance of an external magnet. Such a recyclable nonmetallic immunosensor holds great potential and practicality in the clinical screening of cancer.
Collapse
Affiliation(s)
- Jiali Ma
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Danni Xue
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Tao Xu
- Department of Pharmacy, Ningbo City First Hospital, Ningbo, 315211, Zhejiang, PR China
| | - Guodong Wei
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xian 710021, Shaanxi, PR China
| | - Chenjie Gu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Yongling Zhang
- College of Information &Technology, Jilin Normal University, Siping 136000, Jilin, PR China.
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
4
|
Shuai TY, Zhan QN, Xu HM, Huang CJ, Zhang ZJ, Li GR. Recent advances in the synthesis and electrocatalytic application of MXene materials. Chem Commun (Camb) 2023; 59:3968-3999. [PMID: 36883557 DOI: 10.1039/d2cc06418a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
MXenes are a class of two-dimensional materials with a graphene-like structure, which have excellent optical, biological, thermodynamic, electrical and magnetic properties. Due to the diversity resulting from the combination of transition metals and C/N, the MXene family has expanded to more than 30 members and been applied in many fields with broad application prospects. Among their applications, electrocatalytic applications have achieved many breakthroughs. Therefore, in this review, we summarize the reports on the preparation of MXenes and their application in electrocatalysis published in the last five years and describe the two main methods for the preparation of MXenes, i.e., bottom-up and top to bottom synthesis. Different methods may change the structure or surface termination of MXenes, and accordingly affect their electrocatalytic performance. Furthermore, we highlight the application of MXenes in the electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and multi-functionalization. It can be concluded that the electrocatalytic properties of MXenes can be modified by changing the type of functional groups or doping. Also, MXenes can be compounded with other materials to produce electronic coupling and improve the catalytic activity and stability of the resulting composites. In addition, Mo2C and Ti3C2 are two types of MXene materials that have been widely studied in the field of electrocatalysis. At present, research on the synthesis of MXenes is focused on carbides, whereas research on nitrides is rare, and there are no synthesis methods meeting the requirements of green, safety, high efficiency and industrialization simultaneously. Therefore, it is very important to explore environmentally friendly industrial production routes and devote more research efforts to the synthesis of MXene nitrides.
Collapse
Affiliation(s)
- Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Zhang G, Chen D, Lu J. A review on black-phosphorus-based composite heterojunction photocatalysts for energy and environmental applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Preparation and Application of Electrochemical Horseradish Peroxidase Sensor Based on a Black Phosphorene and Single-Walled Carbon Nanotubes Nanocomposite. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228064. [PMID: 36432164 PMCID: PMC9694212 DOI: 10.3390/molecules27228064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
To design a new electrochemical horseradish peroxidase (HRP) biosensor with excellent analytical performance, black phosphorene (BP) nanosheets and single-walled carbon nanotubes (SWCNTs) nanocomposites were used as the modifier, with a carbon ionic liquid electrode (CILE) as the substrate electrode. The SWCNTs-BP nanocomposite was synthesized by a simple in situ mixing procedure and modified on the CILE surface by the direct casting method. Then HRP was immobilized on the modified electrode with Nafion film. The electrocatalysis of this electrochemical HRP biosensor to various targets was further explored. Experimental results indicated that the direct electrochemistry of HRP was realized with a pair of symmetric and quasi-reversible redox peaks appeared, which was due to the presence of SWCNTs-BP on the surface of CILE, exhibiting synergistic effects with high electrical conductivity and good biocompatibility. Excellent electrocatalytic activity to trichloroacetic acid (TCA), sodium nitrite (NaNO2), and hydrogen peroxide (H2O2) were realized, with a wide linear range and a low detection limit. Different real samples, such as a medical facial peel solution, the soak water of pickled vegetables, and a 3% H2O2 disinfectant, were further analyzed, with satisfactory results, further proving the potential practical applications for the electrochemical biosensor.
Collapse
|
7
|
Liu Y, Zhang W, Zheng W. Surface chemistry of MXene quantum dots: Virus mechanism-inspired mini-lab for catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Sensitive and stable detection of deoxynivalenol based on electrochemiluminescence aptasensor enhanced by 0D/2D homojunction effect in food analysis. Food Chem 2022; 403:134397. [DOI: 10.1016/j.foodchem.2022.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
|
9
|
Shi L, Bi S, Qi Y, He R, Ren K, Zheng L, Wang J, Ning G, Ye J. Anchoring Mo Single-Atom Sites on B/N Codoped Porous Carbon Nanotubes for Electrochemical Reduction of N 2 to NH 3. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Ruifang He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Ke Ren
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Jiaou Wang
- Institute of High Energy Physics Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
10
|
Li T, Shang D, Gao S, Wang B, Kong H, Yang G, Shu W, Xu P, Wei G. Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. BIOSENSORS 2022; 12:314. [PMID: 35624615 PMCID: PMC9138342 DOI: 10.3390/bios12050314] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 05/28/2023]
Abstract
Two-dimensional materials (2DMs) exhibited great potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and others due to their unique physical, chemical, and biological properties. In this review, we present recent advances in the fabrication of 2DM-based electrochemical sensors and biosensors for applications in food safety and biomolecular detection that are related to human health. For this aim, firstly, we introduced the bottom-up and top-down synthesis methods of various 2DMs, such as graphene, transition metal oxides, transition metal dichalcogenides, MXenes, and several other graphene-like materials, and then we demonstrated the structure and surface chemistry of these 2DMs, which play a crucial role in the functionalization of 2DMs and subsequent composition with other nanoscale building blocks such as nanoparticles, biomolecules, and polymers. Then, the 2DM-based electrochemical sensors/biosensors for the detection of nitrite, heavy metal ions, antibiotics, and pesticides in foods and drinks are introduced. Meanwhile, the 2DM-based sensors for the determination and monitoring of key small molecules that are related to diseases and human health are presented and commented on. We believe that this review will be helpful for promoting 2DMs to construct novel electronic sensors and nanodevices for food safety and health monitoring.
Collapse
Affiliation(s)
- Tao Li
- College of Textile & Clothing, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Dawei Shang
- Qingdao Product Quality Testing Research Institute, No. 173 Shenzhen Road, Qingdao 266101, China;
| | - Shouwu Gao
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Bo Wang
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Weidong Shu
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Peilong Xu
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| |
Collapse
|
11
|
|