1
|
Mirzahedayat B, Kalvani N, Mehrasbi MR, Assadi A. Advances in photocatalytic degradation of tetracycline using graphene-based composites in water: a systematic review and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62510-62529. [PMID: 39455515 DOI: 10.1007/s11356-024-35359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
In this study, a comprehensive systematic review was conducted to better recognize the applicability of graphene-based photocatalytic processes for the degradation of tetracycline (TC) from water. A broad search strategy was developed for English language articles available in PubMed, Scopus, and Web of Science. The effect of parameters such as pH, TC concentration, photocatalyst dose, radiation source intensity, and the effect of graphene on the process, kinetics, and reuse of the photocatalyst were investigated. A total of 63 out of a possible 3498 retrieved records met inclusion criteria. The results showed that most related studies have increased since 2019. About 46.7% of the articles showed 90-100% TC removal efficiency and 59.52% of the studies had optimal pH equal to 5 and 6. Also, the widespread use of visible light had a significant trend. The effect of the dose of graphene in the catalyst was one of the most important and effective factors on the process; hence, the difference in efficiency with and without graphene was completely evident. This review indicated that the presence of graphene has been able to have a positive effect on increasing the efficiency of oxidation processes, and it can be used for environmental pollutants remediation.
Collapse
Affiliation(s)
- Bahare Mirzahedayat
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Nima Kalvani
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Mohammad Reza Mehrasbi
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Ali Assadi
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran.
| |
Collapse
|
2
|
Chen J, Chen Z, Zhao W, Liu Y, Wu J, Wang W, Chen X, Gao J, Hu J, Xie L, Wei Q, Li L. Construction of SiO2 decorated 1T/2H-MoS2 for photocatalytic degradation of antibiotic residues in water. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Mathew J, John N, Mathew B. Graphene oxide-incorporated silver-based photocatalysts for enhanced degradation of organic toxins: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16817-16851. [PMID: 36595177 DOI: 10.1007/s11356-022-25026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Environmental contamination and scarcity of energy have been deepening over the last few decades. Heterogeneous photocatalysis plays a prominent role in environmental remediation. The failure of earlier metal oxide systems like pure TiO2 and ZnO as stable visible-light photocatalysts demanded more stable catalysts with high photodegradation efficiency. Silver-based semiconductor materials gained popularity as visible-light-responsive photocatalysts with a narrow bandgap. But their large-scale usage in natural water bodies for organic contaminant removal is minimal. The factors like self-photocorrosion and their slight solubility in water have prevented the commercial use. Various efforts have been made to improve their photocatalytic activity. This review focuses on those studies in which silver-based semiconductor materials are integrated with carbonaceous graphene oxide (GO) and reduced graphene oxide (RGO). The decoration of Ag-based semiconductor components on graphene oxide having high-surface area results in binary composites with enhanced visible-light photocatalytic activity and stability. It is found that the introduction of new efficient materials further increases the effectiveness of the system. So binary and ternary composites of GO and Ag-based materials are reviewed in this paper.
Collapse
Affiliation(s)
- Jincy Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Neenamol John
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| |
Collapse
|
4
|
Evaluation of reactive oxygen species and photocatalytic degradation of ethylene using β-Ag2MoO4/g-C3N4 composites. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Vadivel S, Fujii M, Rajendran S. Facile synthesis of broom stick like FeOCl/g-C 3N 5 nanocomposite as novel Z-scheme photocatalysts for rapid degradation of pollutants. CHEMOSPHERE 2022; 307:135716. [PMID: 35853514 DOI: 10.1016/j.chemosphere.2022.135716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
A simple and cost-effective route has been utilized for the preparation of a novel lamellar structured FeOCl/g-C3N5 nanocomposite as Z-scheme photocatalyst. The preparation method was performed under the ambient temperature conditions without any hazardous chemicals. Various characterization techniques, namely XRD, FESEM, TEM, FT-IR, UV-Vis, DRS, and PL were carried out to analyse the nanocomposite for confirmation of FeOCl/g-C3N5 nanocomposite. To evaluate its and visible light degradation performances tetracycline (T-C) was used as target pollutant. Among the optimum loading for the g-C3N5 incorporated FeOCl binary nanocomposites, the g-C3N5/FeOCl exhibited a superlative degradation performance toward the T-C antibiotic pollutant. The results confirmed that 95% of T-C was degraded within 40 min under photodegradation mechanism. The improved photodegradation performance in degradation of T-C was mainly due to the reduction in electron-hole recombination, broadening in the light absorption by g-C3N5 incorporation, which leads to shortening the degradation time. Furthermore, the hydroxyl and superoxide radicals played a major role in the photodegradation process and the possible mechanism was elucidated and proposed. The present work implies a novel, sustainable, and efficient Z-scheme system that may deliver a convenient method for environment remediation.
