1
|
Singh PP, Sinha S, Pandey G, Srivastava V. Molybdenum disulfide (MoS 2) based photoredox catalysis in chemical transformations. RSC Adv 2022; 12:29826-29839. [PMID: 36321108 PMCID: PMC9578401 DOI: 10.1039/d2ra05695j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
Photoredox catalysis has been explored for chemical reactions by irradiation of photoactive catalysts with visible light, under mild and environmentally benign conditions. Furthermore, this methodology permits the activation of abundant chemicals into valuable products through novel mechanisms that are otherwise inaccessible. In this context, MoS2 has drawn attention due to its excellent solar spectral response and its notable electrical, optical, mechanical and magnetic properties. MoS2 has a number of characteristic properties like tunable band gap, enhanced absorption of visible light, a layered structure, efficient photon electron conversion, good photostability, non-toxic nature and quantum confinement effects that make it an ideal photocatalyst and co-catalyst for chemical transformations. Recently, MoS2 has gained synthetic utility in chemical transformations. In this review, we will discuss MoS2 properties, structure, synthesis techniques, and photochemistry along with modifications of MoS2 to enhance its photocatalytic activity with a focus on its applications and future challenges.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj 211002 Uttar Pradesh India
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research Prayagraj 211002 Uttar Pradesh India
| | - Geetika Pandey
- Department of Physics, United University Prayagraj 211012 Uttar Pradesh India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
2
|
Design and Preparation of Polyimide/TiO2@MoS2 Nanofibers by Hydrothermal Synthesis and Their Photocatalytic Performance. Polymers (Basel) 2022; 14:polym14163230. [PMID: 36015487 PMCID: PMC9412554 DOI: 10.3390/polym14163230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Organic–inorganic nanocomposite fibers can avoid the agglomeration of single nanoparticles and reduce the cost (nanoparticles assembled on the surface of nanofibers), but also can produce new chemical, electrical, optical, and other properties, with a composite synergistic effect. Aromatic polyimide (PI) is a high-performance polymer with a rigid heterocyclic imide ring and an aromatic benzene ring in its macromolecular framework. Due to its excellent mechanical properties, thermal stability, and easy-to-adjust molecular structure, PI has been widely used in electronics, aerospace, automotive, and other industries related to many applications. Here, we report that TiO2 nanorods were grown on polyimide nanofibers by hydrothermal reaction, and MoS2 nanosheets were grown on TiO2 nanorods the same way. Based on theoretical analysis and experimental findings, the possible growth mechanism was determined in detail. Further experiments showed that MoS2 nanosheets were uniformly coated on the surface of TiO2 nanorods. The TiO2 nanorods have photocatalytic activity in the ultraviolet region, but the bandgap of organic/inorganic layered nanocomposites can redshift to visible light and improve their photocatalytic performance.
Collapse
|
3
|
Rahman A, Jennings JR, Tan AL, Khan MM. Molybdenum Disulfide-Based Nanomaterials for Visible-Light-Induced Photocatalysis. ACS OMEGA 2022; 7:22089-22110. [PMID: 35811905 PMCID: PMC9260757 DOI: 10.1021/acsomega.2c01314] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/08/2022] [Indexed: 05/08/2023]
Abstract
Visible-light-responsive photocatalytic materials have a multitude of important applications, ranging from energy conversion and storage to industrial waste treatment. Molybdenum disulfide (MoS2) and its variants exhibit high photocatalytic activity under irradiation by visible light as well as good stability and recyclability, which are desirable for all photocatalytic applications. MoS2-based materials have been widely applied in various fields such as wastewater treatment, environmental remediation, and organic transformation reactions because of their excellent physicochemical properties. The present review focuses on the fundamental properties of MoS2, recent developments and remaining challenges, and key strategies for tackling issues related to the utilization of MoS2 in photocatalysis. The application of MoS2-based materials in visible-light-induced catalytic reactions for the treatment of diverse kinds of pollutants including industrial, environmental, pharmaceutical, and agricultural waste are also critically discussed. The review concludes by highlighting the prospects of MoS2 for use in various established and emerging areas of photocatalysis.
