1
|
Schulte ML, Truttmann V, Doronkin DE, Baumgarten L, Nicolai A, Montalvo Beltran DA, Summ FJ, Kiener C, Warmuth L, Pitter S, Saraçi E, Grunwaldt JD. Monitoring the Fate of Zn in the Cu/ZnO/ZrO 2 Catalyst During CO 2-to-Methanol Synthesis at High Conversions by Operando Spectroscopy. Angew Chem Int Ed Engl 2025; 64:e202423281. [PMID: 39866096 DOI: 10.1002/anie.202423281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
In the frame of developing a sustainable chemical industry, heterogeneously catalyzed CO2 hydrogenation to methanol has attracted considerable interest. However, the Cu-Zn based catalyst system employed in this process is very dynamic, especially in the presence of the products methanol and water. Deactivation needs to be prevented, but its origin and mechanism are hardly investigated at high conversion where product condensation is possible. Here, we report on the structural dynamics of a Cu/ZnO/ZrO2 catalyst at 90 bar and 40 % CO2 conversion (at equilibrium conditions), investigated in a dedicated metal-based spectroscopic cell specially fabricated using additive manufacturing. This particular reactor configuration aims to mimic the high CO2 conversion part of the catalyst bed and can induce product condensation, which is monitored by operando X-ray absorption spectroscopy. While Cu remained mostly stable throughout the experiment, Zn underwent strong restructuring. The chosen reaction conditions, including the use of CO2 as carbon source and in situ product condensation, were selected to provide insights under industrial conditions. This work is highlighting the importance of spectroscopic investigations at high conversion levels, offering insights into chemical transformations during deactivation, extending the concept of spatially resolved studies, and thus providing guidance for the design of more stable catalysts.
Collapse
Affiliation(s)
- Mariam L Schulte
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76131, Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Vera Truttmann
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Dmitry E Doronkin
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76131, Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Lorena Baumgarten
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76131, Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexander Nicolai
- Foundational Technologies, Research & Predevelopment, Advanced Manufacturing & Circularity, Siemens AG, Otto-Hahn-Ring 6, 81739, Munich, Germany
| | - Diego Alejandro Montalvo Beltran
- Foundational Technologies, Research & Predevelopment, Advanced Manufacturing & Circularity, Siemens AG, Otto-Hahn-Ring 6, 81739, Munich, Germany
| | - Florian J Summ
- Foundational Technologies, Research & Predevelopment, Advanced Manufacturing & Circularity, Siemens AG, Otto-Hahn-Ring 6, 81739, Munich, Germany
| | - Christoph Kiener
- Foundational Technologies, Research & Predevelopment, Advanced Manufacturing & Circularity, Siemens AG, Otto-Hahn-Ring 6, 81739, Munich, Germany
| | - Lucas Warmuth
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stephan Pitter
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Erisa Saraçi
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76131, Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76131, Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Chen Y, Liu J, Chen X, Gu S, Wei Y, Wang L, Wan H, Guan G. Development of Multifunctional Catalysts for the Direct Hydrogenation of Carbon Dioxide to Higher Alcohols. Molecules 2024; 29:2666. [PMID: 38893540 PMCID: PMC11173553 DOI: 10.3390/molecules29112666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The direct hydrogenation of greenhouse gas CO2 to higher alcohols (C2+OH) provides a new route for the production of high-value chemicals. Due to the difficulty of C-C coupling, the formation of higher alcohols is more difficult compared to that of other compounds. In this review, we summarize recent advances in the development of multifunctional catalysts, including noble metal catalysts, Co-based catalysts, Cu-based catalysts, Fe-based catalysts, and tandem catalysts for the direct hydrogenation of CO2 to higher alcohols. Possible reaction mechanisms are discussed based on the structure-activity relationship of the catalysts. The reaction-coupling strategy holds great potential to regulate the reaction network. The effects of the reaction conditions on CO2 hydrogenation are also analyzed. Finally, we discuss the challenges and potential opportunities for the further development of direct CO2 hydrogenation to higher alcohols.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Jinzhao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Xinyu Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Siyao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Yibin Wei
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Hui Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Guofeng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| |
Collapse
|
3
|
Mahnaz F, Mangalindan JR, Dharmalingam BC, Vito J, Lin YT, Akbulut M, Varghese JJ, Shetty M. Intermediate Transfer Rates and Solid-State Ion Exchange are Key Factors Determining the Bifunctionality of In 2O 3/HZSM-5 Tandem CO 2 Hydrogenation Catalyst. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:5197-5210. [PMID: 38577585 PMCID: PMC10988559 DOI: 10.1021/acssuschemeng.3c08250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Identifying the descriptors for the synergistic catalytic activity of bifunctional oxide-zeolite catalysts constitutes a formidable challenge in realizing the potential of tandem hydrogenation of CO2 to hydrocarbons (HC) for sustainable fuel production. Herein, we combined CH3OH synthesis from CO2 and H2 on In2O3 and methanol-to-hydrocarbons (MTH) conversion on HZSM-5 and discerned the descriptors by leveraging the distance-dependent reactivity of bifunctional In2O3 and HZSM-5 admixtures. We modulated the distance between redox sites of In2O3 and acid sites of HZSM-5 from milliscale (∼10 mm) to microscale (∼300 μm) and observed a 3-fold increase in space-time yield of HC and CH3OH (7.5 × 10-5 molC gcat-1 min-1 and 2.5 × 10-5 molC gcat-1 min-1, respectively), due to a 10-fold increased rate of CH3OH advection (1.43 and 0.143 s-1 at microscale and milliscale, respectively) from redox to acid sites. Intriguingly, despite the potential of a three-order-of-magnitude enhanced CH3OH transfer at a nanoscale distance (∼300 nm), the sole product formed was CH4. Our reactivity data combined with Raman, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) revealed the occurrence of solid-state-ion-exchange (SSIE) between acid sites and Inδ+ ions, likely forming In2O moieties, inhibiting C-C coupling and promoting CH4 formation through CH3OH hydrodeoxygenation (HDO). Density functional theory (DFT) calculations further revealed that CH3OH adsorption on the In2O moiety with preadsorbed and dissociated H2 forming an H-In-OH-In moiety is the likely reaction mechanism, with the kinetically relevant step appearing to be the hydrogenation of the methyl species. Overall, our study revealed that efficient CH3OH transfer and prevention of ion exchange are the key descriptors in achieving catalytic synergy in bifunctional In2O3/HZSM-5 systems.