Collapse
Affiliation(s)
- Sethumathavan Vadivel
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| |
Collapse
|
6
|
Gan X, Lei D. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Song HM, Zhu LJ, Wang Y, Wang G, Zeng ZX. Fe-based Prussian blue cubes confined in graphene oxide nanosheets for the catalytic degradation of dyes in wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Majumder P, Gangopadhyay R. Evolution of graphene oxide (GO)-based nanohybrid materials with diverse compositions: an overview. RSC Adv 2022; 12:5686-5719. [PMID: 35425552 PMCID: PMC8981679 DOI: 10.1039/d1ra06731a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
The discovery of the 2D nanostructure of graphene was in fact the beginning of a new generation of materials. Graphene itself, its oxidized form graphene oxide (GO), the reduced form of GO (RGO) and their numerous composites are associates of this generation. Out of this spectrum of materials, the development of GO and related hybrid materials has been reviewed in the present article. GO can be functionalized with metals (Ag and Mg) and metal oxides (CuO, MgO, Fe2O3, Ag2O, etc.) nanoparticles (NPs), organic ligands (chitosan and EDTA) and can also be dispersed in different polymeric matrices (PVA, PMMA, PPy, and PAn). All these combinations give rise to nanohybrid materials with improved functionality. An updated report on the chronological development of such nanohybrid materials of diverse nature has been delivered in the present context. Modifications in synthesis methodologies as well as performances and applications of individual materials are addressed accordingly. The functional properties of GO were synergistically modified by photoactive semiconductor NPs; as a result, the GO-MO hybrids acquired excellent photocatalytic ability and were able to degrade a large variety of organic dyes (MB, RhB, MO, MR, etc.) and pathogens. The large surface area of GO was successfully complemented by the NPs so that high and selective adsorption capacity towards metal ions and organic molecules as well as improved charge separation properties could be achieved. As a result, GO-MO hybrids have been considered effective materials in water purification, energy storage and antibacterial applications. GO-MO hybrids with magnetic particles have exhibited selective destruction of cancerous cells and controlled drug release properties, extremely important in the pharmaceutical field. Chitosan and EDTA-modified GO could form 3D network-like structures with strong efficiency in removing heavy metal ions and organic pollutants. GO as a filler enhanced the strength, flexibility and functional properties of common polymers, such as PVA and PVC, to a large extent while, GO-CP composites with polyaniline and polypyrrole are considered suitable for the fabrication of biosensors, supercapacitors, and MEMS as well as efficient photothermal therapy agents. In summary, GO-based hybrids with inorganic and organic counterparts have been designed, the unique properties of which are exploited in versatile fields of applications.
Collapse
Affiliation(s)
- Pampi Majumder
- A/515, H. B. Town, Purbayan, Sodepur Kolkata 700110 West Bengal India
| | - Rupali Gangopadhyay
- Department of Chemistry, Sister Nivedita University Action Area I, DG Block, 1/2, New Town Kolkata 700156 West Bengal India
| |
Collapse
|
9
|
Preparation and photocatalytic performance of ZnO/CuO/GO heterojunction under visible light. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Du C, Zhang Z, Tan S, Yu G, Chen H, Zhou L, Yu L, Su Y, Zhang Y, Deng F, Wang S. Construction of Z-scheme g-C 3N 4 / MnO 2 /GO ternary photocatalyst with enhanced photodegradation ability of tetracycline hydrochloride under visible light radiation. ENVIRONMENTAL RESEARCH 2021; 200:111427. [PMID: 34062202 DOI: 10.1016/j.envres.2021.111427] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
A facile wet-chemical method was adopted to synthesize g-C3N4/MnO2/GO heterojunction photocatalyst for visible-light photodegradation of tetracycline hydrochloride (TC). The addition of MnO2 and GO increased the absorption of visible light and the specific surface area of the photocatalyst. The results of photoluminescence, electrochemical impedance spectroscopy, and photocurrent response indicated that CMG-10 had the lowest electron-hole recombination probability, which was beneficial for the photocatalytic reaction. The ternary photocatalyst exhibited enhanced photoelectric performance and superior photocatalytic activity with 91.4% removal of TC (10 mg/L) under a mere 60 min visible light illumination, which showed enhanced photocatalytic degradation when compared with binary (CM, 77.95%; CG, 78.83%) and single (C3N4, 55.5%; MnO2, 36.41%) photocatalysts. A pH of 6 was optimal for the CMG-10 photocatalytic degradation of TC, and the optimal photocatalyst dosage was 0.5 g/L. Common coexisting ions influenced the removal of TC by influencing the production of active species. The catalyst is stable and reusable with only a 10% reduction in removal efficiency after four cycles. According to the active species analysis, the Z-scheme mechanism was a charge transfer behavior in the composite photocatalyst, which could prevent the recombination of photogenerated carriers. This study presents a photocatalytic approach to the effective removal of TC from water bodies, which provides practical implications to advance the use of photocatalytic technology in the restoration of aqueous environmental pollution.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Zhuo Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Shiyang Tan
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China.