Collapse
Affiliation(s)
- Ashmalina Rahman
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - James Robert Jennings
- Applied
Physics, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Ai Ling Tan
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Mansoob Khan
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
- ;
| |
Collapse
|
4
|
Lakshman C, Hari Prakash S, Mohana Roopan S. Materials based on molybdenum disulfide as a catalyst in organic transformations: An overview. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2048859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chetan Lakshman
- Department of Chemistry, Chemistry of Heterocycles and Natural Product Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Sankar Hari Prakash
- Department of Chemistry, Chemistry of Heterocycles and Natural Product Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Selvaraj Mohana Roopan
- Department of Chemistry, Chemistry of Heterocycles and Natural Product Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
| |
Collapse
|
5
|
Khan AU, Arooj A, Tahir K, Ibrahim MM, Jevtovic V, AL-Abdulkarim HA, Saleh EAM, Al-Shehri HS, Amin MA, Li B. Facile fabrication of novel Ag2S-ZnO/GO nanocomposite with its enhanced photocatalytic and biological applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Cong S, Yu J, Liu B, Teng W, Tang Y. Preparing a dual-function BiVO 4/NiFe-LDH composite photoanode for enhanced photoelectrocatalytic wastewater treatment and simultaneous hydrogen evolution. NEW J CHEM 2022. [DOI: 10.1039/d2nj02210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed PEC degradation over the BiVO4/NiFe-LDH photoelectrode under visible light irradiation and simultaneous hydrogen evolution at the cathode.
Collapse
Affiliation(s)
- Sumin Cong
- Department of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Jiuheng Yu
- Department of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Baojun Liu
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China
| | - Wei Teng
- Department of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Yubin Tang
- Department of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| |
Collapse
|
7
|
Ikram M, Imran M, Hayat S, Shahzadi A, Haider A, Naz S, Ul-Hamid A, Nabgan W, Fazal I, Ali S. MoS 2/cellulose-doped ZnO nanorods for catalytic, antibacterial and molecular docking studies. NANOSCALE ADVANCES 2021; 4:211-225. [PMID: 36132956 PMCID: PMC9417535 DOI: 10.1039/d1na00648g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/30/2021] [Indexed: 05/31/2023]
Abstract
Cellulose nanocrystals (CNCs) and molybdenum disulphide (MoS2) incorporated into ZnO nanorods (NRs) were synthesized via a chemical precipitation route at room temperature. All concerned samples were characterized to examine their optical properties, elemental composition, phase formation, surface morphology and functional group presence. The aim of this research was to enhance the catalytic properties of ZnO by co-doping with various concentrations of CNCs and MoS2 NRs. It was renowned that doped ZnO NRs showed superior catalytic activity compared to bare ZnO NRs. Statistically significant (p < 0.05) inhibition zones for samples were recorded for E. coli and S. aureus at low and high concentrations, respectively. The in vitro bactericidal potential of ZnO-CNC and ZnO-CNC-MoS2 nanocomposites was further confirmed through in silico molecular docking predictions against the DHFR and DHPS enzymes of E. coli and S. aureus. Molecular docking studies suggested the inhibition of these enzyme targets by CNC nanocomposites as a possible mechanism governing their bactericidal activity.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Application Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Muhammad Imran
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology Beijing 100029 China
| | - Shoukat Hayat
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, University of the Lahore Lahore Pakistan
| | - Ali Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore 54000 Punjab Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Iqra Fazal
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
8
|
Fei W, Gao J, Li N, Chen D, Xu Q, Li H, He J, Lu J. A visible-light active p-n heterojunction NiFe-LDH/Co 3O 4 supported on Ni foam as photoanode for photoelectrocatalytic removal of contaminants. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123515. [PMID: 32717547 DOI: 10.1016/j.jhazmat.2020.123515] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Light and electricity are the most prevalent energy sources in natural environment. Herein, a visible-light active Ni foam@NiFe-LDH/Co3O4 composite was successfully prepared by loading 1D Co3O4 nanowires on the surface of 2D NiFe-LDH nanosheets to be a p-n heterojunction supported on the 3D Ni foam through hydrothermal method, which can be used as photoanode directly for photoelectrocatalytic (PEC) process to simultaneously remove bisphenol (BPA) and Cr(VI) from water. This unique Ni foam-based photoanode modified by NiFe-LDH/Co3O4 heterojunction can fully expose the active sites, enhance visible-light absorption and facilitate the migration and separation of photogenerated carriers, thus obtained a boosted efficiency for simultaneous removal of BPA and Cr(VI) under a low applied voltage. Furthermore, the convenient recyclability and excellent stability of the as-prepared Ni foam@NiFe-LDH/Co3O4 also show a great potential in environmental purification.