Collapse
Affiliation(s)
- Fatima Mahnaz
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Jasan Robey Mangalindan
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Balaji C. Dharmalingam
- Department
of Chemical Engineering, Indian Institute
of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jenna Vito
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Yu-Ting Lin
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Mustafa Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Jithin John Varghese
- Department
of Chemical Engineering, Indian Institute
of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Manish Shetty
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| |
Collapse
|
4
|
Lyu M, Zheng J, Coulthard C, Ren J, Zhao Y, Tsang SCE, Chen C, O'Hare D. Core-shell silica@Cu xZnAl LDH catalysts for efficient CO 2 hydrogenation to methanol. Chem Sci 2023; 14:9814-9819. [PMID: 37736646 PMCID: PMC10510760 DOI: 10.1039/d3sc02205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
The efficient production of methanol by reduction of CO2 using green hydrogen is a promising strategy from both a green chemistry and a carbon net zero perspective. Herein, we report the synthesis of well-dispersed core-shell catalyst precursors using silica@CuxZnAl-LDHs that can convert CO2 to methanol. The catalyst precursors can be formed using either a commercially available silica (ES757) or a mesoporous silica (e.g. MCM-48). These hybrid materials show significantly enhanced catalytic performance compared to the equivalent unsupported CuxZnAl LDH precursor. Space-time yields of up to 0.7 gMeOH gcat-1 h-1 under mild operating conditions were observed.
Collapse
Affiliation(s)
- Meng Lyu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44(0)1865 272686
| | - Jianwei Zheng
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Claire Coulthard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44(0)1865 272686
| | - Jing Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology 100029 Beijing P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology 100029 Beijing P. R. China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44(0)1865 272686
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44(0)1865 272686
| |
Collapse
|
5
|
Kampe P, Wesner A, Schühle P, Hess F, Albert J. Effect of Conversion, Temperature and Feed Ratio on In 2 O 3 /In(OH) 3 Phase Transitions in Methanol Synthesis Catalysts: A Combined Experimental and Computational Study. Chempluschem 2023; 88:e202300425. [PMID: 37625082 DOI: 10.1002/cplu.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
Catalytic hydrogenation of CO2 to methanol has attracted lots of attention as it makes CO2 useable as a sustainable carbon source. This study combines theoretical calculations based on the dummy catalytic cycle model with experimental studies on the performance and degradation of indium-based model catalysts for methanol synthesis. In detail, the reversibility of phase transitions in the In2 O3 /In(OH)3 system under industrial methanol synthesis conditions are investigated depending on conversion, temperature and feed ratio. The dummy catalytic cycle model predicts a peculiar degradation behavior of In(OH)3 at 275 °C depending on the water formed either by methanol synthesis or the competing reverse water-gas-shift reaction. These results were validated by dedicated experimental studies confirming the predicted trends. Moreover, X-ray diffraction and thermogravimetric analysis proved the ensuing phase transition between the indium species. Finally, the validated model is used to predict how hydrogen drop out will affect the stability of the catalyst and derive practical strategies to prevent irreversible catalyst degradation.