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Lu Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Lie Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Yihai Su
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yin Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Fangfang Deng
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Shitao Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| |
Collapse
|
11
|
Huang L, Bao D, Jiang X, Li J, Zhang L, Sun X. Fabrication of stable high-performance urchin-like CeO 2/ZnO@Au hierarchical heterojunction photocatalyst for water remediation. J Colloid Interface Sci 2021; 588:713-724. [PMID: 33309241 DOI: 10.1016/j.jcis.2020.11.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/08/2023]
Abstract
In this paper, the urchin-like CeO2/ZnO@Au photocatalyst was rationally designed and prepared through hydrothermal method, chemical precipitation and photo reduction deposition. The optimal photocatalyst (CZA8) degraded Rhodamine B (RhB), 4-nitrophenol (4-NP) and Naproxen (NPX) about 100% within 20 min, 91.4% within 60 min and 88.9% within 30 min under Xe lamp illumination, respectively. Besides, the CZA8 possesses outstanding photo corrosion resistance capacity which has been verified with the cycle degradation experiments. The photocatalyst displays excellent light response and efficient separation of photo-induced carriers due to the fabrication of type-II heterojunction, the presence of surface plasmon resonance (SPR) effect and as well as the oxygen vacancy. The oxygen vacancy was systematically characterized by XPS, PL and Raman. Moreover, the photocatalytic degradation pathways are proposed based on the LC-MS results. Finally, a novel photocatalytic mechanism for photocatalytic oxidation of RhB, 4-NP and NPX is discussed and schematically illuminated.
Collapse
Affiliation(s)
- Linsen Huang
- College of Materials Science and Engineering, Sichuan University, No. 29, Wang Jiang Road, Chengdu 610064, PR China
| | - Deyu Bao
- College of Materials Science and Engineering, Sichuan University, No. 29, Wang Jiang Road, Chengdu 610064, PR China
| | - Xiaoqing Jiang
- College of Materials Science and Engineering, Sichuan University, No. 29, Wang Jiang Road, Chengdu 610064, PR China
| | - Junhua Li
- College of Materials Science and Engineering, Sichuan University, No. 29, Wang Jiang Road, Chengdu 610064, PR China
| | - Liangxing Zhang
- College of Materials Science and Engineering, Sichuan University, No. 29, Wang Jiang Road, Chengdu 610064, PR China
| | - Xiaosong Sun
- College of Materials Science and Engineering, Sichuan University, No. 29, Wang Jiang Road, Chengdu 610064, PR China.
| |
Collapse
|
12
|
Della Rocca DG, Peralta RM, Peralta RA, Peralta Muniz Moreira RDF. Recent development on Ag2MoO4-based advanced oxidation processes: a review. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01934-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Xu J, Zhang B, Jia L, Bi N, Zhao T. Metal-enhanced fluorescence detection and degradation of tetracycline by silver nanoparticle-encapsulated halloysite nano-lumen. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121630. [PMID: 31744725 DOI: 10.1016/j.jhazmat.2019.121630] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The ultrasensitive detection and efficient degradation of tetracycline (TC) residues are important for improving food safety and protecting human health. In this paper, a smart silver-enhanced fluorescence platform for the ultrasensitive detection of TC was constructed via a simple and selective modification of the interior and external tubes of natural halloysite nanotubes. The thick pipe wall of this platform provides a natural defense and promotes metal-enhanced fluorescence effects, which subsequently accelerates the detection of TC. Moreover, the nanoplatform of the modified Ag nanoparticles can induce the separation of electrons and holes, thereby enhancing photocatalytic activity in TC degradation. This platform provides new opportunities for studying natural halloysite nanotubes and for simultaneously detecting and photodegrading other deleterious substances.
