1
|
Hebda E, Pielichowski K. Biomimetic Polyurethanes in Tissue Engineering. Biomimetics (Basel) 2025; 10:184. [PMID: 40136838 PMCID: PMC11940237 DOI: 10.3390/biomimetics10030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Inspiration from nature is a promising tool for the design of new polymeric biomaterials, especially for frontier technological areas such as tissue engineering. In tissue engineering, polyurethane-based implants have gained considerable attention, as they are materials that can be designed to meet the requirements imposed by their final applications. The choice of their building blocks (which are used in the synthesis as macrodiols, diisocyanates, and chain extenders) can be implemented to obtain biomimetic structures that can mimic native tissue in terms of mechanical, morphological, and surface properties. In recent years, due to their excellent chemical stability, biocompatibility, and low cytotoxicity, polyurethanes have been widely used in biomedical applications. Biomimetic materials, with their inherent nature of mimicking natural materials, are possible thanks to recent advances in manufacturing technology. The aim of this review is to provide a critical overview of relevant promising studies on polyurethane scaffolds, including those based on non-isocyanate polyurethanes, for the regeneration of selected soft (cardiac muscle, blood vessels, skeletal muscle) and hard (bone tissue) tissues.
Collapse
Affiliation(s)
- Edyta Hebda
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Ul. Warszawska 24, 31-155 Kraków, Poland;
| | | |
Collapse
|
2
|
Khazaeel K, Sadeghi A, Khademi Moghaddam F, Mohammadi T. The impact of graphene quantum dots on osteogenesis potential of Wharton's jelly mesenchymal stem cells in fibrin hydrogel scaffolds. Cytotechnology 2025; 77:14. [PMID: 39665046 PMCID: PMC11628478 DOI: 10.1007/s10616-024-00672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Bone tissue engineering is a promising approach to overcome the limitations of traditional autograft bone transplantation. Graphene quantum dots (GQDs) have been suggested as an enhancement for osteogenic differentiation. This study aimed to investigate the ability of the fibrin hydrogel scaffold in the presence of graphene quantum dots to promote osteogenic differentiation of human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). The hWJ-MSCs were isolated from the Wharton's jelly of the human umbilical cord using a mechanical method. Fibrin hydrogel scaffolds were prepared by mixing 15 µl of thrombin solution with fibrinogen solution. GQDs were incorporated into the scaffolds at concentrations of 0, 5, and 10 µg/ml. Cell viability was determined through DAPI staining and the MTT assay. Osteogenic differentiation was assessed by measuring alkaline phosphatase (ALP) activity, quantifying calcium deposition using Alizarin Red S staining, and analyzing the gene expression of BGLAP, COL1A1, Runx-2 and ALP via qPCR. Scanning electron microscopy (SEM) was employed to analyze the scaffold architecture. SEM analysis revealed that the fibrin hydrogel exhibited a suitable architecture for tissue engineering, and DAPI staining confirmed cell viability. The MTT results indicated that the GQDs and fibrin hydrogel scaffold exhibited no cytotoxic effects. Furthermore, the incorporation of GQDs at a concentration of 10 µg/ml significantly enhanced ALP activity, calcium deposition, and the expression of osteogenesis-related genes compared to the control. The findings suggest that the combination of fibrin hydrogel and GQDs can effectively promote the osteogenic differentiation of hWJ-MSCs, contributing to the advancement of bone tissue engineering.
Collapse
Affiliation(s)
- Kaveh Khazaeel
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Abbas Sadeghi
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Tayebeh Mohammadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Chen W, Zheng C. A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair. J Biomater Appl 2025; 39:797-806. [PMID: 39498821 DOI: 10.1177/08853282241297446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Sciatic nerve damage, a common condition affecting approximately 2.8% of the US population, can lead to significant disability due to impaired nerve signal transmission, resulting in loss of sensation and motor function in the lower extremities. In this study, a neural guidance channel was developed by rolling a nanofibrous scaffold produced via electrospinning. The scaffold's microstructure, biocompatibility, biodegradation rate, porosity, mechanical properties, and hemocompatibility were evaluated. Platelet-rich plasma (PRP) activated with 30,000 allogeneic Schwann cells (SCs) was injected into the lumen of the channels following implantation into a rat model of sciatic nerve injury. Recovery of motor function, sensory function, and muscle re-innervation was assessed using the sciatic function index (SFI), hot plate latency time, and gastrocnemius muscle wet weight loss. Results showed mean hot plate latency times of Autograft: 7.03, PCL/collagen scaffolds loaded with PRP and SCs (PCLCOLPRPSCs): 8.34, polymer-only scaffolds (PCLCOL): 10.66, and untreated animals (Negative Control): 12.00. The mean SFI values at week eight were Autograft: -49.30, PCLCOLPRPSCs: -64.29, PCLCOL: -75.62, and Negative Control: -77.14. The PCLCOLPRPSCs group showed a more negative SFI compared to the Autograft group but performed better than both the PCLCOL and Negative Control groups. These findings suggest that the developed strategy enhanced sensory and functional recovery compared to the negative control and polymer-only scaffold groups.
Collapse
Affiliation(s)
- Wenfeng Chen
- Department of Orthopedics, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Chenxiao Zheng
- Department of Orthopedics, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Ahmed YW, Loukanov A, Tsai HC. State-of-the-Art Synthesis of Porous Polymer Materials and Their Several Fantastic Biomedical Applications: a Review. Adv Healthc Mater 2024:e2403743. [PMID: 39723689 DOI: 10.1002/adhm.202403743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Porous polymers, including hydrogels, covalent organic frameworks (COFs), and hyper crosslinked polymers (HCPs), have become essential in biomedical research for their tunable pore architectures, large surface areas, and functional versatility. This review provides a comprehensive overview of their classification and updated synthesis mechanisms, such as 3D printing, electrospinning, and molecular imprinting. Their pivotal roles in drug delivery, tissue engineering, wound healing, and photodynamic/photothermal therapies, focusing on how pore size, distribution, and architecture impact drug release, cellular interactions, and therapeutic outcomes, are explored. Key challenges, including biocompatibility, mechanical strength, controlled degradation, and scalability, are critically assessed alongside emerging strategies to enhance clinical potential. Finally, recent challenges and future perspectives, emphasizing the broader biomedical applications of porous polymers, are addressed. This work provides valuable insights for advancing next-generation biomedical innovations through these materials.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
| | - Alexandre Loukanov
- Department of Chemistry and Material Science, National Institute of Technology, Gunma College, Maebashi, 371-8530, Japan
- Laboratory of Engineering NanoBiotechnology, University of Mining and Geology, St Ivan Rilski, Sofia, 1100, Bulgaria
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, Taiwan, 320, P. R. China
| |
Collapse
|
5
|
Prahaladan V, Poluri N, Napoli M, Castro C, Yildiz K, Berry-White BA, Lu P, Salas-de la Cruz D, Hu X. Protein and Polysaccharide Fibers via Air Jet Spinning: Emerging Techniques for Biomedical and Sustainable Applications. Int J Mol Sci 2024; 25:13282. [PMID: 39769047 PMCID: PMC11675784 DOI: 10.3390/ijms252413282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Polymers play a critical role in the biomedical and sustainable materials fields, serving as key resources for both research and product development. While synthetic and natural polymers are both widely used, synthetic polymers have traditionally dominated due to their ability to meet the specific material requirements of most fiber fabrication methods. However, synthetic polymers are derived from non-renewable resources, and their production raises environmental and health concerns. Natural polymers, on the other hand, are derived from renewable biological sources and include a subset known as biopolymers, such as proteins and polysaccharides, which are produced by living organisms. These biopolymers are naturally abundant and offer benefits such as biodegradability and non-toxicity, making them especially suitable for biomedical and green applications. Recently, air jet spinning has emerged as a promising method for fabricating biopolymer fibers, valued for its simplicity, cost-effectiveness, and safety-advantages that stand out compared to the more conventional electrospinning process. This review examines the methods and mechanisms of air jet spinning, drawing on empirical studies and practical insights to highlight its advantages over traditional fiber production techniques. By assembling natural biopolymers into micro- and nanofibers, this novel fabrication method demonstrates strong potential for targeted applications, including tissue engineering, drug delivery, air filtration, food packaging, and biosensing, utilizing various protein and polysaccharide sources.
