1
|
Lin M, Trubyanov M, Lee HW, Ivanov AS, Zhou X, Zhang P, Zhang Y, Wang Q, Tan GSX, Novoselov KS, Andreeva DV. Enhanced CO 2 Hydrogenation to Methanol Using out-of-Plane Grown MoS 2 Flakes on Amorphous Carbon Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408592. [PMID: 39930700 PMCID: PMC11922024 DOI: 10.1002/smll.202408592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/02/2025] [Indexed: 03/20/2025]
Abstract
The conversion of excess carbon dioxide (CO2) into valuable chemicals is critical for achieving a sustainable society. Among various catalysts, molybdenum disulfide (MoS2) has demonstrated potential for CO2 hydrogenation to methanol. However, its catalytic activity has yet to be fully optimized, and scalable, industrially viable production methods remain underdeveloped. In this work, a chemical vapor deposition (CVD) approach is introduced to grow vertically oriented MoS2 crystals on an amorphous carbon template. This method enhances the exposure of vacancy-rich basal planes, which are crucial for stable catalytic performance. The 2H-MoS2 flakes, supported on a conductive carbon scaffold, exhibit catalytic activity, achieving a net space-time yield of 2.68 gMeOH gcat⁻¹ h⁻¹ with a selectivity of 82.5% under mild conditions (264 °C, 10 bar). This work highlights a significant step toward the industrial application of MoS2-based catalysts for CO2 conversion, bridging the gap between fundamental research and scalable implementation.
Collapse
Affiliation(s)
- Mo Lin
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Maxim Trubyanov
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Han Wei Lee
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Artemii S Ivanov
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Xin Zhou
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Pengxiang Zhang
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Yixin Zhang
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Qian Wang
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Gladys Shi Xuan Tan
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, Materials Science and Engineering Department, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
2
|
Xie G, Bai X, Niu Y, Zhang R, Liu J, Yang Q, Wang ZJ. Highly Dispersed AuCu Nanoparticles Confined in Zr-MOFs for Efficient Methanol Synthesis from CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70626-70633. [PMID: 39668768 DOI: 10.1021/acsami.4c18398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Making use of novel materials to develop efficient catalysts is one of the research hotspots for CO2 hydrogenation to methanol. Herein, UiO-66, a typical Zr-MOF, was modified by ethylene diamine tetraacetic acid (EDTA) to serve as a substrate for the synthesis of AuCu bimetallic catalysts. The resultant AuCu@UiO-66-EDTA catalyst exhibited a superior methanol production rate, which delivered a high space-time yield of methanol (3.34 gMeOH gmetal-1 h-1) at 250 °C and 3.0 MPa. The EDTA modification was found to effectively confine AuCu nanoparticles inside the framework of MOFs, which significantly reduced the metal particle size and enriched the oxygen vacancy concentration. As a consequence, more active sites were generated for methanol synthesis. Moreover, the AuCu@UiO-66-EDTA catalyst yielded more favorable reaction intermediates that could be converted to methanol at a faster rate. This work develops unique MOFs-encapsulated bimetallic catalysts and illuminates the positive effect of confinement.
Collapse
Affiliation(s)
- Guiming Xie
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyang Bai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanrui Niu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qingyuan Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhou-Jun Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Qin H, Zhang H, Wu K, Wang X, Fan W. A systematic theoretical study of CO 2 hydrogenation towards methanol on Cu-based bimetallic catalysts: role of the CHO&CH 3OH descriptor in thermodynamic analysis. Phys Chem Chem Phys 2024; 26:19088-19104. [PMID: 38842113 DOI: 10.1039/d4cp01009d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The application of density functional theory (DFT) has enriched our understanding of methanol synthesis through CO2 hydrogenation on Cu-based catalysts. However, variations in catalytic performance under different metal doping conditions have hindered the development of universal catalytic principles. To address these challenges, we systematically investigated the scaling relationships of adsorption energy among different reaction intermediates on pure Cu, Au-Cu, Ni-Cu, Pt-Cu, Pd-Cu and Zn-Cu models. Additionally, by summing the respective adsorption energies of two separate species, we have developed a dual intermediate descriptor of CHO&CH3OH, capable of achieving computational accuracy on par with DFT results using the multiple linear regression method, all the while enabling the rapid prediction of thermodynamic properties at various stages of methanol synthesis. This method facilitates a better understanding of the coupling mechanisms between energy and linear expressions on copper-based substrates, and the universal linear criterion can be applied to other catalytic systems, with the aim of pursuing potential catalysts having both high efficiency and low cost.