Collapse
Affiliation(s)
- Weihua Fei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China; National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu 215123, China.
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China; National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China; National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China; National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China; National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China; National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Improved Photocatalytic Activity of g‐C
3
N
4
/ZnO: A Potential Direct Z‐Scheme Nanocomposite. ChemistrySelect 2020. [DOI: 10.1002/slct.202003166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Raza A, Qumar U, Hassan J, Ikram M, Ul-Hamid A, Haider J, Imran M, Ali S. A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sonophotocatalytic behavior. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01475-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Xu X, Jiao S, Liu Z, Liu L. Synergistic lubrication of a porous MoS 2-POSS nanohybrid. RSC Adv 2020; 10:20579-20587. [PMID: 35517774 PMCID: PMC9054303 DOI: 10.1039/d0ra02014a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2020] [Indexed: 12/02/2022] Open
Abstract
A porous MoS2-polyhedral oligomeric silsesquioxane (POSS) nanohybrid was prepared from octavinyl-POSS nanoparticles and MoS2 nanosheets for the first time, the structure and composition of which were confirmed by X-ray powder diffraction (XRD), Fourier-transform infrared spectra (FTIR), scanning electron microscopy (SEM), energy dispersive spectra (EDS) and thermal gravimetric analysis (TGA). As a comparison, MoS2 nanosheets, octavinyl-POSS and MoS2-POSS nanohybrid were used as lubricating additives for liquid paraffin (LP), which decreased the friction coefficients of LP by 7.8% (MoS2), 14.1% (octavinyl-POSS), and 18.8% (MoS2-POSS). Compared with MoS2 and octavinyl-POSS, the MoS2-POSS nanohybrid can be dispersed in organic solvents more homogeneously without adscititious dispersants or surfactants due to its better organic compatibilities. SEM and EDS analyses indicate that a synergistic frictional effect is responsible for the improved friction-reduction and anti-wear behavior. A porous MoS2-POSS nanohybrid is used as a lubricating additive, and synergistic lubrication is propitious for reducing the friction coefficient.![]()
Collapse
Affiliation(s)
- Xiaoxuan Xu
- School of business and Trade, Nanjing Institute of Industry Technology Nanjing 210023 People's Republic of China
| | - Songlong Jiao
- School of Mechanical Engineering, Southeast University Nanjing 211189 People's Republic of China
| | - Zhengquan Liu
- School of Mechanical Engineering, Southeast University Nanjing 211189 People's Republic of China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University Nanjing 211189 People's Republic of China
| |
Collapse
|
12
|
Rameshkumar S, Henderson R, Padamati RB. Improved Surface Functional and Photocatalytic Properties of Hybrid ZnO-MoS 2-Deposited Membrane for Photocatalysis-Assisted Dye Filtration. MEMBRANES 2020; 10:membranes10050106. [PMID: 32455647 PMCID: PMC7281520 DOI: 10.3390/membranes10050106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
The synergistic mechanism of photocatalytic-assisted dye degradation has been demonstrated using a hybrid ZnO-MoS2-deposited photocatalytic membrane (PCM). Few layers of MoS2 sheets were produced using the facile and efficient surfactant-assisted liquid-phase exfoliation method. In this process, hydrophilic moieties of an anionic surfactant were adsorbed on the surface of MoS2, which aided exfoliation and promoted a stable dispersion due to the higher negative zeta potential of the exfoliated MoS2 sheets. Further, the decoration of ZnO on the exfoliated MoS2 sheets offered a bandgap energy reduction to about 2.77 eV, thus achieving an 87.12% degradation of methylene blue (MB) dye within 15 min of near UV-A irradiation (365 nm), as compared with pristine ZnO achieving only 56.89%. The photocatalysis-enhanced membrane filtration studies on the ZnO-MoS2 PCM showed a complete removal of MB dye (~99.95%). The UV-assisted dye degradation on the ZnO-MoS2 PCM offered a reduced membrane resistance, with the permeate flux gradually improving with the increase in the UV-irradiation time. The regeneration of the active ZnO-MoS2 layer also proved to be quite efficient with no compromise in the dye removal efficiency.