Collapse
Affiliation(s)
- Varsha Prahaladan
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nagireddy Poluri
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Makara Napoli
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Connor Castro
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kerem Yildiz
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
| | - Brea-Anna Berry-White
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | | | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
6
|
Wang Z, Han X, Sun G, Yu M, Qin J, Zhang Y, Ding D. Advances in cancer diagnosis and therapy by alginate-based multifunctional hydrogels: A review. Int J Biol Macromol 2024; 283:137707. [PMID: 39566758 DOI: 10.1016/j.ijbiomac.2024.137707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
The field of oncology has been changed by the application of hydrogels. These 3D polymeric networks have demonstrated significant promise in the treatment of cancer and can boost the efficacy of conventional therapeutics including chemotherapy and immunotherapy. Noteworthy, the development of biocompatible and effective hydrogels has been of interest. In this case, alginate as a biopolymer and carbohydrate polymer has been used to modify or synthesis multifunctional nanoparticles for the treatment of human diseases, especially cancer. Therefore, highlighting the function of alginate in the development of hydrogels in cancer therapy can provide new insights for improving outcome and survival rate of patients. Alginate hydrogels improve the specific and selective delivery of cargo and therefore, they reduce the systemic toxicity of drugs, while they enhance anti-cancer activity. Alginate hydrogels protect the genes against degradation by enzymes and increase blood circulation time. The alginate hydrogels can respond to the specific stimuli in the tumor microenvironment including pH, redox and light to improve the site-specific release of cargo. The nanoparticles can be incorporated in the structure of alginate hydrogels to augment their anti-cancer activity. In addition, alginate hydrogels can accelerate immunotherapy and phototherapy through delivery of immunomodulators and photosensitizers, respectively.
Collapse
Affiliation(s)
- Ziwen Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xu Han
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Guowei Sun
- Interventional Center, Fengcheng Central Hospital, Fengcheng 118199, China
| | - Miao Yu
- Department of Respiratory, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Juan Qin
- Department of Endocrinology and Metabolism, Shenyang Fourth People Hospital, Shenyang 110001, China
| | - Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ding Ding
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
7
|
Russo T, Scialla S, D’Albore M, Cruz-Maya I, De Santis R, Guarino V. An Easy-to-Handle Route for Bicomponent Porous Tubes Fabrication as Nerve Guide Conduits. Polymers (Basel) 2024; 16:2893. [PMID: 39458721 PMCID: PMC11511187 DOI: 10.3390/polym16202893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past two decades, the development of nerve guide conduits (NGCs) has gained much attention due to the impellent need to find innovative strategies to take care of damaged or degenerated peripheral nerves in clinical surgery. In this view, significant effort has been spent on the development of high-performance NGCs by different materials and manufacturing approaches. Herein, a highly versatile and easy-to-handle route to process 3D porous tubes made of chitosan and gelatin to be used as a nerve guide conduit were investigated. This allowed us to fabricate highly porous substrates with a porosity that ranged from 94.07 ± 1.04% to 97.23 ± 1.15% and average pore sizes-estimated via X-ray computed tomography (XCT) reconstruction and image analysis-of hundreds of microns and an irregular shape with an aspect ratio that ranged from 0.70 ± 0.19 to 0.80 ± 0.15 as a function of the chitosan/gelatin ratio. More interestingly, the addition of gelatin allowed us to modulate the mechanical properties, which gradually reduced the stiffness-max strength from 0.634 ± 0.015 MPa to 0.367 ± 0.021 MPa-and scaffold toughness-from 46.2 kJ/m3 to 14.0 kJ/m3-as the gelatin content increased. All these data fall into the typical ranges of the morphological and mechanical parameters of currently commercialized NGC products. Preliminary in vitro studies proved the ability of 3D porous tubes to support neuroblastoma cell (SH-SY5Y) adhesion and proliferation. In perspective, the proposed approach could also be easily implemented with the integration of other processing techniques (e.g., electrospinning) for the design of innovative bi-layered systems with an improved cell interface and molecular transport abilities.
Collapse
Affiliation(s)
| | | | | | | | - Roberto De Santis
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Mostra d’Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Napoli, Italy; (T.R.); (S.S.); (M.D.); (I.C.-M.)
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Mostra d’Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Napoli, Italy; (T.R.); (S.S.); (M.D.); (I.C.-M.)
| |
Collapse
|
8
|
Pourhajrezaei S, Abbas Z, Khalili MA, Madineh H, Jooya H, Babaeizad A, Gross JD, Samadi A. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol 2024; 278:134615. [PMID: 39128743 DOI: 10.1016/j.ijbiomac.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.
Collapse
Affiliation(s)
- Sana Pourhajrezaei
- Department of biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahid Abbas
- Department of Chemistry, University of Bologna, Bologna, Italy
| | | | - Hossein Madineh
- Department of Polymer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Hossein Jooya
- Biochemistry group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jeffrey D Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, NV, USA
| | - Ali Samadi
- Department of Basic Science, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
9
|
Siddiqua A, Clutter E, Garklavs O, Kanniyappan H, Wang RR. Electrospun Silk-ICG Composite Fibers and the Application toward Hemorrhage Control. J Funct Biomater 2024; 15:272. [PMID: 39330247 PMCID: PMC11433354 DOI: 10.3390/jfb15090272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
In trauma and surgery, efficient hemorrhage control is crucial to avert fatal blood loss and increase the likelihood of survival. There is a significant demand for novel biomaterials capable of promptly and effectively managing bleeding. This study aimed to develop flexible biocomposite fibrous scaffolds with an electrospinning technique using silk fibroin (SF) and indocyanine green (ICG). The FDA-approved ICG dye has unique photothermal properties. The water permeability, degradability, and biocompatibility of Bombyx mori cocoon-derived SF make it promising for biomedical applications. While as-spun SF-ICG fibers were dissolvable in water, ethanol vapor treatment (EVT) effectively induced secondary structural changes to promote β-sheet formation. This resulted in significantly improved aqueous stability and mechanical strength of the fibers, thereby increasing their fluid uptake capability. The enhanced SF-ICG interaction effectively prevented ICG leaching from the composite fibers, enabling them to generate heat under NIR irradiation due to ICG's photothermal properties. Our results showed that an SF-ICG 0.4% fibrous matrix can uptake 473% water. When water was replaced by bovine blood, a 25 s NIR irradiation induced complete blood coagulation. However, pure silk did not have the same effect. Additionally, NIR irradiation of the SF-ICG fibers successfully stopped the flow of blood in an in vitro model that mimicked a damaged blood vessel. This novel breakthrough offers a biotextile platform poised to enhance patient outcomes across various medical scenarios, representing a significant milestone in functional biomaterials.
Collapse
Affiliation(s)
- Ayesha Siddiqua
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Elwin Clutter
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Olga Garklavs
- Wilbur Wright College, City Colleges of Chicago, Chicago, IL 60634, USA
| | | | - Rong R Wang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
10
|
Avinashi SK, Mishra RK, Singh R, Shweta, Rakhi, Fatima Z, Gautam CR. Fabrication Methods, Structural, Surface Morphology and Biomedical Applications of MXene: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47003-47049. [PMID: 39189322 DOI: 10.1021/acsami.4c07894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recently, two-dimensional (2-D) layered materials have revealed outstanding properties and play a crucial role for numerous advanced applications. The emerging transition metal carbides and nitrides, known as MXene with empirical formula Mn+1XnTx, have generated widespread attention and demonstrated impressive potential in various fields. The fabrication of 2-D novel MXene and its composites and their characterizations are applicable to vast applications in different areas such as energy storage, gas sensors, catalysis, and biomedical applications. In this review, the main focus is on the various synthesis methods, their properties, and biomedical applications. This review provides detailed illustrations of MXenes for many biomedical applications, including bioimaging, drug delivery, therapies, biosensors, tissue engineering, and antibacterial reagents. The challenges and future prospects were highlighted in a comprehensive manner, and the existing problems and potential for MXene-based biomaterials were analyzed with the goal of accelerating their use in the biomedical field.