Collapse
Affiliation(s)
- Philipp Kampe
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Anne Wesner
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Patrick Schühle
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Franziska Hess
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Jakob Albert
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| |
Collapse
|
6
|
Kubas D, Beck JM, Kasisari E, Schätzler T, Becherer A, Fischer A, Krossing I. From CO 2 to DME: Enhancement through Heteropoly Acids from a Catalyst Screening and Stability Study. ACS OMEGA 2023; 8:15203-15216. [PMID: 37151500 PMCID: PMC10157840 DOI: 10.1021/acsomega.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
The direct synthesis of dimethyl ether (DME) via CO2 hydrogenation in a single step was studied using an improved class of bifunctional catalysts in a fixed bed reactor (T R: 210-270 °C; 40 bar; gas hourly space velocity (GHSV) 19,800 NL kgcat -1 h-1; ratio CO2/H2/N2 3:9:2). The competitive bifunctional catalysts tested in here consist of a surface-basic copper/zinc oxide/zirconia (CZZ) methanol-producing part and a variable surface-acidic methanol dehydration part and were tested in overall 45 combinations. As dehydration catalysts, zeolites (ferrierite and β-zeolite), alumina, or zirconia were tested alone as well as with a coating of Keggin-type heteropoly acids (HPAs), i.e., silicotungstic or phosphotungstic acid. Two different mixing methods to generate bifunctional catalysts were tested: (i) a single-grain method with intensive intra-particular contact between CZZ and the dehydration catalyst generated by mixing in an agate mortar and (ii) a dual-grain approach relying on physical mixing with low contact. The influence of the catalyst mixing method and HPA loading on catalyst activity and stability was investigated. From these results, a selection of best-performing bifunctional catalysts was investigated in extended measurements (time on stream: 160 h/7 days, T R: 250 and 270 °C; 40 bar; GHSV 19,800 NL kgcat -1 h-1; ratio CO2/H2/N2 3:9:2). Silicotungstic acid-coated bifunctional catalysts showed the highest resilience toward deactivation caused by single-grain preparation and during catalysis. Overall, HPA-coated catalysts showed higher activity and resilience toward deactivation than uncoated counterparts. Dual-grain preparation showed superior performance over single grain. Furthermore, silicotungstic acid coatings with 1 KU nm-2 (Keggin unit per surface area of carrier) on Al2O3 and ZrO2 as carrier materials showed competitive high activity and stability in extended 7-day measurements compared to pure CZZ. Therefore, HPA coating is found to be a well-suited addition to the CO2-to-DME catalyst toolbox.
Collapse
Affiliation(s)
- Dustin Kubas
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum (FMF), Universität
Freiburg, Stefan-Meier-Straße
21, 79104 Freiburg, Germany
| | - Jennifer Maria Beck
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum (FMF), Universität
Freiburg, Stefan-Meier-Straße
21, 79104 Freiburg, Germany
| | - Erdogan Kasisari
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
| | - Timo Schätzler
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
| | - Anita Becherer
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
| | - Anna Fischer
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum (FMF), Universität
Freiburg, Stefan-Meier-Straße
21, 79104 Freiburg, Germany
| | - Ingo Krossing
- Institut
für Anorganische und Analytische Chemie, Universität
Freiburg, Albertstr.
21, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum (FMF), Universität
Freiburg, Stefan-Meier-Straße
21, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Leppäkoski L, Lopez G, Uusitalo V, Nieminen H, Järviö N, Kosonen A, Koiranen T, Laari A, Breyer C, Ahola J. Climate and biodiversity impacts of low-density polyethylene production from CO 2 and electricity in comparison to bio-based polyethylene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163628. [PMID: 37084904 DOI: 10.1016/j.scitotenv.2023.163628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Plastics are essential materials for modern societies, but their production contributes to significant environmental issues. Power-to-X processes could produce plastics from captured CO2 and hydrogen with renewable electricity, but these technologies may also face challenges from environmental perspective. This paper focuses on environmental sustainability assessment of CO2-based low-density polyethylene (LDPE) compared to bio-based LDPE. Life cycle assessment has been applied to study climate impacts and land use related biodiversity impacts of different plastic production scenarios. According to the climate impact results, the carbon footprint of the produced plastic can be negative if the energy used is from wind, solar, or bioenergy and the carbon captured within the plastic is considered. In terms of biodiversity, land-use related biodiversity impacts seem to be lower from CO2-based polyethylene compared to sugarcane-based polyethylene. Forest biomass use for heat production in CO2-based polyethylene poses a risk to significantly increase biodiversity impacts. Taken together, these results suggest that CO2-based LDPE produced with renewable electricity could reduce biodiversity impacts over 96 % while carbon footprint seems to be 6.5 % higher when compared to sugarcane-based polyethylene.
Collapse
Affiliation(s)
| | - Gabriel Lopez
- LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| | | | - Harri Nieminen
- LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| | | | - Antti Kosonen
- LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| | | | - Arto Laari
- LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| | | | - Jero Ahola
- LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| |
Collapse
|
8
|
Montejano‐Nares E, Ivars‐Barceló F, Osman SM, Luque R. Modeling and Thermodynamic Studies of γ-Valerolactone Production from Bio-derived Methyl Levulinate. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200208. [PMID: 37020618 PMCID: PMC10069308 DOI: 10.1002/gch2.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Indexed: 06/19/2023]
Abstract
The exploitation of biomass to reduce the dependency on fossil fuels represents a challenge that needs to be solved as soon as possible. Nowadays, one of the most fashionable processes is γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML). Deep understanding of the thermodynamic aspects involved in this process is key for a successful outcome, but detailed studies are missing in the existing literature. A thermodynamic study of the reaction of γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML) is performed by the Gibbs free energy minimization method. The effect of various reaction conditions (temperature, concentration, flow rate) and the implication of possible intermediates and byproducts are assessed. Conversion and selectivity are calculated from the simulation of the ML hydrogenation using isopropanol as the hydrogen donor under continuous flow conditions. Significant increases in GVL selectivity can be achieved under dry conditions, keeping the high conversion. Comparison between theoretical and experimental results from a previous article discloses the effect of using 5%RuTiO2 catalysts, which increases the selectivity from 3-40% to 41-98%. Enthalpy and Gibbs free energy of the reactions at issue are also calculated from models using Barin equations according to Aspen Physical Property System parameters.