Collapse
Affiliation(s)
- Saranya Rameshkumar
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin 2, Ireland;
- BiOrbic—Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Rory Henderson
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland;
| | - Ramesh Babu Padamati
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin 2, Ireland;
- BiOrbic—Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland;
- Correspondence:
| |
Collapse
|
13
|
Ghasemipour P, Fattahi M, Rasekh B, Yazdian F. Developing the Ternary ZnO Doped MoS 2 Nanostructures Grafted on CNT and Reduced Graphene Oxide (RGO) for Photocatalytic Degradation of Aniline. Sci Rep 2020; 10:4414. [PMID: 32157131 PMCID: PMC7064525 DOI: 10.1038/s41598-020-61367-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 02/26/2020] [Indexed: 01/17/2023] Open
Abstract
Transition metal sulfide semiconductors have achieved significant attention in the field of photocatalysis and degradation of pollutants. MoS2 with a two dimensional (2D) layered structure, a narrow bandgap and the ability of getting excited while being exposed to visible light, has demonstrated great potential in visible-light-driven photocatalysts. However, it possesses fast-paced recombination of charges. In this study, the coupled MoS2 nanosheets were synthesized with ZnO nanorods to develop the heterojunctions photocatalyst in order to obtain superior photoactivity. The charge transfer in this composite is not adequate to achieve desirable activity. Therefore, heterojunction was modified by reduced graphene oxide (RGO) nanosheets and carbon nanotubes (CNTs) to develop the RGO/ZnO/MoS2 and CNTs/ZnO/MoS2 ternary nanocomposites. The structure, morphology, composition, optical and photocatalytic properties of the as-fabricated samples were characterized through X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray (EDX), elemental mapping, Photoluminescence (PL), Ultraviolet-Visible spectroscopy (UV-VIS), and Brunauer-Emmett-Teller (BET) techniques. The photo-catalytic performance of all samples was evaluated through photodegradation of aniline in aqueous solution. The combination of RGO or CNTs into the ZnO/MoS2 greatly promoted the catalytic activity. However, the resulting RGO/ZnO/MoS2 ternary nanocomposites showed appreciably increased catalytic performance, faster than that of CNTs/ZnO/MoS2. Charge carrier transfer studies, the BET surface area analysis, and the optical studies confirmed this superiority. The role of operational variables namely, solution pH, catalyst dosage amount, and initial concentration of aniline was then investigated for obtaining maximum degradation. Complete degradation was observed, in the case of pH = 4, catalyst dosage of 0.7 g/L and aniline concentration of 80 ppm, and light intensity of 100 W. According to the results of trapping experiments, hydroxyl radical was found to be the main active species in the photocatalytic reaction. Meanwhile, a plausible mechanism was proposed for describing the degradation of aniline upon ternary composite. Moreover, the catalyst showed excellent reusability and stability after five consecutive cycles due to the synergistic effect between its components. Total-Organic-Carbon concentration (TOC) results suggested that complete mineralization of aniline occurred after 210 min of irradiation. Finally, a real petrochemical wastewater sample was evaluated for testing the catalytic ability of the as-fabricated composites in real case studies and it was observed that the process successfully quenched 100% and 93% of Chemical Oxygen Demand (COD) and TOC in the wastewater, respectively.