Collapse
Affiliation(s)
- Huang Qin
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hai Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kunmin Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xingzi Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Weidong Fan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Ye R, Ma L, Mao J, Wang X, Hong X, Gallo A, Ma Y, Luo W, Wang B, Zhang R, Duyar MS, Jiang Z, Liu J. A Ce-CuZn catalyst with abundant Cu/Zn-O V-Ce active sites for CO 2 hydrogenation to methanol. Nat Commun 2024; 15:2159. [PMID: 38461315 PMCID: PMC10924954 DOI: 10.1038/s41467-024-46513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
CO2 hydrogenation to chemicals and fuels is a significant approach for achieving carbon neutrality. It is essential to rationally design the chemical structure and catalytic active sites towards the development of efficient catalysts. Here we show a Ce-CuZn catalyst with enriched Cu/Zn-OV-Ce active sites fabricated through the atomic-level substitution of Cu and Zn into Ce-MOF precursor. The Ce-CuZn catalyst exhibits a high methanol selectivity of 71.1% and a space-time yield of methanol up to 400.3 g·kgcat-1·h-1 with excellent stability for 170 h at 260 °C, comparable to that of the state-of-the-art CuZnAl catalysts. Controlled experiments and DFT calculations confirm that the incorporation of Cu and Zn into CeO2 with abundant oxygen vacancies can facilitate H2 dissociation energetically and thus improve CO2 hydrogenation over the Ce-CuZn catalyst via formate intermediates. This work offers an atomic-level design strategy for constructing efficient multi-metal catalysts for methanol synthesis through precise control of active sites.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Lixuan Ma
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China
| | - Jianing Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, PR China
| | - Xiaoling Hong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, PR China
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Yanfu Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, PR China
| | - Wenhao Luo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China.
| | - Melis Seher Duyar
- DICP-Surrey Joint Centre for Future Materials, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, United Kingdom.
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, PR China.
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, PR China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
- DICP-Surrey Joint Centre for Future Materials, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, United Kingdom.
| |
Collapse
|
5
|
Carrasco-García A, Vali SA, Ben-Abbou Z, Moral-Vico J, Abo Markeb A, Sánchez A. Synthesis of Cobalt-Based Nanoparticles as Catalysts for Methanol Synthesis from CO 2 Hydrogenation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:697. [PMID: 38591534 PMCID: PMC10856404 DOI: 10.3390/ma17030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 04/10/2024]
Abstract
The increasing emission of carbon dioxide into the atmosphere has urged the scientific community to investigate alternatives to alleviate such emissions, being that they are the principal contributor to the greenhouse gas effect. One major alternative is carbon capture and utilization (CCU) toward the production of value-added chemicals using diverse technologies. This work aims at the study of the catalytic potential of different cobalt-derived nanoparticles for methanol synthesis from carbon dioxide hydrogenation. Thanks to its abundance and cost efficacy, cobalt can serve as an economical catalyst compared to noble metal-based catalysts. In this work, we present a systematic comparison among different cobalt and cobalt oxide nanocomposites in terms of their efficiency as catalysts for carbon dioxide hydrogenation to methanol as well as how different supports, zeolites, MnO2, and CeO2, can enhance their catalytic capacity. The oxygen vacancies in the cerium oxide act as carbon dioxide adsorption and activation sites, which facilitates a higher methanol production yield.
Collapse
Affiliation(s)
- Anna Carrasco-García
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Seyed Alireza Vali
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zahra Ben-Abbou
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Javier Moral-Vico
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ahmad Abo Markeb
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Antoni Sánchez
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Yang X, Duan H, Wang R, Zhao F, Jin F, Jiang W, Han G, Guan Q, Ben H. Tailoring Zeolite L-Supported-Cu Catalysts for CO 2 Hydrogenation: Insights into the Mechanism of CH 3OH and CO Formation. Inorg Chem 2023; 62:13419-13427. [PMID: 37552876 DOI: 10.1021/acs.inorgchem.3c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The utilization of Cu-based catalysts in CO2 conversion into valuable chemicals is of significant interest due to their potential in mitigating greenhouse gas emissions. However, the controllable design of Cu-based catalysts and the regulation of their mechanism remain challenging. In this study, a series of efficient Cu/L catalysts were prepared for this process, and the intrinsic influencing factors on the reaction routes were systematically revealed. Various techniques revealed that Cu particles in L-supported catalysts exhibited higher dispersion and formed Cu-O(OH)-K interfacial sites. However, with increasing Cu loading, the dispersion of Cu particles and the percentage of Cu-O(OH)-K interfaces decreased. Kinetic investigations revealed that the adsorption configuration and electronic structure of Cu species codetermined the reaction pathways and resulting selectivity. Cu/L catalysts possessing Cu-O(OH)-K interfaces and small particles demonstrated the preferential formation of formate species, promoting methanol formation. However, larger Cu particles generated carboxylate intermediates, resulting in higher CO selectivity..