Collapse
Affiliation(s)
- Sarvesh Kumar Avinashi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rajat Kumar Mishra
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rahul Singh
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Shweta
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rakhi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Zaireen Fatima
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Chandki Ram Gautam
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| |
Collapse
|
11
|
Lanke H, Patadiya J, Banerjee B, Kandasubramanian B. Recent advancement and trends in the development of membranes having bactericidal attributes via direct ink writing. Biomed Mater 2024; 19:052003. [PMID: 39042104 DOI: 10.1088/1748-605x/ad66a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
The necessity for orthopedic prostheses, implants, and membranes to treat diseases, trauma, and other disasters has increased as the risk of survive through various factors has intensified exponentially. Considering exponential growth in demand, it has been observed that the traditional technology of grafts and membranes lags to fulfill the demand and effectiveness simultaneously. These challenges in traditional methodologies prompted a revolutionary shift in the biomedical industry when additive manufacturing (AM) emerged as an alternative fabrication technique for medical equipments such as prostheses, implants, and membranes. However these techniques were fast and precise the major attributes of the biomedical materials were the processability, bactericidal nature, biocompatibility, biodegradability, and nontoxicity together with good mechanical properties. Major challenges faced by researchers in the present-day scenario regarding materials are the lack of bactericidal attributes in tailored material, though having better mechanical as well as biocompatible properties, which, on the other hand, are primary critical factors too, in the healthcare sector. Hence considering the advantages of AM and need for membranes with bacteriacidal attributes this present review will highlight the studies based on the manufacturing of membranes with bacteria-resistant properties majorly using direct ink writing and some AM techniques and the reasoning behind the antibacterial attributes of those composite materials.
Collapse
Affiliation(s)
- Himanshu Lanke
- Department of Chemical Engineering, All India Shree Shivaji Memorial Society's College of Engineering, Pune 411001, Maharashtra, India
| | - Jigar Patadiya
- Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Barnali Banerjee
- Department of Chemical Engineering, All India Shree Shivaji Memorial Society's College of Engineering, Pune 411001, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| |
Collapse
|
12
|
Nair R, Kasturi M, Mathur V, Seetharam RN, S Vasanthan K. Strategies for developing 3D printed ovarian model for restoring fertility. Clin Transl Sci 2024; 17:e13863. [PMID: 38955776 PMCID: PMC11219245 DOI: 10.1111/cts.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Ovaries play a crucial role in the regulation of numerous essential processes that occur within the intricate framework of female physiology. They are entrusted with the responsibility of both generating a new life and orchestrating a delicate hormonal symphony. Understanding their functioning is crucial for gaining insight into the complexities of reproduction, health, and fertility. In addition, ovaries secrete hormones that are crucial for both secondary sexual characteristics and the maintenance of overall health. A three-dimensional (3D) prosthetic ovary has the potential to restore ovarian function and preserve fertility in younger females who have undergone ovariectomies or are afflicted with ovarian malfunction. Clinical studies have not yet commenced, and the production of 3D ovarian tissue for human implantation is still in the research phase. The main challenges faced while creating a 3D ovary for in vivo implantation include sustenance of ovarian follicles, achieving vascular infiltration into the host tissue, and restoring hormone circulation. The complex ovarian microenvironment that is compartmentalized and rigid makes the biomimicking of the 3D ovary challenging in terms of biomaterial selection and bioink composition. The successful restoration of these properties in animal models has led to expectations for the development of human ovaries for implantation. This review article summarizes and evaluates the optimal 3D models of ovarian structures and their safety and efficacy concerns to provide concrete suggestions for future research.
Collapse
Affiliation(s)
- Ramya Nair
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Meghana Kasturi
- Department of Mechanical EngineeringUniversity of MichiganDearbornMichiganUSA
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Raviraja N. Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
13
|
Zhang Z, Zhang Y, Guo Y, Qian C, Chen K, Fang S, Qiu A, Zhong L, Zhang J, He R. Preparing gelatin-containing polycaprolactone / polylactic acid nanofibrous membranes for periodontal tissue regeneration using side-by-side electrospinning technology. J Biomater Appl 2024; 39:48-57. [PMID: 38659361 DOI: 10.1177/08853282241248778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electrospinning technology has recently attracted increased attention in the biomedical field, and preparing various cellulose nanofibril membranes for periodontal tissue regeneration has unique advantages. However, the characteristics of using a single material tend to make it challenging to satisfy the requirements for a periodontal barrier film, and the production of composite fibrous membranes frequently impacts the quality of the final fiber membrane due to the influence of miscibility between different materials. In this study, nanofibrous membranes composed of polylactic acid (PLA) and polycaprolactone (PCL) fibers were fabricated using side-by-side electrospinning. Different concentrations of gelatin were added to the fiber membranes to improve their hydrophilic properties. The morphological structure of the different films as well as their composition, wettability and mechanical characteristics were examined. The results show that PCL/PLA dual-fibrous composite membranes with an appropriate amount of gelatin ensures sufficient mechanical strength while obtaining improved hydrophilic properties. The viability of L929 fibroblasts was evaluated using CCK-8 assays, and cell adhesion on the scaffolds was confirmed by scanning electron microscopy and by immunofluorescence assays. The results demonstrated that none of the fibrous membranes were toxic to cells and the addition of gelatin improved cell adhesion to those membranes. Based on our findings, adding 30% gelatin to the membrane may be the most appropriate content for periodontal tissue regeneration, considering the scaffold's mechanical qualities, hydrophilic properties and biocompatibility. In addition, the PCL-gelatin/PLA-gelatin dual-fibrous membranes prepared using side-by-side electrospinning technology have potential applications for tissue engineering.
Collapse
Affiliation(s)
- Zhuochen Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Ying Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Yabin Guo
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Cheng Qian
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Kailun Chen
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Sheng Fang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Anna Qiu
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Rui He
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
14
|
Khaledian S, Mohammadi G, Abdoli M, Fatahian A, Fatahian A, Fatahian R. Recent Advances in Implantable 3D-Printed Scaffolds for Repair of Spinal Cord Injury. Adv Pharm Bull 2024; 14:331-345. [PMID: 39206398 PMCID: PMC11347741 DOI: 10.34172/apb.2024.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/27/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Spinal cord injury (SCI) is an important factor in sensory and motor disorders that affects thousands of people every year. Currently, despite successes in basic science and clinical research, there are few effective methods in the treatment of chronic and acute spinal cord injuries. In the last decade, the use of 3D printed scaffolds in the treatment of SCI had satisfactory and promising results. By providing a microenvironment around the injury site and in combination with growth factors or cells, 3D printed scaffolds help in axon regeneration as well as neural recovery after SCI. Here, we provide an overview of tissue engineering, 3D printing scaffolds, the different polymers used and their characterization methods. This review highlights the recent encouraging applications of 3D printing scaffolds in developing the novel SCI therapy.
Collapse
Affiliation(s)
- Salar Khaledian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Taleghani and Imam Ali Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohadese Abdoli
- Department of Nanobiotechnology, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arad Fatahian
- School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arya Fatahian
- School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Fatahian
- Clinical Research Development Center, Taleghani and Imam Ali Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Neurosurgery, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
16
|
Sierakowska-Byczek A, Radwan-Pragłowska J, Janus Ł, Galek T, Łysiak K, Tupaj M, Bogdał D. Environment-Friendly Preparation and Characterization of Multilayered Conductive PVP/Col/CS Composite Doped with Nanoparticles as Potential Nerve Guide Conduits. Polymers (Basel) 2024; 16:875. [PMID: 38611133 PMCID: PMC11013910 DOI: 10.3390/polym16070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Tissue engineering constitutes the most promising method of severe peripheral nerve injuries treatment and is considered as an alternative to autografts. To provide appropriate conditions during recovery special biomaterials called nerve guide conduits are required. An ideal candidate for this purpose should not only be biocompatible and protect newly forming tissue but also promote the recovery process. In this article a novel, multilayered biomaterial based on polyvinylpyrrolidone, collagen and chitosan of gradient structure modified with conductive nanoparticles is presented. Products were obtained by the combination of electrospinning and electrospraying techniques. Nerve guide conduits were subjected to FT-IR analysis, morphology and elemental composition study using SEM/EDS as well as biodegradation. Furthermore, their effect on 1321N1 human cell line was investigated by long-term cell culture. Lack of cytotoxicity was confirmed by XTT assay and morphology study. Obtained results confirmed a high potential of newly developed biomaterials in the field of nerve tissue regeneration with a special focus on injured nerves recovery.