Collapse
Affiliation(s)
- Parisa Ghasemipour
- Chemical Engineering Department, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Moslem Fattahi
- Chemical Engineering Department, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Behnam Rasekh
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, National Iranian Oil Company, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Jo YK, Lee JM, Son S, Hwang SJ. 2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2018.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Tama AM, Das S, Dutta S, Bhuyan MDI, Islam MN, Basith MA. MoS2 nanosheet incorporated α-Fe2O3/ZnO nanocomposite with enhanced photocatalytic dye degradation and hydrogen production ability. RSC Adv 2019; 9:40357-40367. [PMID: 35542683 PMCID: PMC9076241 DOI: 10.1039/c9ra07526g] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 11/24/2022] Open
Abstract
We have synthesized MoS2 incorporated α-Fe2O3/ZnO nanocomposites by adapting a facile hydrothermal synthesis process. The effect of incorporating ultrasonically exfoliated few-layer MoS2 nanosheets on the solar-light driven photocatalytic performance of α-Fe2O3/ZnO photocatalyst nanocomposites has been demonstrated. Structural, morphological and optical characteristics of the as-synthesized nanomaterials are comprehensively investigated and analyzed by performing Rietveld refinement of powder X-ray diffraction patterns, field emission scanning electron microscopy and UV-visible spectroscopy, respectively. The photoluminescence spectra of the as-prepared nanocomposites elucidate that the recombination of photogenerated electron–hole pairs is highly suppressed due to incorporation of MoS2 nanosheets. Notably, the ultrasonicated MoS2 incorporated α-Fe2O3/ZnO nanocomposite manifests 91% and 83% efficiency in degradation of rhodamine B dye and antibiotic ciprofloxacin respectively under solar illumination. Active species trapping experiments reveal that the hydroxyl (˙OH) radicals play a significant role in RhB degradation. Likewise the dye degradation efficiency, the amount of hydrogen produced by this nanocomposite via photocatalytic water splitting is also considerably higher as compared to both non-ultrasonicated MoS2 incorporated α-Fe2O3/ZnO and α-Fe2O3/ZnO nanocomposites as well as Degussa P25 titania nanoparticles. This indicates the promising potential of the incorporation of ultrasonicated MoS2 with α-Fe2O3/ZnO nanocomposites for the generation of carbon-free hydrogen by water splitting. The substantial increase in the photocatalytic efficiency of α-Fe2O3/ZnO after incorporation of ultrasonicated MoS2 can be attributed to its favorable band structure, large surface to volume ratio, effective segregation and migration of photogenerated electron–hole pairs at the interface of heterojunctions and the plethora of exposed active edge sites provided by the few-layer MoS2 nanosheets. Novel few-layer MoS2 nanosheets incorporated α-Fe2O3/ZnO photocatalyst nanocomposite is reported with high dye degradation and hydrogen evolution ability under solar illumination.![]()
Collapse
Affiliation(s)
- Angkita Mistry Tama
- Nanotechnology Research Laboratory
- Department of Physics
- Bangladesh University of Engineering and Technology
- Dhaka-1000
- Bangladesh
| | - Subrata Das
- Nanotechnology Research Laboratory
- Department of Physics
- Bangladesh University of Engineering and Technology
- Dhaka-1000
- Bangladesh
| | - Sagar Dutta
- Nanotechnology Research Laboratory
- Department of Physics
- Bangladesh University of Engineering and Technology
- Dhaka-1000
- Bangladesh
| | - M. D. I. Bhuyan
- Nanotechnology Research Laboratory
- Department of Physics
- Bangladesh University of Engineering and Technology
- Dhaka-1000
- Bangladesh
| | - M. N. Islam
- Department of Chemistry
- Bangladesh University of Engineering and Technology
- Dhaka-1000
- Bangladesh
| | - M. A. Basith
- Nanotechnology Research Laboratory