Collapse
Affiliation(s)
- Elena Montejano‐Nares
- Departamento de Química Inorgánica y Química TécnicaFacultad de CienciasUNEDAv. Esparta s/nLas Rozas de MadridMadrid28232Spain
- Departamento de Química OrgánicaEdif. Marie CurieUniversidad de CórdobaCtra Nnal IV‐A, Km 396CórdobaE14014Spain
| | - Francisco Ivars‐Barceló
- Departamento de Química Inorgánica y Química TécnicaFacultad de CienciasUNEDAv. Esparta s/nLas Rozas de MadridMadrid28232Spain
| | - Sameh M. Osman
- Chemistry DepartmentCollege of ScienceKing Saud UniversityP.O. Box 2455Riyadh11451Saudi Arabia
| | - Rafael Luque
- Departamento de Química OrgánicaEdif. Marie CurieUniversidad de CórdobaCtra Nnal IV‐A, Km 396CórdobaE14014Spain
- Universidad ECOTECKm 13.5 SamborondónSamborondónEC092302Ecuador
| |
Collapse
|
9
|
Kubas D, Semmel M, Salem O, Krossing I. Is Direct DME Synthesis Superior to Methanol Production in Carbon Dioxide Valorization? From Thermodynamic Predictions to Experimental Confirmation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Affiliation(s)
- Dustin Kubas
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Malte Semmel
- Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg, Germany
| | - Ouda Salem
- Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Kanuri S, Vinodkumar JD, Datta SP, Chakraborty C, Roy S, Singh SA, Dinda S. Methanol synthesis from CO2 via hydrogenation route: Thermodynamics and process development with techno-economic feasibility analysis. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
11
|
A review of in situ/Operando studies of heterogeneous catalytic hydrogenation of CO2 to methanol. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Ding QC, Jia CS, Wang CW, Peng XL, Liu JY, Zhang LH, Jiang R, Zhu SY, Yuan H, Tang HX. Unified non-fitting formulation representation of thermodynamic properties for diatomic substances. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Hetero-site cobalt catalysts for higher alcohols synthesis by CO2 hydrogenation: A review. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
To AT, Arellano-Treviño MA, Nash CP, Ruddy DA. Direct synthesis of branched hydrocarbons from CO2 over composite catalysts in a single reactor. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Müller A, Comas-Vives A, Copéret C. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO x hydrogenation according to ab initio atomistic thermodynamics. Chem Sci 2022; 13:13442-13458. [PMID: 36507169 PMCID: PMC9685501 DOI: 10.1039/d2sc03107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
The direct hydrogenation of CO or CO2 to methanol, a highly vivid research area in the context of sustainable development, is typically carried out with Cu-based catalysts. Specific elements (so-called promoters) improve the catalytic performance of these systems under a broad range of reaction conditions (from pure CO to pure CO2). Some of these promoters, such as Ga and Zn, can alloy with Cu and their role remains a matter of debate. In that context, we used periodic DFT calculations on slab models and ab initio thermodynamics to evaluate both metal alloying and surface formation by considering multiple surface facets, different promoter concentrations and spatial distributions as well as adsorption of several species (O*, H*, CO* and ) for different gas phase compositions. Both Ga and Zn form an fcc-alloy with Cu due to the stronger interaction of the promoters with Cu than with themselves. While the Cu-Ga-alloy is more stable than the Cu-Zn-alloy at low promoter concentrations (<25%), further increasing the promoter concentration reverses this trend, due to the unfavoured Ga-Ga-interactions. Under CO2 hydrogenation conditions, a substantial amount of O* can adsorb onto the alloy surfaces, resulting in partial dealloying and oxidation of the promoters. Therefore, the CO2 hydrogenation conditions are actually rather oxidising for both Ga and Zn despite the large amount of H2 present in the feedstock. Thus, the growth of a GaO x /ZnO x overlayer is thermodynamically preferred under reaction conditions, enhancing CO2 adsorption, and this effect is more pronounced for the Cu-Ga-system than for the Cu-Zn-system. In contrast, under CO hydrogenation conditions, fully reduced and alloyed surfaces partially covered with H* and CO* are expected, with mixed CO/CO2 hydrogenation conditions resulting in a mixture of reduced and oxidised states. This shows that the active atmosphere tunes the preferred state of the catalyst, influencing the catalytic activity and stability, indicating that the still widespread image of a static catalyst under reaction conditions is insufficient to understand the complex interplay of processes taking place on a catalyst surface under reaction conditions, and that dynamic effects must be considered.