Collapse
Affiliation(s)
- Aleksandra Sierakowska-Byczek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Julia Radwan-Pragłowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Łukasz Janus
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Tomasz Galek
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Karol Łysiak
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Mirosław Tupaj
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Dariusz Bogdał
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| |
Collapse
|
17
|
Sellappan LK, Manoharan S. Fabrication of bioinspired keratin/sodium alginate based biopolymeric mat loaded with herbal drug and green synthesized zinc oxide nanoparticles as a dual drug antimicrobial wound dressing. Int J Biol Macromol 2024; 259:129162. [PMID: 38181910 DOI: 10.1016/j.ijbiomac.2023.129162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Dual drug antibacterial wound dressings with biological materials possess crucial wound healing characteristics including biocompatibility, non-toxicity, degradability, mechanical strength and antibacterial properties. The study focusses on fabricating keratin (K)‑sodium alginate (A) based wound dressings by loading green synthesized zinc oxide nanoparticles (ZnO NPs) using C. roseus (leaf extract) and M. recutita (Chamomile flower part) herbal drug (CH) as a bioactive dual antibacterial wound dressing for the first time. The optimized ZnO NPs and CH exhibits strong physiochemical and electrostatic interactions (FT-IR, XRD and SEM) on the fabricated K-A-CH-ZnO biopolymeric mats. Moreover, the tiny porous network of the biopolymeric mat enhances thermal stability, hydrophilicity, mechanical strength and explores the water vapor transmission (2538.07 g/m2/day) and oxygen permeability (7.38 ± 0.31 g/m2) to maintain moist environment and cell-material interactions. During enzymatic degradation studies, ZnO NPs and CH of biopolymeric mat not only retains structural integrity but also increases the characteristic of swelling with sustained drug release (57 %) in 144 h which accelerates wound healing process. Also, K-A-CH-ZnO mat exhibited excellent antibacterial effects against B. subtilis and E. coli. Furthermore, NIH 3T3 fibroblast cell behavior using MTT assay and in vivo evaluations of biopolymeric mat depicted enhanced biocompatibility with increased collagen deposition at the wound site as a prominent dual drug medicated antimicrobial wound dressing.
Collapse
Affiliation(s)
- Logesh Kumar Sellappan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| | - Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| |
Collapse
|
18
|
Nath PC, Sharma R, Debnath S, Nayak PK, Roy R, Sharma M, Inbaraj BS, Sridhar K. Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines. Int J Biol Macromol 2024; 259:129129. [PMID: 38181913 DOI: 10.1016/j.ijbiomac.2023.129129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Agro-food waste is a rich source of biopolymers such as cellulose, chitin, and starch, which have been shown to possess excellent biocompatibility, biodegradability, and low toxicity. These properties make biopolymers from agro-food waste for its application in tissue engineering and regenerative medicine. Thus, this review highlighted the properties, processing methods, and applications of biopolymers derived from various agro-food waste sources. We also highlight recent advances in the development of biopolymers from agro-food waste and their potential for future tissue engineering and regenerative medicine applications, including drug delivery, wound healing, tissue engineering, biodegradable packaging, excipients, dental applications, diagnostic tools, and medical implants. Additionally, it explores the challenges, prospects, and future directions in this rapidly evolving field. The review showed the evolution of production techniques for transforming agro-food waste into valuable biopolymers. However, these biopolymers serving as the cornerstone in scaffold development and drug delivery systems. With their role in wound dressings, cell encapsulation, and regenerative therapies, biopolymers promote efficient wound healing, cell transplantation, and diverse regenerative treatments. Biopolymers support various regenerative treatments, including cartilage and bone regeneration, nerve repair, and organ transplantation. Overall, this review concluded the potential of biopolymers from agro-food waste as a sustainable and cost-effective solution in tissue engineering and regenerative medicine, offering innovative solutions for medical treatments and promoting the advancement of these fields.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Food Technology, Shri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Rupak Roy
- SHRM Biotechnologies Pvt Ltd., Kolkata 700155, India
| | | | | | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
19
|
Murota Y, Nagane M, Wu M, Santra M, Venkateswaran S, Tanaka S, Bradley M, Taga T, Tabu K. A niche-mimicking polymer hydrogel-based approach to identify molecular targets for tackling human pancreatic cancer stem cells. Inflamm Regen 2023; 43:46. [PMID: 37759310 PMCID: PMC10523636 DOI: 10.1186/s41232-023-00296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is one of the most fatal human cancers, but effective therapies remain to be established. Cancer stem cells (CSCs) are highly resistant to anti-cancer drugs and a deeper understanding of their microenvironmental niche has been considered important to provide understanding and solutions to cancer eradication. However, as the CSC niche is composed of a wide variety of biological and physicochemical factors, the development of multidisciplinary tools that recapitulate their complex features is indispensable. Synthetic polymers have been studied as attractive biomaterials due to their tunable biofunctionalities, while hydrogelation technique further renders upon them a diversity of physical properties, making them an attractive tool for analysis of the CSC niche. METHODS To develop innovative materials that recapitulate the CSC niche in pancreatic cancers, we performed polymer microarray analysis to identify niche-mimicking scaffolds that preferentially supported the growth of CSCs. The niche-mimicking activity of the identified polymers was further optimized by polyethylene glycol (PEG)-based hydrogelation. To reveal the biological mechanisms behind the activity of the optimized hydrogels towards CSCs, proteins binding onto the hydrogel were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and the potential therapeutic targets were validated by looking at gene expression and patients' outcome in the TCGA database. RESULTS PA531, a heteropolymer composed of 2-methoxyethyl methacrylate (MEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) (5.5:4.5) that specifically supports the growth and maintenance of CSCs was identified by polymer microarray screening using the human PAAD cell line KLM1. The polymer PA531 was converted into five hydrogels (PA531-HG1 to HG5) and developed to give an optimized scaffold with the highest CSC niche-mimicking activities. From this polymer that recapitulated CSC binding and control, the proteins fetuin-B and angiotensinogen were identified as candidate target molecules with clinical significance due to the correlation between gene expression levels and prognosis in PAAD patients and the proteins associated with the niche-mimicking polymer. CONCLUSION This study screened for biofunctional polymers suitable for recapitulation of the pancreatic CSC niche and one hydrogel with high niche-mimicking abilities was successfully fabricated. Two soluble factors with clinical significance were identified as potential candidates for biomarkers and therapeutic targets in pancreatic cancers. Such a biomaterial-based approach could be a new platform in drug discovery and therapy development against CSCs, via targeting of their niche.
Collapse
Affiliation(s)
- Yoshitaka Murota
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mariko Nagane
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mei Wu
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Mithun Santra
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Seshasailam Venkateswaran
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
20
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Kuznetsova YL, Gushchina KS, Lobanova KS, Chasova VO, Egorikhina MN, Grigoreva AO, Malysheva YB, Kuzmina DA, Farafontova EA, Linkova DD, Rubtsova YP, Semenycheva LL. Scaffold Chemical Model Based on Collagen-Methyl Methacrylate Graft Copolymers. Polymers (Basel) 2023; 15:2618. [PMID: 37376264 DOI: 10.3390/polym15122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Polymerization of methyl methacrylate (MMA) in aqueous collagen (Col) dispersion was studied in the presence of tributylborane (TBB) and p-quinone: 2,5-di-tert-butyl-p-benzoquinone (2,5-DTBQ), p-benzoquinone (BQ), duroquinone (DQ), and p-naphthoquinone (NQ). It was found that this system leads to the formation of a grafted cross-linked copolymer. The inhibitory effect of p-quinone determines the amount of unreacted monomer, homopolymer, and percentage of grafted poly(methyl methacrylate) (PMMA). The synthesis combines two approaches to form a grafted copolymer with a cross-linked structure-"grafting to" and "grafting from". The resulting products exhibit biodegradation under the action of enzymes, do not have toxicity, and demonstrate a stimulating effect on cell growth. At the same time, the denaturation of collagen occurring at elevated temperatures does not impair the characteristics of copolymers. These results allow us to present the research as a scaffold chemical model. Comparison of the properties of the obtained copolymers helps to determine the optimal method for the synthesis of scaffold precursors-synthesis of a collagen and poly(methyl methacrylate) copolymer at 60 °C in a 1% acetic acid dispersion of fish collagen with a mass ratio of the components collagen:MMA:TBB:2,5-DTBQ equal to 1:1:0.015:0.25.