- Department of Physics
- Bangladesh University of Engineering and Technology
- Dhaka-1000
- Bangladesh
| |
Collapse
|
16
|
Ultrasonic-microwave synthesis of ZnO/BiOBr functionalized cotton fabrics with antibacterial and photocatalytic properties. Carbohydr Polym 2018; 201:162-171. [PMID: 30241807 DOI: 10.1016/j.carbpol.2018.08.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/30/2018] [Accepted: 08/16/2018] [Indexed: 11/22/2022]
Abstract
ZnO coated fabrics have attracted wide attentions due to their antibacterial and photocatalytic self-cleaning properties. However, the photo-response of ZnO only in ultraviolet region limits its application. In this paper, ZnO/BiOBr functionalized cotton fabrics were synthesized by a facile and time-saving ultrasonic-microwave combined method. Compared with ZnO coated fabric, the photocatalytic activity of ZnO/BiOBr coated fabric under visible light irradiation was remarkably improved at no sacrifice of its antibacterial activity. Simultaneously, it also showed good resistance to bacterial adhesion and photocorrosion. The introduction of two-dimensional BiOBr nanoflakes not only enhanced the visible light absorption, but also reduced the recombination rate of electron-hole pairs, thus significantly improving the photocatalytic self-cleaning performance of the coated fabric under visible light irradiation. The ZnO/BiOBr coated cotton fabric with both antibacterial and self-cleaning functionalities may have broad application prospects in the fields of textile, medicine and chemical industry.
Collapse
|
17
|
Shit S, Chhetri S, Bolar S, Murmu NC, Jang W, Koo H, Kuila T. Hierarchical Cobalt Sulfide/Molybdenum Sulfide Heterostructure as Bifunctional Electrocatalyst towards Overall Water Splitting. ChemElectroChem 2018. [DOI: 10.1002/celc.201801343] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Subhasis Shit
- Surface Engineering & Tribology Division Council of Scientific and Industrial Research-Central Mechanical Engineering; Research Institute; Durgapur - 713209 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-CMERI Campus Durgapur - 713209 India
| | - Suman Chhetri
- Surface Engineering & Tribology Division Council of Scientific and Industrial Research-Central Mechanical Engineering; Research Institute; Durgapur - 713209 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-CMERI Campus Durgapur - 713209 India
| | - Saikat Bolar
- Surface Engineering & Tribology Division Council of Scientific and Industrial Research-Central Mechanical Engineering; Research Institute; Durgapur - 713209 India
| | - Naresh C. Murmu
- Surface Engineering & Tribology Division Council of Scientific and Industrial Research-Central Mechanical Engineering; Research Institute; Durgapur - 713209 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-CMERI Campus Durgapur - 713209 India
| | - Wooree Jang
- Functional Composite Materials Research Center Institute of Advanced Composite Materials; Korea Institute of Science and Technology (KIST); Jeonbuk - 565905 South Korea
| | - Hyeyoung Koo
- Functional Composite Materials Research Center Institute of Advanced Composite Materials; Korea Institute of Science and Technology (KIST); Jeonbuk - 565905 South Korea
| | - Tapas Kuila
- Surface Engineering & Tribology Division Council of Scientific and Industrial Research-Central Mechanical Engineering; Research Institute; Durgapur - 713209 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-CMERI Campus Durgapur - 713209 India
| |
Collapse
|
18
|
Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.012] [Citation(s) in RCA: 525] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor. Biosens Bioelectron 2018; 101:135-145. [DOI: 10.1016/j.bios.2017.10.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 01/23/2023]
|
20
|