Collapse
Affiliation(s)
- Andreas Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| | - Aleix Comas-Vives
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Departament de Química, Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Catalonia Spain
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| |
Collapse
|
16
|
Yuan Y, Qi L, Guo T, Hu X, He Y, Guo Q. A review on the development of catalysts and technologies of CO 2 hydrogenation to produce methanol. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2135505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yongning Yuan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Liyue Qi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Tuo Guo
- Department of Chemistry, University College London, London, UK
| | - Xiude Hu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Yurong He
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Qingjie Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
- Key Laboratory of Clean Chemical Processing of Shandong Province, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Vu TTN, Fongarland P, Vanoye L, Bornette F, Postole G, Desgagnés A, Iliuta MC. Metallurgical Residue-Derived Cu–ZnO-Based Catalyst for CO 2 Hydrogenation to Methanol: An Insight on the Effect of the Preparation Method. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Thanh Nguyet Vu
- Département de Génie Chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QuébecG1V 0A6, Canada
| | - Pascal Fongarland
- CP2M, Catalyse, Polymérisation, Procédés et Matériaux, CNRS, CPE Lyon, Université Claude-Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69616Villeurbanne, France
| | - Laurent Vanoye
- CP2M, Catalyse, Polymérisation, Procédés et Matériaux, CNRS, CPE Lyon, Université Claude-Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69616Villeurbanne, France
| | - Frédéric Bornette
- CP2M, Catalyse, Polymérisation, Procédés et Matériaux, CNRS, CPE Lyon, Université Claude-Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69616Villeurbanne, France
| | - Georgeta Postole
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626Villeurbanne, France
| | - Alex Desgagnés
- Département de Génie Chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QuébecG1V 0A6, Canada
| | - Maria C. Iliuta
- Département de Génie Chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QuébecG1V 0A6, Canada
| |
Collapse
|
18
|
Shi T, Men Y, Liu S, Wang J, Li Z, Qin K, Tian D, An W, Pan X, Li L. Engineering the crystal facets of Pt/In2O3 catalysts for high-efficiency methanol synthesis from CO2 hydrogenation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Goud D, Churipard SR, Bagchi D, Singh AK, Riyaz M, Vinod CP, Peter SC. Strain-Enhanced Phase Transformation of Iron Oxide for Higher Alcohol Production from CO 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Devender Goud
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sathyapal R. Churipard
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ashutosh Kumar Singh
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mohd Riyaz
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - C. P. Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sebastian C. Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
20
|
Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Alamer AM, Somiari I, Flytzani-Stephanopoulos M, Manousiouthakis VI. Chemical-Phase Equilibrium of CO–CO 2–H 2–CH 3OH–DME–H 2O Mixtures in C–H–O Atom-Mol Fraction Space Using Gibbs Free Energy Minimization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdulaziz M. Alamer
- Department of Chemical and Biomolecular Engineering, Hydrogen Engineering Research Consortium (HERC), University of California at Los Angeles (UCLA), Los Angeles, California 90095-1592, United States of America
| | - Ibubeleye Somiari
- Department of Chemical and Biomolecular Engineering, Hydrogen Engineering Research Consortium (HERC), University of California at Los Angeles (UCLA), Los Angeles, California 90095-1592, United States of America
| | - Maria Flytzani-Stephanopoulos
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Vasilios I. Manousiouthakis
- Department of Chemical and Biomolecular Engineering, Hydrogen Engineering Research Consortium (HERC), University of California at Los Angeles (UCLA), Los Angeles, California 90095-1592, United States of America
| |
Collapse
|
22
|
He Y, Liu S, Fu W, Wang C, Mebrahtu C, Sun R, Zeng F. Thermodynamic Analysis of CO 2 Hydrogenation to Higher Alcohols (C 2-4OH): Effects of Isomers and Methane. ACS OMEGA 2022; 7:16502-16514. [PMID: 35601339 PMCID: PMC9118209 DOI: 10.1021/acsomega.2c00502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Synthesis of higher alcohols (C2-4OH) by CO2 hydrogenation presents a promising way to convert CO2 into value-added fuels and chemicals. Understanding the thermodynamics of CO2 hydrogenation is of great importance to tailor the reaction network toward synthesis of higher alcohols; however, the thermodynamic effects of various alcohol isomers and methane in the reaction system have not yet been fully understood. Thus, we used Aspen Plus to perform thermodynamic analysis of CO2 hydrogenation to higher alcohols, studying the effects of alcohol isomers and methane. Thermodynamically, methane is the most favorable product in a reaction system containing CO, CO2, and H2, as well as C1-4 alkanes, alkenes, and alcohols. The thermodynamic favorability of alcohol isomers varies significantly. The presence of methane generally deteriorates the formation of higher alcohols. However, low temperature, high pressure, high H2/CO2 ratio, and formation of alcohols with a longer carbon chain can reduce the effects of methane. Our current study, therefore, provides new insights for enhancing the synthesis of higher alcohols by CO2 hydrogenation.