Collapse
Affiliation(s)
- Xiaoli Yang
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Hongmin Duan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruifeng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fengwang Zhao
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Fayi Jin
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Wei Jiang
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Guangting Han
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Qingxin Guan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Haoxi Ben
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Song F, Gao J, Yang B, Cao Y, Liu H, Xu Q. Cu 2In alloy-embedded ZrO 2 catalysts for efficient CO 2 hydrogenation to methanol: promotion of plasma modification. Front Chem 2023; 11:1187762. [PMID: 37288077 PMCID: PMC10242014 DOI: 10.3389/fchem.2023.1187762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023] Open
Abstract
Cu1In2Zr4-O-C catalysts with Cu2In alloy structure were prepared by using the sol-gel method. Cu1In2Zr4-O-PC and Cu1In2Zr4-O-CP catalysts were obtained from plasma-modified Cu1In2Zr4-O-C before and after calcination, respectively. Under the conditions of reaction temperature 270°C, reaction pressure 2 MPa, CO2/H2 = 1/3, and GHSV = 12,000 mL/(g h), Cu1In2Zr4-O-PC catalyst has a high CO2 conversion of 13.3%, methanol selectivity of 74.3%, and CH3OH space-time yield of 3.26 mmol/gcat/h. The characterization results of X-ray diffraction (XRD), scanning electron microscopy (SEM), and temperature-programmed reduction chemisorption (H2-TPR) showed that the plasma-modified catalyst had a low crystallinity, small particle size, good dispersion, and excellent reduction performance, leading to a better activity and selectivity. Through plasma modification, the strong interaction between Cu and In in Cu1In2Zr4-O-CP catalyst, the shift of Cu 2p orbital binding energy to a lower position, and the decrease in reduction temperature all indicate that the reduction ability of Cu1In2Zr4-O-CP catalyst is enhanced, and the CO2 hydrogenation activity is improved.
Collapse
Affiliation(s)
- Fujiao Song
- Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Jia Gao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhengjiang, China
| | - Bairen Yang
- Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yan Cao
- Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Huanhuan Liu
- Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Qi Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhengjiang, China
| |
Collapse
|
8
|
Wang Y, Yu M, Zhang X, Gao Y, Liu J, Zhang X, Gong C, Cao X, Ju Z, Peng Y. Density Functional Theory Study of CO 2 Hydrogenation on Transition-Metal-Doped Cu(211) Surfaces. Molecules 2023; 28:molecules28062852. [PMID: 36985824 PMCID: PMC10055092 DOI: 10.3390/molecules28062852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The massive emission of CO2 has caused a series of environmental problems, including global warming, which exacerbates natural disasters and human health. Cu-based catalysts have shown great activity in the reduction of CO2, but the mechanism of CO2 activation remains ambiguous. In this work, we performed density functional theory (DFT) calculations to investigate the hydrogenation of CO2 on Cu(211)-Rh, Cu(211)-Ni, Cu(211)-Co, and Cu(211)-Ru surfaces. The doping of Rh, Ni, Co, and Ru was found to enhance CO2 hydrogenation to produce COOH. For CO2 hydrogenation to produce HCOO, Ru plays a positive role in promoting CO dissociation, while Rh, Ni, and Co increase the barriers. These results indicate that Ru is the most effective additive for CO2 reduction in Cu-based catalysts. In addition, the doping of Rh, Ni, Co, and Ru alters the electronic properties of Cu, and the activity of Cu-based catalysts was subsequently affected according to differential charge analysis. The analysis of Bader charge shows good predictions for CO2 reduction over Cu-based catalysts. This study provides some fundamental aids for the rational design of efficient and stable CO2-reducing agents to mitigate CO2 emission.
Collapse
Affiliation(s)
- Yushan Wang
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Mengting Yu
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Xinyi Zhang
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yujie Gao
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Jia Liu
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chunxiao Gong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyong Cao
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhaoyang Ju
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Hua Z, Yang Y, Liu J. Direct hydrogenation of carbon dioxide to value-added aromatics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Reddy KP, Kim D, Hong S, Kim KJ, Ryoo R, Park JY. Tuning CO 2 Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu-Ni Bimetal Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9373-9381. [PMID: 36763569 DOI: 10.1021/acsami.2c20832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tuning the selectivity of CO2 hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO2 hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation state of Ni. Therefore, modifying the electronic structure of the nickel surface is a compelling strategy for tuning product selectivity. Herein, we synthesized well dispersed Cu-Ni bimetallic nanoparticles (NPs) using a simple hydrothermal method for CO selective CO2 hydrogenation. A detailed study on the monometallic (Ni and Cu) and bimetallic (CuxNi1-x) catalysts supported on γ-Al2O3 was performed to increase CO selectivity while maintaining the high reaction rate. The Cu0.5Ni0.5/γ-Al2O3 catalyst shows a high CO2 conversion and more CO product selectivity than its monometallic counterparts. The surface electronic and geometric structure of Cu0.5Ni0.5 bimetallic NPs was studied using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ diffuse reflectance infrared Fourier-transform spectroscopy under reaction conditions. The Cu core atoms migrate toward the surface, resulting in the restructuring of the Cu@Ni core-shell structure to a Cu-Ni alloy during the reaction and functioning as the active site by enhancing CO desorption. A systematic correlation is obtained between catalytic activity from a continuous fixed-bed flow reactor and the surface electronic structural details derived from AP-XPS results, establishing the structure-activity relationship. This investigation contributes to providing a strategy for controlling CO2 hydrogenation selectivity by modifying the surface structure of bimetallic NP catalysts.