Abinaya R, Archana J, Harish S, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, Shimomura M, Hayakawa Y. Ultrathin layered MoS2 nanosheets with rich active sites for enhanced visible light photocatalytic activity. RSC Adv 2018; 8:26664-26675. [PMID: 35541077 PMCID: PMC9083125 DOI: 10.1039/c8ra02560f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/24/2018] [Indexed: 01/12/2023] Open
Abstract
Edge-rich active sites of ultrathin layered molybdenum disulphide (MoS2) nanosheets were synthesized by a hydrothermal method. The effect of pH on the formation of MoS2 nanosheets and their photocatalytic response have been investigated. Structural and elemental analysis confirm the presence of S–Mo–S in the composition. Morphological analysis confirms the presence of ultrathin layered nanosheets with a sheet thickness of 10–28 nm at pH 1. The interplanar spacing of MoS2 layers is in good agreement with the X-ray diffraction and high-resolution transmission electron microscopy results. A comparative study of the photocatalytic performance for the degradation of methylene blue (MB) and rhodamine B (RhB) by ultrathin layered MoS2 under visible light irradiation was performed. The photocatalytic activity of the edge-rich ultrathin layered nanosheets showed a fast response time of 36 min with the degradation rate of 95.3% of MB and 41.1% of RhB. The photocatalytic degradation of MB was superior to that of RhB because of the excellent adsorption of MB than that of RhB. Photogenerated superoxide radicals were the key active species for the decomposition of organic compounds present in water, as evidenced by scavenger studies. Edge-rich active sites of ultrathin layered molybdenum disulphide (MoS2) nanosheets were synthesized by a hydrothermal method.![]()
Collapse
Affiliation(s)
- R. Abinaya
- Center for Material Science and Nanodevices
- Department of Physics and Nanotechnology
- SRM Institute of Science and Technology
- India
- Graduate School of Science and Technology
| | - J. Archana
- Center for Material Science and Nanodevices
- Department of Physics and Nanotechnology
- SRM Institute of Science and Technology
- India
- SRM Research Institute
| | - S. Harish
- Research Institute of Electronics
- Shizuoka University
- Hamamatsu
- Japan
| | - M. Navaneethan
- Center for Material Science and Nanodevices
- Department of Physics and Nanotechnology
- SRM Institute of Science and Technology
- India
- SRM Research Institute
| | - S. Ponnusamy
- Center for Material Science and Nanodevices
- Department of Physics and Nanotechnology
- SRM Institute of Science and Technology
- India
| | - C. Muthamizhchelvan
- Center for Material Science and Nanodevices
- Department of Physics and Nanotechnology
- SRM Institute of Science and Technology
- India
| | - M. Shimomura
- Graduate School of Science and Technology
- Shizuoka University
- Hamamatsu
- Japan
| | - Y. Hayakawa
- Research Institute of Electronics
- Shizuoka University
- Hamamatsu
- Japan
- Graduate School of Science and Technology
| |
Collapse
|
21
|
Zhang X, Qiu F, Rong X, Xu J, Rong J, Zhang T. Zinc oxide/graphene-like tungsten disulphide nanosheet photocatalysts: Synthesis and enhanced photocatalytic activity under visible-light irradiation. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.23039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoying Zhang
- School of the Environment and Safety Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Xinshan Rong
- School of the Environment and Safety Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Jicheng Xu
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
- School of Chemical and Materials Engineering; Zhenjiang College; Zhenjiang 212003 China
| | - Jian Rong
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| |
Collapse
|
22
|
Habibi-Yangjeh A, Shekofteh-Gohari M. Novel magnetic Fe 3 O 4 /ZnO/NiWO 4 nanocomposites: Enhanced visible-light photocatalytic performance through p-n heterojunctions. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.05.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|