Collapse
Affiliation(s)
- Yiming He
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, China
| | - Shuilian Liu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, China
| | - Weijie Fu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, China
| | - Cheng Wang
- School
of Pharmacy, Changzhou University, Changzhou 213164 Jiangsu, China
| | - Chalachew Mebrahtu
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Ruiyan Sun
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Feng Zeng
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, China
| |
Collapse
|
23
|
Dehydrogenation and Hydrogenation Cycle of Methylcyclohexane–Toluene System for Liquid Phase Hydrogen Storage: Thermodynamic Reaction Equilibrium Investigation. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Fujiwara M. Highly selective production of aromatic hydrocarbons by CO2 hydrogenation over Fe-Zn oxide + H-ZSM-5 composite catalyst. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masahiro Fujiwara
- National Institute of Advanced Industrial Science and Technology (RICPT; Tohoku Center), 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan
| |
Collapse
|
25
|
Cortés-Reyes M, Azaoum I, Molina-Ramírez S, Herrera C, Larrubia MÁ, Alemany LJ. NiGa Unsupported Catalyst for CO 2 Hydrogenation at Atmospheric Pressure. Tentative Reaction Pathways. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Cortés-Reyes
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Ibrahim Azaoum
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Sergio Molina-Ramírez
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Concepción Herrera
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - M. Ángeles Larrubia
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Luis J. Alemany
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| |
Collapse
|
26
|
Chen M, Yan K, Cao Y, Li Y, Ge X, Zhang J, Gong X, Qian G, Zhou X, Duan X. Thermodynamics Insights into the Selective Hydrogenation of Alkynes in C 2 and C 3 Streams. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingming Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
27
|
Selective carbon-based adsorbents for carbon dioxide capture from mixed gas streams and catalytic hydrogenation of CO2 into renewable energy source: A review. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Bello T, Bresciani A, Nascimento C, Alves R. Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Stangeland K, Chamssine F, Fu W, Huang Z, Duan X, Yu Z. CO2 hydrogenation to methanol over partially embedded Cu within Zn-Al oxide and the effect of indium. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Posada-Borbón A, Grönbeck H. A First-Principles-Based Microkinetic Study of CO 2 Reduction to CH 3OH over In 2O 3(110). ACS Catal 2021. [DOI: 10.1021/acscatal.1c01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alvaro Posada-Borbón
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
31
|
Raso R, Tovar M, Lasobras J, Herguido J, Kumakiri I, Araki S, Menéndez M. Zeolite membranes: Comparison in the separation of H2O/H2/CO2 mixtures and test of a reactor for CO2 hydrogenation to methanol. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Han Z, Tang C, Wang J, Li L, Li C. Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 2021. [DOI: 10.1016/j.jcat.2020.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniques. Catalysts 2021. [DOI: 10.3390/catal11010143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Molybdenum phosphide (MoP) catalyzes the hydrogenation of CO, CO2, and their mixtures to methanol, and it is investigated as a high-activity catalyst that overcomes deactivation issues (e.g., formate poisoning) faced by conventional transition metal catalysts. MoP as a new catalyst for hydrogenating CO2 to methanol is particularly appealing for the use of CO2 as chemical feedstock. Herein, we use a colloidal synthesis technique that connects the presence of MoP to the formation of methanol from CO2, regardless of the support being used. By conducting a systematic support study, we see that zirconia (ZrO2) has the striking ability to shift the selectivity towards methanol by increasing the rate of methanol conversion by two orders of magnitude compared to other supports, at a CO2 conversion of 1.4% and methanol selectivity of 55.4%. In situ X-ray Absorption Spectroscopy (XAS) and in situ X-ray Diffraction (XRD) indicate that under reaction conditions the catalyst is pure MoP in a partially crystalline phase. Results from Diffuse Reflectance Infrared Fourier Transform Spectroscopy coupled with Temperature Programmed Surface Reaction (DRIFTS-TPSR) point towards a highly reactive monodentate formate intermediate stabilized by the strong interaction of MoP and ZrO2. This study definitively shows that the presence of a MoP phase leads to methanol formation from CO2, regardless of support and that the formate intermediate on MoP governs methanol formation rate.
Collapse
|
34
|
Ke J, Wang YD, Wang CM. First-principles microkinetic simulations revealing the scaling relations and structure sensitivity of CO 2 hydrogenation to C 1 & C 2 oxygenates on Pd surfaces. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 hydrogenation to alcohols and other oxygenates on Pd(211) and Pd(111) surfaces was studied by microkinetic modelling. Energy scaling relations on two surfaces were established. Activity plots as a function of reaction conditions were identified.
Collapse
Affiliation(s)
- Jun Ke
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Yang-Dong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Chuan-Ming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| |
Collapse
|
35
|
Photocatalytic carbon dioxide reduction to methanol catalyzed by ZnO, Pt, Au, and Cu nanoparticles decorated zeolitic imidazolate framework-8. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Understanding Catalysis—A Simplified Simulation of Catalytic Reactors for CO2 Reduction. CHEMENGINEERING 2020. [DOI: 10.3390/chemengineering4040062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The realistic numerical simulation of chemical processes, such as those occurring in catalytic reactors, is a complex undertaking, requiring knowledge of chemical thermodynamics, multi-component activated rate equations, coupled flows of material and heat, etc. A standard approach is to make use of a process simulation program package. However for a basic understanding, it may be advantageous to sacrifice some realism and to independently reproduce, in essence, the package computations. Here, we set up and numerically solve the basic equations governing the functioning of plug-flow reactors (PFR) and continuously stirred tank reactors (CSTR), and we demonstrate the procedure with simplified cases of the catalytic hydrogenation of carbon dioxide to form the synthetic fuels methanol and methane, each of which involves five chemical species undergoing three coupled chemical reactions. We show how to predict final product concentrations as a function of the catalyst system, reactor parameters, initial reactant concentrations, temperature, and pressure. Further, we use the numerical solutions to verify the “thermodynamic limit” of a PFR and a CSTR, and, for a PFR, to demonstrate the enhanced efficiency obtainable by “looping” and “sorption-enhancement”.