Collapse
Affiliation(s)
- Kasala Prabhakar Reddy
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwa Hong
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ki-Jeong Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 37673, Republic of Korea
| | - Ryong Ryoo
- KENTECH Laboratory for Chemical, Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksinro, Naju 58330, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Nejadsalim A, Bashiri N, Godini HR, Oliveira RL, Tufail Shah A, Bekheet MF, Thomas A, Schomäcker R, Gurlo A, Görke O. Core-Sheath Pt-CeO 2/Mesoporous SiO 2 Electrospun Nanofibers as Catalysts for the Reverse Water Gas Shift Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:485. [PMID: 36770446 PMCID: PMC9921642 DOI: 10.3390/nano13030485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
One-dimensional (1D) core-sheath nanofibers, platinum (Pt)-loaded ceria (CeO2) sheath on mesoporous silica (SiO2) core were fabricated, characterized, and used as catalysts for the reverse water gas shift reaction (RWGS). CeO2 nanofibers (NFs) were first prepared by electrospinning (ES), and then Pt nanoparticles were loaded on the CeO2 NFs using two different deposition methods: wet impregnation and solvothermal. A mesoporous SiO2 sheath layer was then deposited by sol-gel process. The phase composition, structural, and morphological properties of synthesized materials were investigated by scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), nitrogen adsorption/desorption method, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis, and CO2 temperature programmed desorption (CO2-TPD). The results of these characterization techniques revealed that the core-sheath NFs with a core diameter between 100 and 300 nm and a sheath thickness of about 40-100 nm with a Pt loading of around 0.5 wt.% were successfully obtained. The impregnated catalyst, Pt-CeO2 NF@mesoporous SiO2, showed the best catalytic performance with a CO2 conversion of 8.9% at 350 °C, as compared to the sample prepared by the Solvothermal method. More than 99% selectivity of CO was achieved for all core-sheath NF-catalysts.
Collapse
Affiliation(s)
- Aidin Nejadsalim
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Najmeh Bashiri
- Functional Materials, Institute of Chemistry, Faculty II Mathematics and Natural Sciences, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
- Chemical Engineering/Multiphase Reaction Technology, Institute of Chemistry, Faculty II Mathematics and Natural Sciences, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Hamid Reza Godini
- Inorganic Membranes and Membrane Reactors, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rafael L. Oliveira
- Low Temperature and Structure Research Institute of the Polish Academy of Science, Okólna 2, 50-422 Wroclaw, Poland
| | - Asma Tufail Shah
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Defence Road, Off-Raiwand Road, Lahore 54000, Pakistan
| | - Maged F. Bekheet
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Arne Thomas
- Functional Materials, Institute of Chemistry, Faculty II Mathematics and Natural Sciences, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Reinhard Schomäcker
- Chemical Engineering/Multiphase Reaction Technology, Institute of Chemistry, Faculty II Mathematics and Natural Sciences, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Görke
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
12
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
13
|
Xu Y, Gao Z, Peng L, Liu K, Yang Y, Qiu R, Yang S, Wu C, Jiang J, Wang Y, Tan W, Wang H, Li J. A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Effect of one-dimensional ceria morphology on CuO/CeO2 catalysts for CO preferential oxidation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Garza RB, Lee J, Nguyen MH, Garmon A, Perez D, Li M, Yang JC, Henkelman G, Saidi WA. Atomistic Mechanisms of Binary Alloy Surface Segregation from Nanoseconds to Seconds Using Accelerated Dynamics. J Chem Theory Comput 2022; 18:4447-4455. [PMID: 35671511 DOI: 10.1021/acs.jctc.2c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the equilibrium composition of many alloy surfaces is well understood, the rate of transient surface segregation during annealing is not known, despite its crucial effect on alloy corrosion and catalytic reactions occurring on overlapping timescales. In this work, CuNi bimetallic alloys representing (100) surface facets are annealed in vacuum using atomistic simulations to observe the effect of vacancy diffusion on surface separation. We employ multi-timescale methods to sample the early transient, intermediate, and equilibrium states of slab surfaces during the separation process, including standard MD as well as three methods to perform atomistic, long-time dynamics: parallel trajectory splicing (ParSplice), adaptive kinetic Monte Carlo (AKMC), and kinetic Monte Carlo (KMC). From nanosecond (ns) to second timescales, our multiscale computational methodology can observe rare stochastic events not typically seen with standard MD, closing the gap between computational and experimental timescales for surface segregation. Rapid diffusion of a vacancy to the slab is resolved by all four methods in tens of nanoseconds. Stochastic re-entry of vacancies into the subsurface, however, is only seen on the microsecond timescale in the two KMC methods. Kinetic vacancy trapping on the surface and its effect on the segregation rate are discussed. The equilibrium composition profile of CuNi after segregation during annealing is estimated to occur on a timescale of seconds as determined by KMC, a result directly comparable to nanoscale experiments.