Collapse
Affiliation(s)
- Yulia L Kuznetsova
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Ksenya S Gushchina
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Karina S Lobanova
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Victoria O Chasova
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Marfa N Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Alexandra O Grigoreva
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Yulia B Malysheva
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Daria A Kuzmina
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Ekaterina A Farafontova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Daria D Linkova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Yulia P Rubtsova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Luydmila L Semenycheva
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
22
|
Li Y, Peng Y, Hu Y, Liu J, Yuan T, Zhou W, Dong X, Wang C, Binks BP, Yang Z. Fabrication of Poly(ε-caprolactone)-embedded Lignin-Chitosan Nanocomposite Porous Scaffolds from Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6947-6956. [PMID: 37172292 DOI: 10.1021/acs.langmuir.2c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Poly(ε-caprolactone) (PCL)-incorporated lignin-chitosan biomass-based nanocomposite porous scaffolds have been effectively prepared by templating oil-in-water Pickering high internal phase emulsions (HIPEs). PCL is dissolved in oil and chitosan and lignin nanoparticles originate in water. The continuous phase of the emulsions is gelled by cross-linking of chitosan with genipin and then freeze-dried to obtain porous scaffolds. The resulting scaffolds display interconnected and tunable pore structures. An increase in PCL content increases the mechanical strength and greatly reduces the water absorption capacity of the scaffolds. Scaffolds loaded with the anti-bacterial drug enrofloxacin show a slow drug release profile, adjustable release rate, and favorable long-term anti-bacterial activity. Moreover, Pickering emulsion templates with suitable viscosity are used as 3D printing inks to construct porous scaffolds with personalized geometry. The results imply that the simplicity and versatility of the technique of combining freeze-drying with Pickering HIPE templates is a promising approach to fabricate hydrophobic biopolymer-incorporated biomass-based nanocomposite porous scaffolds for biomedical applications.
Collapse
Affiliation(s)
- Yaozong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Peng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Teng Yuan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xianming Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
23
|
Indra A, Razi R, Jasmayeti R, Fauzan A, Wahyudi D, Handra N, Subardi A, Susanto I, Purnomo MJ. The practical process of manufacturing poly(methyl methacrylate)-based scaffolds having high porosity and high strength. J Mech Behav Biomed Mater 2023; 142:105862. [PMID: 37086523 DOI: 10.1016/j.jmbbm.2023.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Poly(methyl methacrylate) (PMMA)-based scaffolds have been produced using the granule casting method with grain sizes M80-100 and M100-140. The novelty of this study was the application of the cold-cutting method (CCm) to reduce the PMMA granule size. PMMA granule shape, granule size (mesh), and sintering temperature were the primary variables in manufacturing PMMA scaffolds. CCm was applied to reduce the granule size of commercial PMMA, which was originally solid cylindrical, by lowering the temperature to 3.5 °C, 0 °C, and-8.3 °C. PMMA granules that had been reduced were sieved with mesh sizes M80-100 and M100-140. Green bodies were made by the granule casting method using an aluminum mold measuring 8 × 8 × 8 mm3. The sintering process was carried out at temperatures varying from 115 °C to 140 °C, a heating rate of 5 °C/min, and a holding time of 2 h, the cooling process was carried out in a furnace. The characterization of the PMMA-based scaffolds' properties was carried out by observing the microstructure with SEM, analyzing the distribution of pore sizes with ImageJ software, and testing the porosity, the phase, with XRD, and the compressive strength. The best results from the overall analysis were the M80-100 PMMA scaffold treated at a sintering temperature of 130 °C with compressive strength, porosity, and pore size distribution values of 8.2 MPa, 62.0%, and 121-399 μm, respectively, and the M100-140 one treated at a sintering temperature of 135 °C with compressive strength, porosity, and pore size distribution values of 12.1 MPa, 61.2%, and 140-366 μm, respectively. There were interconnected pores in the PMMA scaffolds, as evidenced by the SEM images. There was no PMMA phase change between before and after the sintering process.
Collapse
Affiliation(s)
- Ade Indra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia.
| | - Rivaldo Razi
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Riri Jasmayeti
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Alfi Fauzan
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Didi Wahyudi
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Nofriady Handra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Adi Subardi
- Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Sleman, 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Iwan Susanto
- Department of Mechanical Engineering, Politeknik Negeri Jakarta, West Java, 16425, Indonesia
| | - M Jalu Purnomo
- Department of Aeronautics, Institut Teknologi Dirgantara Adisutjipto, Yogyakarta, 55198, Indonesia
| |
Collapse
|
24
|
Trifanova EM, Babayeva G, Khvorostina MA, Atanova AV, Nikolaeva ME, Sochilina AV, Khaydukov EV, Popov VK. Photoluminescent Scaffolds Based on Natural and Synthetic Biodegradable Polymers for Bioimaging and Tissue Engineering. Life (Basel) 2023; 13:life13040870. [PMID: 37109400 PMCID: PMC10141962 DOI: 10.3390/life13040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Non-invasive visualization and monitoring of tissue-engineered structures in a living organism is a challenge. One possible solution to this problem is to use upconversion nanoparticles (UCNPs) as photoluminescent nanomarkers in scaffolds. We synthesized and studied scaffolds based on natural (collagen-COL and hyaluronic acid-HA) and synthetic (polylactic-co-glycolic acids-PLGA) polymers loaded with β-NaYF4:Yb3+, Er3+ nanocrystals (21 ± 6 nm). Histomorphological analysis of tissue response to subcutaneous implantation of the polymer scaffolds in BALB/c mice was performed. The inflammatory response of the surrounding tissues was found to be weak for scaffolds based on HA and PLGA and moderate for COL scaffolds. An epi-luminescent imaging system with 975 nm laser excitation was used for in vivo visualization and photoluminescent analysis of implanted scaffolds. We demonstrated that the UCNPs' photoluminescent signal monotonously decreased in all the examined scaffolds, indicating their gradual biodegradation followed by the release of photoluminescent nanoparticles into the surrounding tissues. In general, the data obtained from the photoluminescent analysis correlated satisfactorily with the histomorphological analysis.
Collapse
Affiliation(s)
- Ekaterina M Trifanova
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Gulalek Babayeva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia
| | - Maria A Khvorostina
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
- Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Aleksandra V Atanova
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Maria E Nikolaeva
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119991 Moscow, Russia
| | - Anastasia V Sochilina
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119991 Moscow, Russia
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Evgeny V Khaydukov
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119991 Moscow, Russia
| | - Vladimir K Popov
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
25
|
Clement N, Kandasubramanian B. 3D Printed Ionogels In Sensors. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Navya Clement
- Polymer Science, CIPET: Institute of Petrochemical Technology (IPT), HIL Colony, Edayar Road, Pathalam, Eloor, Udyogmandal P.O, Kochi 683501, India
| | | |
Collapse
|
26
|
Alginate-Based Hydrogels and Scaffolds for Biomedical Applications. Mar Drugs 2023; 21:md21030177. [PMID: 36976226 PMCID: PMC10055882 DOI: 10.3390/md21030177] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Alginate is a natural polymer of marine origin and, due to its exceptional properties, has great importance as an essential component for the preparation of hydrogels and scaffolds for biomedical applications. The design of biologically interactive hydrogels and scaffolds with advanced, expected and required properties are one of the key issues for successful outcomes in the healing of injured tissues. This review paper presents the multifunctional biomedical applications of alginate-based hydrogels and scaffolds in selected areas, highlighting the key effect of alginate and its influence on the essential properties of the selected biomedical applications. The first part covers scientific achievements for alginate in dermal tissue regeneration, drug delivery systems, cancer treatment, and antimicrobials. The second part is dedicated to our scientific results obtained for the research opus of hydrogel materials for scaffolds based on alginate in synergy with different materials (polymers and bioactive agents). Alginate has proved to be an exceptional polymer for combining with other naturally occurring and synthetic polymers, as well as loading bioactive therapeutic agents to achieve dermal, controlled drug delivery, cancer treatment, and antimicrobial purposes. Our research was based on combinations of alginate with gelatin, 2-hydroxyethyl methacrylate, apatite, graphene oxide and iron(III) oxide, as well as curcumin and resveratrol as bioactive agents. Important features of the prepared scaffolds, such as morphology, porosity, absorption capacity, hydrophilicity, mechanical properties, in vitro degradation, and in vitro and in vivo biocompatibility, have shown favorable properties for the aforementioned applications, and alginate has been an important link in achieving these properties. Alginate, as a component of these systems, proved to be an indispensable factor and played an excellent “role” in the optimal adjustment of the tested properties. This study provides valuable data and information for researchers and demonstrates the importance of the role of alginate as a biomaterial in the design of hydrogels and scaffolds that are powerful medical “tools” for biomedical applications.