Collapse
Affiliation(s)
- Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Beibei Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
14
|
Ghobadifard M, Mohebbi S, Radovanovic PV. Selective oxidation of alcohols by using CoFe2O4/Ag2MoO4 as a visible-light-driven heterogeneous photocatalyst. NEW J CHEM 2020. [DOI: 10.1039/c9nj05633e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a CoFe2O4/Ag2MoO4 heterostructure as a novel, stable, inexpensive, and reusable photocatalyst with high-performance for the oxidation of alcohols.
Collapse
Affiliation(s)
- Mahdieh Ghobadifard
- Department of Chemistry
- University of Kurdistan
- Iran
- Department of Chemistry
- University of Waterloo
| | | | | |
Collapse
|
15
|
Prasad C, Liu Q, Tang H, Yuvaraja G, Long J, Rammohan A, Zyryanov GV. An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111826] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
AgBr and GO co-decorated g-C3N4/Ag2WO4 composite for enhanced photocatalytic activity of contaminants degradation. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111957] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Jalali S, Rahimi M, Dashtian K, Ghaedi M, Mosleh S. One step integration of plasmonic Ag2CrO4/Ag/AgCl into HKUST-1-MOF as novel visible-light driven photocatalyst for highly efficient degradation of mixture dyes pollutants: Its photocatalytic mechanism and modeling. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Jiao Z, Liu Z, Ma Z. Rodlike AgI/Ag 2Mo 2O 7 Heterojunctions with Enhanced Visible-Light-Driven Photocatalytic Activity. ACS OMEGA 2019; 4:7919-7930. [PMID: 31459880 PMCID: PMC6648513 DOI: 10.1021/acsomega.9b00806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
Novel AgI/Ag2Mo2O7 heterojunctions were prepared by reacting Ag2Mo2O7 microrods with an aqueous KI solution at room temperature. The composite materials, compared with neat AgI and Ag2Mo2O7, showed much higher activities in the photocatalytic degradation of aqueous rhodamine B, methyl orange, tetracycline hydrochloride, and levofloxacin solutions under visible-light irradiation. The structures, morphologies, and other physicochemical properties of AgI, Ag2Mo2O7, and AgI/Ag2Mo2O7 composites were studied via various characterization techniques. The active species involved in the photocatalytic process were examined via radical-capturing experiments and electron spin resonance. Superoxide anion radicals (•O2 -) and photogenerated holes (h+) were found to be the main active species. Photocatalytic mechanisms were proposed and reasons for the enhanced photocatalytic activity were explained.
Collapse
Affiliation(s)
- Zhongyi Jiao
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Zhendong Liu
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Zhen Ma
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
19
|
Weng B, Qi MY, Han C, Tang ZR, Xu YJ. Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00313] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bo Weng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Chuang Han
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
20
|
|
21
|
Xue YN, Sun YS, Liu JK, Wang YY, Wang XG, Yang XH. Construction, enhanced visible-light photocatalytic activity and application of multiple complementary Ag dots decorated onto Ag2MoO4/AZO hybrid nanocomposite. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3649-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
|
23
|
Girardi L, Shuang S, Rizzi GA, Sartorel A, Marega C, Zhang Z, Granozzi G. Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/β-Cu₂V₂O₇/TiO₂ Nanorods Composites. NANOMATERIALS 2018; 8:nano8070544. [PMID: 30022003 PMCID: PMC6070958 DOI: 10.3390/nano8070544] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/04/2018] [Accepted: 07/16/2018] [Indexed: 11/18/2022]
Abstract
This paper describes the preparation and the photoelectrochemical performances of visible light driven photoanodes based on novel r-GO/β-Cu2V2O7/TiO2 nanorods/composites. β-Cu2V2O7 was deposited on both fluorine doped tin oxide (FTO) and TiO2 nanorods (NRs)/FTO by a fast and convenient Aerosol Assisted Spray Pyrolysis (AASP) procedure. Ethylenediamine (EN), ammonia and citric acid (CA) were tested as ligands for Cu2+ ions in the aerosol precursors solution. The best-performing deposits, in terms of photocurrent density, were obtained when NH3 was used as ligand. When β-Cu2V2O7 was deposited on the TiO2 NRs a good improvement in the durability of the photoanode was obtained, compared with pure β-Cu2V2O7 on FTO. A further remarkable improvement in durability and photocurrent density was obtained upon addition, by electrophoretic deposition, of reduced graphene oxide (r-GO) flakes on the β-Cu2V2O7/TiO2 composite material. The samples were characterized by X-ray Photoelectron Spectroscopy (XPS), Raman, High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM), Wide Angle X-ray Diffraction (WAXD) and UV–Vis spectroscopies. The photoelectrochemical (PEC) performances of β-Cu2V2O7 on FTO, β-Cu2V2O7/TiO2 and r-GO/β-Cu2V2O7/TiO2 were tested in visible light by linear voltammetry and Electrochemical Impedance Spectroscopy (EIS) measurements.