Collapse
Affiliation(s)
- Richard B Garza
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiyoung Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Oden Institute for Computational Engineering & Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mai H Nguyen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Garmon
- Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Department of Physics & Astronomy, Clemson University, Clemson, South Carolina 29631, United States
| | - Danny Perez
- Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Meng Li
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Graeme Henkelman
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Oden Institute for Computational Engineering & Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
16
|
Quo Vadis Dry Reforming of Methane?—A Review on Its Chemical, Environmental, and Industrial Prospects. Catalysts 2022. [DOI: 10.3390/catal12050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, the catalytic dry reforming of methane (DRM) has increasingly come into academic focus. The interesting aspect of this reaction is seemingly the conversion of CO2 and methane, two greenhouse gases, into a valuable synthesis gas (syngas) mixture with an otherwise unachievable but industrially relevant H2/CO ratio of one. In a possible scenario, the chemical conversion of CO2 and CH4 to syngas could be used in consecutive reactions to produce synthetic fuels, with combustion to harness the stored energy. Although the educts of DRM suggest a superior impact of this reaction to mitigate global warming, its potential as a chemical energy converter and greenhouse gas absorber has still to be elucidated. In this review article, we will provide insights into the industrial maturity of this reaction and critically discuss its applicability as a cornerstone in the energy transition. We derive these insights from assessing the current state of research and knowledge on DRM. We conclude that the entire industrial process of syngas production from two greenhouse gases, including heating with current technologies, releases at least 1.23 moles of CO2 per mol of CO2 converted in the catalytic reaction. Furthermore, we show that synthetic fuels derived from this reaction exhibit a negative carbon dioxide capturing efficiency which is similar to burning methane directly in the air. We also outline potential applications and introduce prospective technologies toward a net-zero CO2 strategy based on DRM.
Collapse
|
17
|
Novel layered triple hydroxide sphere CO2 adsorbent supported copper nanocluster catalyst for efficient methanol synthesis via CO2 hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Asthana S, Tripathi K, Pant KK. Impact of La engineered stable phase mixed precursors on physico-chemical features of Cu- based catalysts for conversion of CO2 rich syngas to methanol. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Cortés-Reyes M, Azaoum I, Molina-Ramírez S, Herrera C, Larrubia MÁ, Alemany LJ. NiGa Unsupported Catalyst for CO 2 Hydrogenation at Atmospheric Pressure. Tentative Reaction Pathways. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Cortés-Reyes
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Ibrahim Azaoum
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Sergio Molina-Ramírez
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Concepción Herrera
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - M. Ángeles Larrubia
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| | - Luis J. Alemany
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, E-29071, Spain
| |
Collapse
|
20
|
Rasteiro LF, Rossi MA, Assaf JM, Assaf EM. Low-pressure hydrogenation of CO2 to methanol over Ni-Ga alloys synthesized by a surfactant-assisted co-precipitation method and a proposed mechanism by DRIFTS analysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Chen Y, Li X, Li J, Du Y, Peng Q, Wu L, Xinjun, Li. CeO
2
‐TiO
2
Hybid‐Nanotubes with Tunable Oxygen Vacancies as the Support to Confine Pt Nanoparticles for the Low‐Temperature Water‐Gas Shift Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaqian Chen
- Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Xiangnan Li
- Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
| | - Juan Li
- Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
| | - Yubing Du
- Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Quanming Peng
- Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
| | - Liangpeng Wu
- Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
| | - Xinjun
- Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
| | - Li
- Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
| |
Collapse
|
22
|
Copper-Iron-Zinc-Cerium oxide compositions as most suitable catalytic materials for the synthesis of green fuels via CO2 hydrogenation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Guharoy U, Reina TR, Liu J, Sun Q, Gu S, Cai Q. A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Meng C, Zhao G, Shi XR, Chen P, Liu Y, Lu Y. Oxygen-deficient metal oxides supported nano-intermetallic InNi 3C 0.5 toward efficient CO 2 hydrogenation to methanol. SCIENCE ADVANCES 2021; 7:7/32/eabi6012. [PMID: 34348903 PMCID: PMC8336954 DOI: 10.1126/sciadv.abi6012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Direct CO2 hydrogenation to methanol using renewable energy-generated hydrogen is attracting intensive attention, but qualifying catalysts represents a grand challenge. Pure-/multi-metallic systems used for this task usually have low catalytic activity. Here, we tailored a highly active and selective InNi3C0.5/ZrO2 catalyst by tuning the performance-relevant electronic metal-support interaction (EMSI), which is tightly linked with the ZrO2 type-dependent oxygen deficiency. Highly oxygen-deficient monoclinic-ZrO2 support imparts high electron density to InNi3C0.5 because of the considerably enhanced EMSI, thereby enabling InNi3C0.5/monoclinic-ZrO2 with an intrinsic activity three or two times as high as that of InNi3C0.5/amorphous-ZrO2 or InNi3C0.5/tetragonal-ZrO2 The EMSI-governed catalysis observed in the InNi3C0.5/ZrO2 system is extendable to other oxygen-deficient metal oxides, in particular InNi3C0.5/Fe3O4, achieving 25.7% CO2 conversion with 90.2% methanol selectivity at 325°C, 6.0 MPa, 36,000 ml gcat -1 hour-1, and H2/CO2 = 10:1. This affordable catalyst is stable for at least 500 hours and is also highly resistant to sulfur poisoning.