Collapse
|
27
|
Fuster-Gómez S, Castilla Cortázar I, Vidaurre A, Campillo-Fernández A. Biomimetic Growth of Hydroxyapatite in Hybrid Polycaprolactone/Graphene Oxide Ultra-Porous Scaffolds. ACS OMEGA 2023; 8:7904-7912. [PMID: 36873022 PMCID: PMC9979323 DOI: 10.1021/acsomega.2c07656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
This paper reports the preparation and characterization of hybrid scaffolds composed of polycaprolactone (PCL) and different graphene oxide (GO) amounts, intending to incorporate the intrinsic characteristics of their constituents, such as bioactivity and biocidal effect. These materials were fabricated by a solvent-casting/particulate leaching technique showing a bimodal porosity (macro and micro) that was around 90%. The highly interconnected scaffolds were immersed in a simulated body fluid, promoting the growth of a hydroxyapatite (HAp) layer, making them ideal candidates for bone tissue engineering. The growth kinetics of the HAp layer was influenced by the GO content, a remarkable result. Furthermore, as expected, the addition of GO neither significantly improves nor reduces the compressive modulus of PCL scaffolds. The thermal behavior of composites was investigated by differential scanning calorimetry, showing an increase in crystallinity as the addition of GO raised, which implies that GO nanosheets can act as seeds to induce the crystallization of PCL. The improved bioactivity was demonstrated by the deposition of an HAp layer on the surface of the scaffold with GO, especially with a 0.1% GO content.
Collapse
Affiliation(s)
- S. Fuster-Gómez
- Centre
for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
| | - I. Castilla Cortázar
- Centre
for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
| | - A. Vidaurre
- Centre
for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11.
Planta 0, 28029 Madrid, Spain
| | - A.J. Campillo-Fernández
- Centre
for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
28
|
Ghosh S, Yadav A, Rani S, Takkar S, Kulshreshtha R, Nandan B, Srivastava RK. 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1927-1946. [PMID: 36701663 DOI: 10.1021/acs.langmuir.2c02936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the realm of biomaterials, particularly bone tissue engineering, there has been a great increase in interest in scaffolds with hierarchical porosity and customizable multifunctionality. Recently, the three-dimensional (3D) printing of biopolymer-based inks (solutions or emulsions) has gained high popularity for fabricating tissue engineering scaffolds, which optimally satisfies the desired properties and performances. Herein, therefore, we explore the fabrication of 3D printed hierarchical porous scaffolds of poly(ε-caprolactone) (PCL) using the water-in-oil (w/o) Pickering PCL high internal phase emulsions (HIPEs) as the ink in 3D printer. The Pickering PCL HIPEs stabilized using hydrophobically modified nanoclay comprised of aqueous poly(vinyl alcohol) (PVA) as the dispersed phase. Rheological measurements suggested the shear thinning behavior of Pickering HIPEs having a dispersed droplet diameter of 3-25 μm. The pore morphology resembling the natural extracellular matrix and the mechanical properties of scaffolds were customized by tuning the emulsion composition and 3D printing parameters. In vitro biomineralization and drug release studies proved the scaffolds' potential in developing the apatite-rich bioactive interphase and controlled drug delivery, respectively. During in vitro osteoblast (MG63) growth experiments for up to 7 days, good adhesion and proliferation on PCL scaffolds confirmed their cytocompatibility, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) analysis. This study suggests that the assembly of HIPE templates and 3D printing is a promising approach to creating hierarchical porous scaffolds potentially suitable for bone tissue engineering and can be stretched to other biopolymers as well.
Collapse
Affiliation(s)
- Sagnik Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Anilkumar Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Sweety Rani
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Sonam Takkar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
29
|
Socci MC, Rodríguez G, Oliva E, Fushimi S, Takabatake K, Nagatsuka H, Felice CJ, Rodríguez AP. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering (Basel) 2023; 10:bioengineering10020218. [PMID: 36829712 PMCID: PMC9952269 DOI: 10.3390/bioengineering10020218] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Tissue Engineering (TE) is an interdisciplinary field that encompasses materials science in combination with biological and engineering sciences. In recent years, an increase in the demand for therapeutic strategies for improving quality of life has necessitated innovative approaches to designing intelligent biomaterials aimed at the regeneration of tissues and organs. Polymeric porous scaffolds play a critical role in TE strategies for providing a favorable environment for tissue restoration and establishing the interaction of the biomaterial with cells and inducing substances. This article reviewed the various polymeric scaffold materials and their production techniques, as well as the basic elements and principles of TE. Several interesting strategies in eight main TE application areas of epithelial, bone, uterine, vascular, nerve, cartilaginous, cardiac, and urinary tissue were included with the aim of learning about current approaches in TE. Different polymer-based medical devices approved for use in clinical trials and a wide variety of polymeric biomaterials are currently available as commercial products. However, there still are obstacles that limit the clinical translation of TE implants for use wide in humans, and much research work is still needed in the field of regenerative medicine.
Collapse
Affiliation(s)
- María Cecilia Socci
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| | - Gabriela Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Emilia Oliva
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral Pathology and Medicine, Okayama University Dental School, Okayama 700-8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Andrea Paola Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| |
Collapse
|
30
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
31
|
Flórez-Méndez J, López J. Food Additives: Importance, Classification, and Adverse Reactions in Humans. NATURAL ADDITIVES IN FOODS 2023:1-31. [DOI: 10.1007/978-3-031-17346-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds' antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022, València, Spain
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - AlaaAA. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, UK
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| |
Collapse
|
33
|
Bakhtiary N, Pezeshki-Modaress M, Najmoddin N. Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Indra A, Hamid I, Farenza J, Handra N, Anrinal, Subardi A. Manufacturing hydroxyapatite scaffold from snapper scales with green phenolic granules as the space holder material. J Mech Behav Biomed Mater 2022; 136:105509. [PMID: 36240527 DOI: 10.1016/j.jmbbm.2022.105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Hydroxyapatite (HA) scaffold was made using the powder metallurgy with an use of a space holder method with a pore-forming agent from green phenolic (GP) granules. The novelty of this study was the use of GP granules as an agent that does not melt at high temperatures to avoid damaging the tangential contact between the HA powder during the sintering process. HA from snapper scales was added and mixed with polyvinyl alcohol (PVA) and ethanol to form a slurry. The ethanol content was then removed by drying at room temperature. The HA, which contained PVA, was added with GP granules as a pore-forming agent in various amounts to get the desired porosity. The green body was made using a stainless steel mold with the uniaxial pressing process under a pressure of 100 MPa. To make a scaffold sintered body, a sintering process ran at 1200 °C with a holding time of 2 h while maintaining the heating and cooling rates at 5 °C/min. The physical properties of the scaffold sintered body were characterized through linear shrinkage test, pore measurement, porosity test, phase observation by X-ray diffraction (XRD), and microstructure observation by scanning electron microscopy (SEM) and digital microscopy (DM). So were the mechanical ones through a compressive strength test. The results showed that the sintered body had a compressive strength value of 1.6 MPa at a porosity of 60.7% with a pore size of 129-394 μm. The scaffold contained interconnections between pores at a HA:GP ratio of 55:45 wt%, which matched the condition required for cell tissue growth. The conclusion is that GP granules are good enough to be used as a pore-making agent on scaffolds using the space holder method because they do not damage the tangential contact between the HA powder during the sintering process. However, efforts are needed to remove the remaining GP ash on the scaffold.
Collapse
Affiliation(s)
- Ade Indra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia.