Collapse
Affiliation(s)
- Leonardo Girardi
- University of Padova and INSTM Unit, via Marzolo 1, 35121 Padova, Italy.
| | - Shuang Shuang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Gian Andrea Rizzi
- University of Padova and INSTM Unit, via Marzolo 1, 35121 Padova, Italy.
| | - Andrea Sartorel
- University of Padova and INSTM Unit, via Marzolo 1, 35121 Padova, Italy.
| | - Carla Marega
- University of Padova and INSTM Unit, via Marzolo 1, 35121 Padova, Italy.
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Gaetano Granozzi
- University of Padova and INSTM Unit, via Marzolo 1, 35121 Padova, Italy.
| |
Collapse
|
24
|
Pandiri M, Velchuri R, Gundeboina R, Muga V. A facile in-situ hydrothermal route to construct a well-aligned β-Ag2MoO4/g-C3N4 heterojunction with enhanced visible light photodegradation: Mechanistic views. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.04.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Zhang X, Wang C, Yu C, Teng B, He Y, Zhao L, Fan M. Application of Ag/AgBr/GdVO 4 composite photocatalyst in wastewater treatment. J Environ Sci (China) 2018; 63:68-75. [PMID: 29406118 DOI: 10.1016/j.jes.2017.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/27/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
Ag/AgBr/GdVO4 composite photocatalysts were designed and synthesized in this paper. The physical and chemical structures, as well as optical properties of the synthesized composite were investigated via XRD, XPS, TEM, and UV-vis. It is found that the composite showed a ternary heterojunction structure of Ag, AgBr and GdVO4. Meanwhile, it has a high intensity of light current, indicating its high separation efficiency of electron and hole. Photocatalytic oxidation of rhodamine B (RhB) under visible light irradiation was performed to investigate the activity of the Ag/AgBr/GdVO4 composite. Result indicates that it shows excellent photocatalytic activity. Under visible light irradiation for 12min, about 80% of RhB (30μmol/L) was degraded. The degradation rate is estimated to be 0.253 min-1, which is three times higher than that of pure AgBr. The high photoactivity can be ascribed to the synergetic effect of AgBr, GdVO4, and Ag nanoparticle in separation of electron-hole pairs.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chenghao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chengxi Yu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Botao Teng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Leihong Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Maohong Fan
- Department of Chemical & Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, United States.