Collapse
Affiliation(s)
- Chao Meng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Xue-Rong Shi
- Department of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck, Austria
| | - Pengjing Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yong Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
25
|
Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-Based Transition Metal Catalysts: A Critical Review. Catalysts 2021. [DOI: 10.3390/catal11040452] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.
Collapse
|
26
|
Wang W, Tongo DWK, Song L, Qu Z. Effect of Au Addition on the Catalytic Performance of CuO/CeO2 Catalysts for CO2 Hydrogenation to Methanol. Top Catal 2021. [DOI: 10.1007/s11244-021-01414-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Copper Phyllosilicates-Derived Catalysts in the Production of Alcohols from Hydrogenation of Carboxylates, Carboxylic Acids, Carbonates, Formyls, and CO2: A Review. Catalysts 2021. [DOI: 10.3390/catal11020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Copper phyllosilicates-derived catalysts (CuPS-cats) have been intensively explored in the past two decades due to their promising activity in carbonyls hydrogenation. However, CuPS-cats have not been completely reviewed. This paper focuses on the aspects concerning CuPS-cats from synthesis methods, effects of preparation conditions, and dopant to catalytic applications of CuPS-cats. The applications of CuPS-cats include the hydrogenation of carboxylates, carboxylic acids, carbonates, formyls, and CO2 to their respective alcohols. Besides, important factors such as the Cu dispersion, Cu+ and Cu0 surface areas, particles size, interaction between Cu and supports and dopants, morphologies, and spatial effect on catalytic performance of CuPS-cats are discussed. The deactivation and remedial actions to improve the stability of CuPS-cats are summarized. It ends up with the challenges and prospective by using this type of catalyst.
Collapse
|
28
|
Peng G, Xu L, Glezakou VA, Mavrikakis M. Mechanism of methanol synthesis on Ni(110). Catal Sci Technol 2021. [DOI: 10.1039/d1cy00107h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Planewave density functional theory (DFT-PW91) calculations are employed to study the methanol synthesis through CO2 and CO hydrogenation, as well as the two side reactions: the water gas shift (WGS) reaction and the formic acid formation, on Ni(110).
Collapse
Affiliation(s)
- Guowen Peng
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| | - Lang Xu
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| | - Vassiliki-Alexandra Glezakou
- Basic and Applied Molecular Foundations Group
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| |
Collapse
|
29
|
Alharthi AI, Din IU, Alotaibi MA. Effect of the Cu/Ni Ratio on the Activity of Zeolite Based Cu–Ni Bimetallic Catalysts for CO2 Hydrogenation to Methanol. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420120043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
De S, Dokania A, Ramirez A, Gascon J. Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04273] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sudipta De
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abhay Dokania
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
31
|
Verma A, Shivalkar S, Sk MP, Samanta SK, Sahoo AK. Nanocomposite of Ag nanoparticles and catalytic fluorescent carbon dots for synergistic bactericidal activity through enhanced reactive oxygen species generation. NANOTECHNOLOGY 2020; 31:405704. [PMID: 32498056 DOI: 10.1088/1361-6528/ab996f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microwave mediated synthesis of catalytic fluorescent carbon dots (Cdots) has been reported using biodegradable starch as precursor. The as-synthesized Cdots were then characterized using various techniques such as fluorescence spectroscopy, fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analysis. Interestingly, Cdots showed high catalytic activity in the photo-reduction of Ag+ to silver nanoparticles (Ag NPs). During the photo-reduction process, no additional surface passivating agents was needed to stabilize the Ag NPs. Further, TEM results indicated the formation of Cdot-Ag NP nanocomposite i.e. Ag NPs surrounded with Cdots, and the emission intensity of Cdots was significantly decreased whereas the lifetime of Cdots remained almost unaltered in the presence of Ag NPs following static quenching. Finally, combination therapy of Cdots and Ag NPs using Cdot-Ag NP nanocomposite was performed which indicated synergistic bactericidal activity against antibiotic resistant recombinant E. coli bacteria. The treatment elevated the reactive oxygen species (ROS) level as compared to its individual components. Additionally, the flow cytometer study demonstrated that combination therapy causing bacterial cell wall perforation that was possibly leading to synergistic bactericidal activity against both Gram positive and Gram negative bacteria. The presence of Cdots on the surface of the Ag NPs due to their ground state complexation, possibly facilitated electrons towards Ag NPs which enhanced the ROS production in comparison to only Ag NPs.