| | - Irfan Hamid
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Jerry Farenza
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Nofriady Handra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Anrinal
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Adi Subardi
- Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Sleman, 55281, Daerah Istimewa Yogyakarta, Indonesia
| |
Collapse
|
35
|
Shahverdi M, Seifi S, Akbari A, Mohammadi K, Shamloo A, Movahhedy MR. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application. Sci Rep 2022; 12:19935. [PMID: 36402790 PMCID: PMC9675866 DOI: 10.1038/s41598-022-24275-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Fabrication of well-ordered and bio-mimetic scaffolds is one of the most important research lines in tissue engineering. Different techniques have been utilized to achieve this goal, however, each method has its own disadvantages. Recently, melt electrowriting (MEW) as a technique for fabrication of well-organized scaffolds has attracted the researchers' attention due to simultaneous use of principles of additive manufacturing and electrohydrodynamic phenomena. In previous research studies, polycaprolactone (PCL) has been mostly used in MEW process. PCL is a biocompatible polymer with characteristics that make it easy to fabricate well-arranged structures using MEW device. However, the mechanical properties of PCL are not favorable for applications like bone tissue engineering. Furthermore, it is of vital importance to demonstrate the capability of MEW technique for processing a broad range of polymers. To address aforementioned problems, in this study, three ten-layered box-structured well-ordered scaffolds, including neat PLA, neat PCL, and PLA/PCL composite are fabricated using an MEW device. Printing of the composite PLA/PCL scaffold using the MEW device is conducted in this study for the first time. The MEW device used in this study is a commercial fused deposition modeling (FDM) 3D printer which with some changes in its setup and configuration becomes prepared for being used as an MEW device. Since in most of previous studies, a setup has been designed and built for MEW process, the use of the FDM device can be considered as one of the novelties of this research. The printing parameters are adjusted in a way that scaffolds with nearly equal pore sizes in the range of 140 µm to 150 µm are fabricated. However, PCL fibers are mostly narrower (diameters in the range of 5 µm to 15 µm) than PLA fibers with diameters between 15 and 25 µm. Unlike the MEW process of PCL, accurate positioning of PLA fibers is difficult which can be due to higher viscosity of PLA melt compared to PCL melt. The printed composite PLA/PCL scaffold possesses a well-ordered box structure with improved mechanical properties and cell-scaffold interactions compared to both neat PLA and PCL scaffolds. Besides, the composite scaffold exhibits a higher swelling ratio than the neat PCL scaffold which can be related to the presence of less hydrophobic PLA fibers. This scaffold demonstrates an anisotropic behavior during uniaxial tensile test in which its Young's modulus, ultimate tensile stress, and strain to failure all depend on the direction of the applied tensile force. This anisotropy makes the composite PLA/PCL scaffold an exciting candidate for applications in heart tissue engineering. The results of in-vitro cell viability test using L929 mouse murine fibroblast and human umbilical vein endothelial (HUVEC) cells demonstrate that all of the printed scaffolds are biocompatible. In particular, the composite scaffold presents the highest cell viability value among the fabricated scaffolds. All in all, the composite PLA/PCL scaffold shows that it can be a promising substitution for neat PCL scaffold used in previous MEW studies.
Collapse
Affiliation(s)
- Mohammad Shahverdi
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Saeed Seifi
- Nano BioTechnology Laboratory, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Akbari
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Kaivan Mohammadi
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran.
| | - Amir Shamloo
- Nano BioTechnology Laboratory, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Reza Movahhedy
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| |
Collapse
|
36
|
Phan VHG, Murugesan M, Nguyen PPT, Luu CH, Le NHH, Nguyen HT, Manivasagan P, Jang ES, Li Y, Thambi T. Biomimetic injectable hydrogel based on silk fibroin/hyaluronic acid embedded with methylprednisolone for cartilage regeneration. Colloids Surf B Biointerfaces 2022; 219:112859. [PMID: 36162179 DOI: 10.1016/j.colsurfb.2022.112859] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
Articular cartilage injury is characterized by limited self-repair capacity due to the shortage of blood vessels, lymphatics, and nerves. Hence, this study aims to exploit a classic injectable hydrogel platform that can restore the cartilage defects with minimally invasive surgery, which is similar to the natural extracellular microenvironment, and highly porous network for cell adhesion and proliferation. In this study, an injectable scaffold system comprised of silk fibroin (SF) and hyaluronic acid (HA) was developed to adapt the above requirements. Besides, methylprednisolone (MP) was encapsulated by SF/HA scaffold for alleviating inflammation. The SF/HA hydrogel scaffold was prepared by chemical cross-linking between the lysine residues of SF via Schiff base formation, and pore diameter of the obtained hydrogels was 100.47 ± 32.09 µm. The highly porous nature of hydrogel could further benefit the soft tissue regeneration. Compared with HA-free hydrogels, SF/HA hydrogel showed more controlled release on MP. In ovo experiment of chick embryo chorioallantoic membrane (CAM) demonstrated that SF/HA hydrogels not altered the angiogenesis and formation of blood vessels, thus making it suitable for cartilage regeneration. Furthermore, in vivo gel formation was validated in mice model, suggesting in situ gel formation of SF/HA hydrogels. More importantly, SF/HA hydrogels exhibited the controlled biodegradation. Overall, SF/HA hydrogels provide further insights to the preparation of effective scaffold for tissue regeneration and pave the way to improve the articular cartilage injury treatment.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - P P Thanh Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cuong Hung Luu
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ngoc-Han Hoai Le
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huong Thi Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang Province, PR China.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| |
Collapse
|
37
|
Xia D, Chen J, Zhang Z, Dong M. Emerging polymeric biomaterials and manufacturing techniques in regenerative medicine. AGGREGATE 2022; 3. [DOI: 10.1002/agt2.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractThe current demand for patients’ organ and tissue repair and regeneration is continually increasing, where autologous or allograft is the golden standard treatment in the clinic. However, due to the shortage of donors, mismatched size and modality, functional loss of the donor region, possible immune rejection, and so forth, the application of auto‐/allo‐grafts is frequently hindered in many cases. In order to solve these problems, artificial constructs structurally and functionally imitating the extracellular matrix have been developed as substitutes to promoting cell attachment, proliferation, and differentiation, and ultimately forming functional tissues or organs for better tissue regeneration. Particularly, polymeric materials have been widely utilized in regenerative medicine because of their ease of manufacturing, flexibility, biocompatibility, as well as good mechanical, chemical, and thermal properties. This review presents a comprehensive overview of a variety of polymeric materials, their fabrication methods as well applications in regenerative medicine. Finally, we discussed the future challenges and perspectives in the development and clinical transformation of polymeric biomaterials.
Collapse
Affiliation(s)
- Dan Xia
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering Hebei University of Technology Tianjin China
| | - Jiatian Chen
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering Hebei University of Technology Tianjin China
| | - Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus Denmark
| |
Collapse
|
38
|
Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Yao Q, Liu S, Zheng W, Chen M, Zhou S, Liao M, Huang W, Hu Y, Zhou W. Formation of poly(ε‐caprolactone)‐embedded bioactive nanoparticles/collagen hierarchical scaffolds with the designed and customized porous structures. J Appl Polym Sci 2022. [DOI: 10.1002/app.52749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qin Yao
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Shuifeng Liu
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Weihan Zheng
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou China
| | - Manting Chen
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Shuzhen Zhou
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Minjian Liao
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Wenhua Huang
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou China
| | - Yang Hu
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Wuyi Zhou
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| |
Collapse
|
40
|
Subash A, Basanth A, Kandasubramanian B. Biodegradable polyphosphazene – hydroxyapatite composites for bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2082426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alsha Subash
- Department of Metallurgical and Materials Engineering, Nano Surface Texturing Laboratory, Defence Institute of Advanced Technology (DU), Ministry of Defence, Pune, Maharashtra, India
| | - Abina Basanth
- Biopolymer Science, CIPET: Institute of Plastics Technology (IPT), Kochi, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Nano Surface Texturing Laboratory, Defence Institute of Advanced Technology (DU), Ministry of Defence, Pune, Maharashtra, India
| |
Collapse
|
41
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Tien ND, Geng T, Heyward CA, Reseland JE, Lyngstadaas SP, Blaker JJ, Haugen HJ. Solution blow spinning of highly deacetylated chitosan nanofiber scaffolds for dermal wound healing. BIOMATERIALS ADVANCES 2022; 137:212871. [PMID: 35929246 DOI: 10.1016/j.bioadv.2022.212871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Biocompatible fibrous scaffolds based on highly deacetylated chitosan were fabricated using high-throughput solution blow spinning. Scanning electron microscopy analysis revealed that the chitosan nanofiber scaffolds had ultrafine and continuous fibers (300-1200 nm) with highly interconnected porous structures (30-75% porosity), mimicking some aspects of the native extracellular matrix in skin tissue. Post-treatment of as-spun nanofibers with aqueous potassium carbonate solution resulted in a fibrous scaffold with a high chitosan content that retained its fibrous structural integrity for cell culture. Analysis of the mechanical properties of the chitosan nanofiber scaffolds in both dry and wet conditions showed that their strength and durability were sufficient for wound dressing applications. Significantly, the wet scaffold underwent remarkable elastic deformation during stretch such that the elongation at break dramatically increased to up to 44% of its original length, showing wavy fiber morphology near the break site. The culture of normal human dermal fibroblast cells onto scaffolds for 1-14 days demonstrated that the scaffolds were highly compatible and a suitable platform for cell adhesion, viability, and proliferation. Secretion profiles of wound healing-related proteins to the cell culture medium demonstrated that chitosan fibers were a promising scaffold for wound healing applications. Overall, the dense fibrous network with high porosity of the chitosan nanofiber scaffold and their mechanical properties indicate that they could be used to design and fabricate new materials that mimic the epidermis layer of natural skin.