| |
Collapse
|
26
|
Tian L, Sun K, Rui Y, Cui W, An W. Facile synthesis of an Ag@AgBr nanoparticle-decorated K4Nb6O17 photocatalyst with improved photocatalytic properties. RSC Adv 2018; 8:29309-29320. [PMID: 35548019 PMCID: PMC9084464 DOI: 10.1039/c8ra03597k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/02/2018] [Indexed: 11/21/2022] Open
Abstract
An Ag@AgBr nanoparticle-decorated K4Nb6O17 (Ag@AgBr/K4Nb6O17) photocatalyst was prepared via the oil-in-water self-assembly method. The Ag@AgBr nanoparticles, with average diameters of 20 nm, were uniformly deposited on the K4Nb6O17 surface. The as-prepared Ag@AgBr/K4Nb6O17 composites exhibited high visible light absorption, high photocurrent intensity, and high charge transfer efficiency, thus enhancing the photocatalytic performance for methyl-blue (MB) dye degradation. The Ag@AgBr (20 wt%)/K4Nb6O17 composite displayed the highest photocatalytic activity, degrading 96% of the MB solution under visible light irradiation for 60 min, which was 2.3-times and 8.5-times that of the bulk Ag@AgBr and K4Nb6O17, respectively. The excellent photocatalytic activity of the Ag@AgBr/K4Nb6O17 composites is due to the synergistic effect between Ag@AgBr and K4Nb6O17, where the Ag@AgBr nanoparticles not only enhanced visible light absorption efficiency due to the Ag nanoparticles' SPR, but also greatly accelerated the separation of the photogenerated electron–hole pairs. From the UV-vis spectra, the Ag@AgBr nanoparticles greatly extend the composites' visible light absorption. The data collected from photoluminescence (PL), photocurrent and electrochemical impedance spectra (EIS) were consistent and confirmed the rapid separation of charge carriers. Moreover, the composite exhibited a larger specific surface area, which was also beneficial for the photocatalytic activity. In addition, the roles of the radical species were investigated, and the holes and ·O2− radicals were hypothesized to dominate the photocatalytic process. Based on the characterization analysis and experimental results, a possible photocatalytic mechanism for the enhancement of photocatalytic activity is proposed. The characteristic diffraction peaks of K4Nb6O17 and AgBr were detected instead of Ag@AgBr.![]()
Collapse
Affiliation(s)
- Lingyu Tian
- College of Chemical Engineering
- North China University of Science and Technology
- Tangshan 063210
- P. R. China
| | - Kelei Sun
- College of Chemical Engineering
- North China University of Science and Technology
- Tangshan 063210
- P. R. China
| | - Yulan Rui
- College of Chemical Engineering
- North China University of Science and Technology
- Tangshan 063210
- P. R. China
| | - Wenquan Cui
- College of Chemical Engineering
- North China University of Science and Technology
- Tangshan 063210
- P. R. China
| | - Weijia An
- College of Chemical Engineering
- North China University of Science and Technology
- Tangshan 063210
- P. R. China
| |
Collapse
|
27
|
AgI/β-Ag 2 MoO 4 heterojunctions with enhanced visible-light-driven catalytic activity. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Song B, Tang Q, Wu W, Zhang H, Cao J, Ma M. A Novel In-Situ Synthesis and Enhanced Photocatalytic Performance of Z-Scheme Ag/AgI/AgBr/Sulfonated Polystyrene Heterostructure Photocatalyst. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0747-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Ag/AgCl nanoparticles-modified CdSnO3·3H2O nanocubes photocatalyst for the degradation of methyl orange and antibiotics under visible light irradiation. J Colloid Interface Sci 2017; 505:96-104. [DOI: 10.1016/j.jcis.2017.05.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 11/22/2022]
|
30
|
Jiang D, Xiao P, Shao L, Li D, Chen M. RGO-Promoted All-Solid-State g-C3N4/BiVO4 Z-Scheme Heterostructure with Enhanced Photocatalytic Activity toward the Degradation of Antibiotics. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01840] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Deli Jiang
- School
of Chemistry and Chemical Engineering and ‡Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Peng Xiao
- School
of Chemistry and Chemical Engineering and ‡Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Leqiang Shao
- School
of Chemistry and Chemical Engineering and ‡Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- School
of Chemistry and Chemical Engineering and ‡Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Min Chen
- School
of Chemistry and Chemical Engineering and ‡Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
31
|
Zhang J, Ma Z. Ag 6 Mo 10 O 33 /g-C 3 N 4 1D-2D hybridized heterojunction as an efficient visible-light-driven photocatalyst. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.02.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Zhang J, Ma Z. Flower-like Ag 2 MoO 4 /Bi 2 MoO 6 heterojunctions with enhanced photocatalytic activity under visible light irradiation. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Zhang J, Ma Z. Novel β-Ag2MoO4/g-C3N4 heterojunction catalysts with highly enhanced visible-light-driven photocatalytic activity. RSC Adv 2017. [DOI: 10.1039/c6ra26352f] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The kernel of photocatalysis research is the development of catalysts with remarkable photocatalytic activity.
Collapse
Affiliation(s)
- Junlei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3)
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai
- PR China
| | - Zhen Ma
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3)
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai
- PR China
| |
Collapse
|