Collapse
Affiliation(s)
- Arushi Verma
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
32
|
Methanol decomposition over bimetallic Cu-M catalysts supported on nanoceria: Effect of the second metal on the catalytic properties. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
|
34
|
Jiang X, Nie X, Guo X, Song C, Chen JG. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem Rev 2020; 120:7984-8034. [DOI: 10.1021/acs.chemrev.9b00723] [Citation(s) in RCA: 456] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao Jiang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, 209 Academic Projects Building, University Park, Pennsylvania 16802, United States
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
35
|
Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions. Catalysts 2020. [DOI: 10.3390/catal10020160] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Catalysis is an indispensable part of our society, massively involved in numerous energy and environmental applications. Although, noble metals (NMs)-based catalysts are routinely employed in catalysis, their limited resources and high cost hinder the widespread practical application. In this regard, the development of NMs-free metal oxides (MOs) with improved catalytic activity, selectivity and durability is currently one of the main research pillars in the area of heterogeneous catalysis. The present review, involving our recent efforts in the field, aims to provide the latest advances—mainly in the last 10 years—on the rational design of MOs, i.e., the general optimization framework followed to fine-tune non-precious metal oxide sites and their surrounding environment by means of appropriate synthetic and promotional/modification routes, exemplified by CuOx/CeO2 binary system. The fine-tuning of size, shape and electronic/chemical state (e.g., through advanced synthetic routes, special pretreatment protocols, alkali promotion, chemical/structural modification by reduced graphene oxide (rGO)) can exert a profound influence not only to the reactivity of metal sites in its own right, but also to metal-support interfacial activity, offering highly active and stable materials for real-life energy and environmental applications. The main implications of size-, shape- and electronic/chemical-adjustment on the catalytic performance of CuOx/CeO2 binary system during some of the most relevant applications in heterogeneous catalysis, such as CO oxidation, N2O decomposition, preferential oxidation of CO (CO-PROX), water gas shift reaction (WGSR), and CO2 hydrogenation to value-added products, are thoroughly discussed. It is clearly revealed that the rational design and tailoring of NMs-free metal oxides can lead to extremely active composites, with comparable or even superior reactivity than that of NMs-based catalysts. The obtained conclusions could provide rationales and design principles towards the development of cost-effective, highly active NMs-free MOs, paving also the way for the decrease of noble metals content in NMs-based catalysts.
Collapse
|
36
|
Yuan K, Zhang YW. Engineering well-defined rare earth oxide-based nanostructures for catalyzing C1 chemical reactions. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00750a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the nanostructural engineering and applications of rare earth oxide-based nanomaterials with well-defined compositions, crystal phases and shapes for efficiently catalyzing C1 chemical reactions.
Collapse
Affiliation(s)
- Kun Yuan
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
37
|
|
38
|
Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 2020; 49:1385-1413. [DOI: 10.1039/c9cs00614a] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ever-increasing amount of anthropogenic carbon dioxide (CO2) emissions has resulted in great environmental impacts, the heterogeneous catalysis of CO2 hydrogenation to methanol is of great significance.