Collapse
|
37
|
Gao P, Zhang L, Li S, Zhou Z, Sun Y. Novel Heterogeneous Catalysts for CO 2 Hydrogenation to Liquid Fuels. ACS CENTRAL SCIENCE 2020; 6:1657-1670. [PMID: 33145406 PMCID: PMC7596863 DOI: 10.1021/acscentsci.0c00976] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/27/2023]
Abstract
Carbon dioxide (CO2) hydrogenation to liquid fuels including gasoline, jet fuel, diesel, methanol, ethanol, and other higher alcohols via heterogeneous catalysis, using renewable energy, not only effectively alleviates environmental problems caused by massive CO2 emissions, but also reduces our excessive dependence on fossil fuels. In this Outlook, we review the latest development in the design of novel and very promising heterogeneous catalysts for direct CO2 hydrogenation to methanol, liquid hydrocarbons, and higher alcohols. Compared with methanol production, the synthesis of products with two or more carbons (C2+) faces greater challenges. Highly efficient synthesis of C2+ products from CO2 hydrogenation can be achieved by a reaction coupling strategy that first converts CO2 to carbon monoxide or methanol and then conducts a C-C coupling reaction over a bifunctional/multifunctional catalyst. Apart from the catalytic performance, unique catalyst design ideas, and structure-performance relationship, we also discuss current challenges in catalyst development and perspectives for industrial applications.
Collapse
Affiliation(s)
- Peng Gao
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Lina Zhang
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
| | - Shenggang Li
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Zixuan Zhou
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuhan Sun
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Shanghai
Institute of Clean Technology, Shanghai 201620, P.R.
China
| |
Collapse
|
38
|
Thermodynamically consistent forward and reverse degrees of rate control in reversible reactions. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
|
40
|
Affiliation(s)
- Edward Furimsky
- IMAF Group, 184 Marlborough Avenue, Ottawa, Ontario, Canada K1N 8G4
| |
Collapse
|
41
|
Abstract
The concentration of carbon dioxide in the air has risen sharply due to the use of fossil fuels, causing environmental problems such as the greenhouse effect, which seriously threatens humans’ living environment. Reducing carbon dioxide emissions while addressing energy shortages requires the conversion of CO2 into high added-value products. In this paper, the status of CO2 conversion research in the past ten years is analyzed using the bibliometric method; the influence of countries and institutions, journal article statistics and other aspects are statistically analyzed, and the research status of carbon dioxide catalytic conversion is briefly introduced. Finally, according to the analysis results and the existing problems of CO2 catalytic conversion research, the future development direction of CO2 catalytic conversion research is prospected.
Collapse
|
42
|
Ateka A, Ereña J, Bilbao J, Aguayo AT. Strategies for the Intensification of CO2 Valorization in the One-Step Dimethyl Ether Synthesis Process. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ainara Ateka
- Department of Chemical Engineering, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Javier Ereña
- Department of Chemical Engineering, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Javier Bilbao
- Department of Chemical Engineering, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Andrés T. Aguayo
- Department of Chemical Engineering, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
43
|
Roode‐Gutzmer QI, Kaiser D, Bertau M. Renewable Methanol Synthesis. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Quirina I. Roode‐Gutzmer
- Freiberg University of Mining and TechnologyInstitute of Chemical Technology Leipziger Strasse 29 09599 Freiberg Germany
| | - Doreen Kaiser
- Freiberg University of Mining and TechnologyInstitute of Chemical Technology Leipziger Strasse 29 09599 Freiberg Germany
| | - Martin Bertau
- Freiberg University of Mining and TechnologyInstitute of Chemical Technology Leipziger Strasse 29 09599 Freiberg Germany
| |
Collapse
|
44
|
A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study. CATALYSIS SURVEYS FROM ASIA 2019. [DOI: 10.1007/s10563-019-09287-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Chen XY, Li J, Jia CS. Thermodynamic Properties of Gaseous Carbon Disulfide. ACS OMEGA 2019; 4:16121-16124. [PMID: 31592480 PMCID: PMC6777084 DOI: 10.1021/acsomega.9b02303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Efficient analytical representations of the thermodynamic properties for carbon disulfide remain open challenges in the communality of science and engineering. We present two analytical representations of the entropy and Gibbs free energy for gaseous carbon disulfide which we find to be of satisfactory accuracy and convenient for future use. The proposed two analytical representations merely rely on five molecular constants of the carbon disulfide molecule and avoid applications of a large number of experimental spectroscopy data. In the temperature range from 300 to 6000 K, the average relative deviations of the predicted molar entropy and reduced Gibbs free energy values from the National Institute of Standards and Technology database are 0.250 and 0.108%, respectively.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- Petroleum
Engineering School and State Key Laboratory of Oil and Gas Reservoir
Geology and Exploitation, Southwest Petroleum
University, Chengdu 610500, People’s Republic
of China
| | - Ji Li
- Petroleum
Engineering School and State Key Laboratory of Oil and Gas Reservoir