Collapse
Affiliation(s)
- Nguyen D Tien
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Tianxiang Geng
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Catherine A Heyward
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - S Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Jonny J Blaker
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
43
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
44
|
Basanth A, Mayilswamy N, Kandasubramanian B. Bone regeneration by biodegradable polymers. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Abina Basanth
- Biopolymer Science, Cipet: Ipt, Hil Colony, Kochi, India
| | - Neelaambhigai Mayilswamy
- Department Of Metallurgical And Materials Engineering, Diat(D.U.), Ministry Of Defence, Girinagar, Pune, India
| | | |
Collapse
|
45
|
Poly (L-Lactic Acid) Cell-Laden Scaffolds Applied on Swine Model of Tracheal Fistula. J Surg Res 2022; 277:319-334. [PMID: 35552075 DOI: 10.1016/j.jss.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Tracheal fistula (TF) treatments may involve temporary orthosis and further ablative procedures, which can lead to infection. Thus, TF requires other therapy alternatives development. The hypothesis of this work was to demonstrate the feasibility of a tissue-engineered alternative for small TF in a preclinical model. Also, its association with suture filaments enriched with adipose tissue-derived mesenchymal stromal stem cells (AT-MSCs) was assessed to determine whether it could optimize the regenerative process. METHODS Poly (L-Lactic acid) (PLLA) membranes were manufactured by electrospinning and had morphology analyzed by scanning electron microscopy. AT-MSCs were cultured in these scaffolds and in vitro assays were performed (cytotoxicity, cellular adhesion, and viability). Subsequently, these cellular constructs were implanted in an animal small TF model. The association with suture filaments containing attached AT-MSCs was present in one animal group. After 30 d, animals were sacrificed and regenerative potential was evaluated, mainly related to the extracellular matrix remodeling, by performing histopathological (Hematoxylin-Eosin and trichrome Masson) and immunohistochemistry (Collagen I/II/III, matrix metalloproteinases-2, matrix metalloproteinases-9, vascular endothelial growth factor, and interleukin-10) analyses. RESULTS PLLA membranes presented porous fibers, randomly oriented. In vitro assays results showed that AT-MSCs attached were viable and maintained an active metabolism. Swine implanted with AT-MSCs attached to membranes and suture filaments showed aligned collagen fibers and a better regenerative progress in 30 d. CONCLUSIONS PLLA membranes with AT-MSCs attached were useful to the extracellular matrix restoration and have a high potential for small TF treatment. Also, their association with suture filaments enriched with AT-MSCs was advantageous.
Collapse
|
46
|
Zhang X, Hang Y, Ding Z, Xiao L, Cheng W, Lu Q. Macroporous Silk Nanofiber Cryogels with Tunable Properties. Biomacromolecules 2022; 23:2160-2169. [PMID: 35443774 DOI: 10.1021/acs.biomac.2c00222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cryogels are widely used in tissue regeneration due to their porous structures and friendly hydrogel performance. Silk-based cryogels were developed but failed to exhibit desirable tunable properties to adapt various biomedical applications. Here, amorphous short silk nanofibers (SSFs) were introduced to fabricate silk cryogels with versatile cues. Compared to previous silk cryogels, the SSF cryogels prepared under same conditions showed significantly enhanced mechanical properties. The microporous cryogels were achieved under lower silk concentrations, confirming better tunability. Versatile cryogels with the modulus in the range of 0.5-283.7 kPa were developed through adjusting silk concentration and crosslinking conditions, superior to previous silk cryogel systems. Besides better cytocompatibility, the SSF cryogels were endowed with effective mechanical cues to control osteogenetic differentiation behaviors of BMSCs. The mechanical properties could be further regulated finely through the introduction of β-sheet-rich silk nanofibers (SNFs), which suggested possible optimization of mechanical niches. Bioactive cargo-laden SNFs were introduced to the SSF cryogel systems, bringing biochemical signals without the compromise of mechanical properties. Versatile SNF-based cryogels with different physical and biological cues were developed here to facilitate the applications in various tissue engineering.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Yingjie Hang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
47
|
Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance. Polymers (Basel) 2022; 14:polym14091669. [PMID: 35566838 PMCID: PMC9101196 DOI: 10.3390/polym14091669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
Understanding the mechano-biological coupling mechanisms of biomaterials for tissue engineering is of major importance to assure proper scaffold performance in situ. Therefore, it is of paramount importance to establish correlations between biomaterials, their processing conditions, and their mechanical behaviour, as well as their biological performance. With this work, it was possible to infer a correlation between the addition of graphene nanoparticles (GPN) in a concentration of 0.25, 0.5, and 0.75% (w/w) (GPN0.25, GPN0.5, and GPN0.75, respectively) in three-dimensional poly(ε-caprolactone) (PCL)-based scaffolds, the extrusion-based processing parameters, and the lamellar crystal orientation through small-angle X-ray scattering experiments of extruded samples of PCL and PCL/GPN. Results revealed a significant impact on the scaffold's mechanical properties to a maximum of 0.5% of GPN content, with a significant improvement in the compressive modulus of 59 MPa to 93 MPa. In vitro cell culture experiments showed the scaffold's ability to support the adhesion and proliferation of L929 fibroblasts (fold increase of 28, 22, 23, and 13 at day 13 (in relation to day 1) for PCL, GPN0.25, GPN0.5, and GPN0.75, respectively) and bone marrow mesenchymal stem/stromal cells (seven-fold increase for all sample groups at day 21 in relation to day 1). Moreover, the cells maintained high viability, regular morphology, and migration capacity in all the different experimental groups, assuring the potential of PCL/GPN scaffolds for tissue engineering (TE) applications.
Collapse
|
48
|
Kim SI, Kim NE, Park S, Choi JH, Lee Y, Jeon G, Song JE, Khang G. Characterization of non-solvent- and thermal-induced phase separation applied polycaprolactone/demineralized bone matrix scaffold for bone tissue engineering. IN VITRO MODELS 2022; 1:197-207. [PMID: 39872803 PMCID: PMC11756507 DOI: 10.1007/s44164-022-00018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/30/2025]
Abstract
Objective Polycaprolactone (PCL) is a widely applied biomaterial in bone tissue engineering (BTE) due to its superior mechanical properties and biodegradability. However, the high hydrophobicity and low cell adhesion properties of PCL show limited cell interactions. Herein, we prepared the porous PCL/DBP composites with improved cell adhesion through the addition of demineralized bone powder (DBP). Three-dimensional scaffolds were fabricated by mixing various concentrations of DBP with PCL and applying non-solvent-induced phase separation (NIPS) and thermal-induced phase separation (TIPS) (N-TIPS) and solvent casting and particulate leaching (SCPL) to impart porosity. Methods A characteristic evaluation was performed through X-ray diffraction (XRD), morphological analysis, physicochemical analysis, bioactivity test, and mechanical test. Upon culture with mouse bone marrow stem cells (mBMSCs), proliferation and osteogenic differentiation of mBMSC were evaluated using quantitative dsDNA analysis and alkaline phosphatase (ALP) activity, respectively. Results The addition of DBP improved the physicochemical and mechanical properties of the scaffold and formed a large amount of hydroxyapatite (HAp). Also, cell proliferation and differentiation were increased by enhancing cell adhesion. Conclusion The porous PCL/DBP scaffolds could provide a favorable microenvironment for cell adhesion and be a promising biomaterial model for bone tissue engineering. Graphical abstract
Collapse
Affiliation(s)
- Soo in Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Na Eun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Sunjae Park
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Younghun Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Gayeong Jeon
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea
- Department of Orthopaedic & Traumatology, Airlangga University, Jl. Airlangga No.4-6, Airlangga, Kec. Gubeng, Kota SBY, Jawa Timur 60115 Indonesia
| |
Collapse
|
49
|
Electroconductive and porous graphene-xanthan gum gel scaffold for spinal cord regeneration. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Kim JM, Kyung H, Song YS. Analysis of poly(dioxanone) foam prepared using salt leaching method. J Appl Polym Sci 2022. [DOI: 10.1002/app.52331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jung Min Kim
- Department of Fiber Convergence Materials Engineering Dankook University Yongin‐si Gyeonggi Do Korea
| | - Haksu Kyung
- Department of Ophthalmology National Medical Center Seoul Korea
| | - Young Seok Song
- Department of Fiber Convergence Materials Engineering Dankook University Yongin‐si Gyeonggi Do Korea
| |
Collapse
|