Collapse
Affiliation(s)
- Jiawei Zhong
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiaofeng Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Zhilian Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Binglian Liang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
39
|
Affiliation(s)
- Kuan Chang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haochen Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Mu-jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Yang C, Liu S, Wang Y, Song J, Wang G, Wang S, Zhao Z, Mu R, Gong J. The Interplay between Structure and Product Selectivity of CO
2
Hydrogenation. Angew Chem Int Ed Engl 2019; 58:11242-11247. [DOI: 10.1002/anie.201904649] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/12/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Chengsheng Yang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Sihang Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yanan Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Jimin Song
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Guishuo Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Shuai Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Rentao Mu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
42
|
Liang B, Ma J, Su X, Yang C, Duan H, Zhou H, Deng S, Li L, Huang Y. Investigation on Deactivation of Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01546] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Binglian Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Junguo Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiong Su
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Chongya Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hongmin Duan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Huanwen Zhou
- Dalian Reak Science & Technology Co., Ltd., 327 Shunle Street, Lvshun Economic Development Zone, Dalian 116023, China
| | - Shaoliang Deng
- Dalian Reak Science & Technology Co., Ltd., 327 Shunle Street, Lvshun Economic Development Zone, Dalian 116023, China
| | - Lin Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yanqiang Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
43
|
Zhang X, Wang D, Jing M, Liu J, Zhao Z, Xu G, Song W, Wei Y, Sun Y. Ordered Mesoporous CeO
2
‐supported Ag as an Effective Catalyst for Carboxylative Coupling Reaction Using CO
2. ChemCatChem 2019. [DOI: 10.1002/cctc.201900039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Zhang
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Dingkun Wang
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Meizan Jing
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Jian Liu
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Zhen Zhao
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Guanhua Xu
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Weiyu Song
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Yuechang Wei
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Yuanqing Sun
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| |
Collapse
|
44
|
Mukherjee D, Singuru R, Venkataswamy P, Damma D, Reddy BM. Ceria Promoted Cu-Ni/SiO 2 Catalyst for Selective Hydrodeoxygenation of Vanillin. ACS OMEGA 2019; 4:4770-4778. [PMID: 31459661 PMCID: PMC6648372 DOI: 10.1021/acsomega.9b00039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/20/2019] [Indexed: 06/10/2023]
Abstract
A ceria (CeO2) promoted Cu-Ni bimetallic catalyst supported on SiO2 (Cu-Ni/CeO2-SiO2) was prepared and evaluated for catalytic hydrodeoxygenation (HDO) of vanillin. Silica supported monometallic Cu and Ni catalysts and bimetallic Cu-Ni catalyst (Cu/SiO2, Ni/SiO2, and Cu-Ni/SiO2), without a ceria promoter, were also synthesized and tested for the same application. The highest conversion of vanillin was achieved with the Cu-Ni/CeO2-SiO2 catalyst. Vanillyl alcohol was the sole product in the initial 2 h, followed by the formation of 2-methoxy-4-methylphenol, which was observed. Characterization of the synthesized catalysts revealed the presence of overlapping crystalline phases of CuO, NiO, and CeO2 on the Cu-Ni/CeO2-SiO2 surface. We extended our study to find out the results of using CeO2 as the support of the Cu-Ni bimetallic catalyst (Cu-Ni/CeO2). Partial incorporation of Cu and Ni cations into the ceria lattice took place, leading to the decrease of specific surface area and a concomitant compromise in the conversion. In the case of the Cu-Ni/CeO2-SiO2 catalyst, the higher conversion was accredited to the facile formation of Cu+ active centers by the synergistic interaction between Ce+4/Ce+3 and Cu+2/Cu+ redox couples and the incorporation of oxygen vacancies on the catalyst surface.
Collapse
Affiliation(s)
- Deboshree Mukherjee
- Catalysis
and Fine Chemicals Department and Academy of Scientific and Innovative
Research, CSIR − Indian Institute
of Chemical Technology, Uppal Road, Hyderabad − 500 007, India
| | - Ramana Singuru
- Catalysis
and Fine Chemicals Department and Academy of Scientific and Innovative
Research, CSIR − Indian Institute
of Chemical Technology, Uppal Road, Hyderabad − 500 007, India
| | | | - Devaiah Damma
- Chemical
Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Benjaram M. Reddy
- Catalysis
and Fine Chemicals Department and Academy of Scientific and Innovative
Research, CSIR − Indian Institute
of Chemical Technology, Uppal Road, Hyderabad − 500 007, India
| |
Collapse
|
45
|
Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis. Catalysts 2019. [DOI: 10.3390/catal9030275] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due to the increasing emission of carbon dioxide (CO2), greenhouse effects are becoming more and more severe, causing global climate change. The conversion and utilization of CO2 is one of the possible solutions to reduce CO2 concentrations. This can be accomplished, among other methods, by direct hydrogenation of CO2, producing value-added products. In this review, the progress of mainly the last five years in direct hydrogenation of CO2 to value-added chemicals (e.g., CO, CH4, CH3OH, DME, olefins, and higher hydrocarbons) by heterogeneous catalysis and plasma catalysis is summarized, and research priorities for CO2 hydrogenation are proposed.
Collapse
|
46
|
Nie X, Li W, Jiang X, Guo X, Song C. Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons. ADVANCES IN CATALYSIS 2019. [DOI: 10.1016/bs.acat.2019.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Shi Z, Tan Q, Wu D. A novel Core–Shell structured CuIn@SiO
2
catalyst for CO
2
hydrogenation to methanol. AIChE J 2018. [DOI: 10.1002/aic.16490] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhisheng Shi
- Dept. of Chemical EngineeringSchool of Chemistry and Chemical Engineering, Southeast University Jiangning District, Nanjing 211189 China
| | - Qingqing Tan
- Dept. of Chemical EngineeringSchool of Chemistry and Chemical Engineering, Southeast University Jiangning District, Nanjing 211189 China
| | - Dongfang Wu
- Dept. of Chemical EngineeringSchool of Chemistry and Chemical Engineering, Southeast University Jiangning District, Nanjing 211189 China
| |
Collapse
|