Geology and Exploitation, Southwest Petroleum
University, Chengdu 610500, People’s Republic
of China
| | - Chun-Sheng Jia
- Petroleum
Engineering School and State Key Laboratory of Oil and Gas Reservoir
Geology and Exploitation, Southwest Petroleum
University, Chengdu 610500, People’s Republic
of China
| |
Collapse
|
46
|
Abstract
In the future we will be phasing out the use of fossil fuels in favour of more sustainable forms of energy, especially solar derived forms such as hydroelectric, wind and photovoltaic. However, due to the variable nature of the latter sources which depend on time of day, and season of the year, we also need to have a way of storing such energy at peak production times for use in times of low production. One way to do this is to convert such energy into chemical energy, and the principal way considered at present is the production of hydrogen. Although this may be achieved directly in the future via photocatalytic water splitting, at present it is electrolytic production which dominates thinking. In turn, it may well be important to store this hydrogen in an energy dense liquid form such as methanol or ammonia. In this brief review it is emphasised that CO2 is the microscopic carbon source for current industrial methanol synthesis, operating through the surface formate intermediate, although when using CO in the feed, it is CO which is hydrogenated at the global scale. However, methanol can be produced from pure CO2 and hydrogen using conventional and novel types of catalysts. Examples of such processes, and of a demonstrator plant in construction, are given, which utilize CO2 (which would otherwise enter the atmosphere directly) and hydrogen which can be produced in a sustainable manner. This is a fast-evolving area of science and new ideas and processes will be developed in the near future.
Collapse
Affiliation(s)
- Michael Bowker
- Cardiff Catalysis Institute School of ChemistryCardiff UniversityCardiffCF10 3ATUK
- UK Catalysis Hub Research Complex at Harwell(RCaH)Rutherford Appleton Laboratory HarwellOxon OX110FAUK
| |
Collapse
|
47
|
Bos MJ, Slotboom Y, Kersten SRA, Brilman DWF. 110th Anniversary: Characterization of a Condensing CO2 to Methanol Reactor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin J. Bos
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Yordi Slotboom
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Sascha R. A. Kersten
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Derk W. F. Brilman
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
48
|
Cui X, Kær SK. Thermodynamic Analyses of a Moderate-Temperature Process of Carbon Dioxide Hydrogenation to Methanol via Reverse Water–Gas Shift with In Situ Water Removal. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoti Cui
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Søren K. Kær
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
49
|
Liang B, Ma J, Su X, Yang C, Duan H, Zhou H, Deng S, Li L, Huang Y. Investigation on Deactivation of Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01546] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Binglian Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Junguo Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiong Su
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Chongya Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hongmin Duan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Huanwen Zhou
- Dalian Reak Science & Technology Co., Ltd., 327 Shunle Street, Lvshun Economic Development Zone, Dalian 116023, China
| | - Shaoliang Deng
- Dalian Reak Science & Technology Co., Ltd., 327 Shunle Street, Lvshun Economic Development Zone, Dalian 116023, China
| | - Lin Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yanqiang Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
50
|
Heyl D, Kreyenschulte C, Kondratenko VA, Bentrup U, Kondratenko EV, Brückner A. Alcohol Synthesis from CO 2 , H 2 , and Olefins over Alkali-Promoted Au Catalysts-A Catalytic and In situ FTIR Spectroscopic Study. CHEMSUSCHEM 2019; 12:651-660. [PMID: 30451389 DOI: 10.1002/cssc.201801937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Au/TiO2 and Au/SiO2 catalysts containing 2 wt % Au and different amounts of K or Cs were tested for alcohol synthesis from CO2 , H2 , and C2 H4 /C3 H6 . 1-Propanol or 1-butanol/isobutanol were obtained in the presence of C2 H4 or C3 H6 . Higher yields of the corresponding alcohols were obtained over TiO2 -based catalysts in comparison with their SiO2 -based counterparts. This is caused by an enhanced ability of the TiO2 -based catalysts for CO2 activation, as concluded from in situ fourier-transform infrared (FTIR) spectroscopy and temporal analysis of products (TAP) studies. The synthesized carbonate and formate species adsorbed on the support do not hamper CO2 conversion into CO and the hydroformylation reaction. The transformation of Auδ+ to active Au0 sites proceeds during an activation procedure. As reflected by CO adsorption and scanning transmission electron microscopy, the accessible Au0 sites are influenced by the amount of alkali dopants and the support. FTIR data and TAP tests reveal a very weak interaction of C2 H4 with the catalyst, suggesting its quick reaction with CO and H2 after activation on Au0 sites to form propanol and propane.
Collapse
Affiliation(s)
- Denise Heyl
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Carsten Kreyenschulte
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Vita A Kondratenko
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Ursula Bentrup
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Evgenii V Kondratenko
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|